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Abstract. We present a logic and logic programming based approach
for analysing event-based requirements specifications given in terms of
a system’s reaction to events and safety properties. The approach uses
a variant of Kowalski and Sergot’s Event Calculus to represent such
specifications declaratively and an abductive reasoning mechanism for
analysing safety properties. Given a system description and a safety
property, the abductive mechanism is able to identify a complete set
of counterexamples (if any exist) of the property in terms of symbolic
“current” states and associated event-based transitions. A case study of
an automobile cruise control system specified in the SCR framework is
used to illustrate our approach. The technique described is implemented
using existing tools for abductive logic programming.

1 Introduction

Requirements specification analysis is a critical activity in software development.
Specification errors, which if undetected often lead to system failures, are in
general less expensive to correct than defects detected later in the development
process. This paper describes a formal approach to the detection and analysis
of errors, and an associated logic programming tool, that have the following
two desirable characteristics. First, the tool is able to verify some properties
and detect some errors even when requirements specifications are only partially
completed, and even when only partial knowledge about the domain is available.
In particular, our approach does not rely on a complete description of the initial
state(s) of the system, making it applicable to systems embedded in complex
environments whose initial conditions cannot be completely predicted. Second,
the tool provides “pinpoint” diagnostic information about detected errors (e.g.
violated safety properties) as a “debugging” aid for the engineer. In practical
terms, it is the integration of both characteristics that distinguishes our approach
from other formal techniques, such as model checking or theorem proving [6].

Our focus is on event-based requirements specifications. In this paper, we
will regard such specifications as composed of system descriptions, i.e. expressed



in terms of required reactions to events (inputs, changes in environmental condi-
tions, etc.), and global system invariants. For simplicity we restrict our attention
to “single-state” invariants (e.g. safety properties) although we speculate that
our approach could be adapted for other types of property.

The approach uses the Event Calculus (EC) [17] to declaratively model event-
based requirements specifications. The choice of EC is motivated by both prac-
tical and formal needs, and gives several advantages. First, in contrast to pure
state-transition representations, the EC ontology includes an explicit time struc-
ture that is independent of any (sequence of) events under consideration. This
characteristic makes it straightforward to model event-based systems where a
number of input events may occur simultaneously, and where the system behav-
ior may in some circumstances be non-deterministic (see [22]). Second, the EC
ontology is close enough to existing types of event-based requirements specifi-
cations to allow them to be mapped automatically into the logical representa-
tion. This allows our approach and tool to be used as a “back-end” to existing
requirements engineering representational methods. Both the semantics of the
front-end specification language and individual specifications themselves can be
represented in EC. Third, we can prove a general property of the particular class
of EC representations employed here which allows us to reason with a reduced
“two-state” representation (see Section 2.3), thus substantially improving the
efficiency of our tool. Fourth, we can build on a substantial body of existing
work in applying abductive reasoning techniques to EC representations [16, 22].

This brings us to the second corner stone of our approach – the use of ab-
duction. Abduction has already proved suitable for automating knowledge-based
software development [20, 27]. Our approach employs abduction in a refutation
mode to verify global system invariants with respect to event-based system de-
scriptions. Given a system description and an invariant, the abduction is able to
identify a complete set of counterexamples (if any exist) to the system invari-
ant, where each counterexample is in terms of a “current” system state and an
associated event-based transition. Failure to find a counterexample establishes
the validity of the invariant with respect to the system description. (Thus, in
A.I. terminology, each counterexample is an “explanation” for the “observation”
which is the negation of the invariant at an arbitrary symbolic time-point.) The
particular form of these counterexamples makes them ideal as diagnoses which
can be used to modify the specification appropriately, by altering either the
event-based system description, or the set of global system invariants, or both.

The abductive decision procedure employed by our approach has several de-
sirable features. It always terminates, in contrast to most conventional theorem
proving techniques. It does not rely on a complete description of an initial state
(in contrast to model-checking approaches). Like the EC representation, it sup-
ports reasoning about specifications whose state-spaces may be infinite. This last
feature is mainly because the procedure is goal- or property-driven.

The next section describes our general approach. It is followed by an illustra-
tive case study involving analysis of an SCR tabular specification. We conclude
with some remarks about related and future work.



2 Our Approach

As stated above, we will regard requirements specifications as composed of sys-
tem descriptions and global system invariants. The analysis task that we are
concerned with is to discover whether a given system description satisfies all
system invariants, and if not why not. We express a collection of system invari-
ants as logical sentences I1, . . . , In and an event-based system description as a
set of rules S. Thus for each system invariant Ii, we need to evaluate whether
S |= Ii, and to generate appropriate diagnostic information if not. The Event
Calculus representation we have employed allows us to use an abductive rea-
soning mechanism to combine these two tasks into a single automated decision
procedure.

2.1 Abduction for Verification

Abduction is commonly defined as the problem of finding a set of hypotheses (an
“explanation” or “plan”) of a specified form that, when added to a given formal
specification, allows an “observation” or “goal” sentence to be inferred, without
causing contradictions [16]. In logical terms, given a domain description D and a
sentence (goal) G, abduction attempts to identify a set ∆ of assertions such that
(D∪∆) |= G and (D∪∆) is consistent. The set ∆ must consist only of abducible
sentences, where the definition of what is abducible is generally domain-specific.
∆ is often required to be minimal.

From a computational view, abductive procedures (i.e. procedures to find
∆’s) are usually composed of two phases, an abductive phase and a consistency
phase, that interleave with each other. Each abducible generated during the first
phase is temporarily added to a set of abducibles that have already been gen-
erated. But this addition is only made permanent if the second phase confirms
that the entire new set of abducibles is consistent with the specification. Further-
more, the abducibles together with the system description often have to satisfy a
given set of integrity constraints. In general this (re)checking for consistency and
satisfaction of constraints can be computationally expensive, but the particular
form of our EC specifications together with a theoretical result regarding plan
consistency in [21] allows us to avoid such pitfalls.

In our abductive approach the problem of proving that, for some invariant Ii,
D |= Ii is translated into an equivalent problem of showing that it is not possi-
ble to consistently extend D with assertions that particular events have actually
occurred (i.e. with a ∆) in such a way that the extended description entails
¬Ii. In other words, there is no set ∆ such that D ∪∆ |= ¬Ii. The equivalence
of these problems is dependent on the particular Event Calculus representation
used (see [26]). We solve the latter problem by attempting to generate such a ∆
using a complete abductive decision procedure, and refer to this process as using
abduction in a refutation mode. If the procedure finds a ∆ then the assertions
in ∆ act as a counterexample. As we shall see, the form of such counterexam-
ples makes them ideal as diagnostic information that can be utilised to change



the description and/or invariants. The counterexamples that our approach gen-
erates describe particular events occurring in particular “contexts” (i.e. classes
of “current states”). To be relevant, these contexts must themselves satisfy the
invariants. This is ensured by considering the invariants as integrity constraints
on a symbolic current state, which prunes the set of possible counterexamples.
A detailed description of the particular abductive proof procedure used in our
approach can be found in [14].

2.2 The Event Calculus

The Event Calculus is a logic-based formalism for representing and reasoning
about dynamic systems. Its ontology includes an explicit structure of time in-
dependent of any (sequence of) events or actions under consideration. As we
shall see, this characteristic makes it straightforward to model a wide class of
event-driven systems including those that are non-deterministic, those in which
several events may occur simultaneously, and those for which the state space is
infinite. Our approach has, so far, been tested only on specifications for deter-
ministic systems, such as the case study described in Section 3. However, we are
currently investigating its applicability to LTS style specifications [18], which
may be for concurrent and non-deterministic systems.

Our approach adapts a simple classical logic form of the EC [22], whose on-
tology consists of (i) a set of time-points isomorphic to the non-negative integers,
(ii) a set of time-varying properties called fluents, and (iii) a set of event types
(or actions). The logic is correspondingly sorted, and includes the predicates
Happens, Initiates, Terminates and HoldsAt , as well as some auxiliary predi-
cates defined in terms of these. Happens(a, t) indicates that event (or action) a
actually occurs at time-point t. Initiates(a, f, t) (resp. Terminates(a, f, t)) means
that if event a were to occur at t it would cause fluent f to be true (resp. false)
immediately afterwards. HoldsAt(f, t) indicates that fluent f is true at t. So, for
example [Happens(A1, T4) ∧ Happens(A2, T4)] indicates that events A1 and A2

occur simultaneously at time-point T4.

System Descriptions as Axiomatisations Every EC description includes a
core collection of domain-independent axioms that describe general principles for
deciding when fluents hold or do not hold at particular time-points. In addition,
each specification includes a collection of domain-dependent sentences, describ-
ing the particular effects of events or actions (using the predicates Initiates and
Terminates), and may also include sentences stating the particular time-points
at which instances of these events occur (using the predicate Happens).

It is convenient to introduce two auxiliary predicates, Clipped and Declipped .
Clipped(T1, F, T2) means that some event occurs between the times T1 and T2

which terminates the fluent F :

Clipped(t1, f, t2)
def≡ ∃a, t[Happens(a, t) ∧ t1≤ t<t2 (EC1)

∧ Terminates(a, f, t)]



(In all axioms all variables are assumed to be universally quantified with
maximum scope unless otherwise stated.) Similarly, Declipped(T1, F, T2) means
that some event occurs between the times T1 and T2 which initiates the fluent F :

Declipped(t1, f, t2)
def≡ ∃a, t[Happens(a, t) ∧ t1≤ t<t2 (EC2)

∧ Initiates(a, f, t)]

Armed with this notational shorthand, we can state the three general (com-
monsense) principles that constitute the domain-independent component of the
EC: (i) fluents that have been initiated by event occurrences continue to hold
until events occur that terminate them:

HoldsAt(f, t2) ← [Happens(a, t1) ∧ Initiates(a, f, t1) (EC3)
∧ t1 <t2 ∧ ¬Clipped(t1, f, t2)]

(ii) fluents that have been terminated by event occurrences continue not to hold
until events occur that initiate them:

¬HoldsAt(f, t2) ← [Happens(a, t1) ∧ Terminates(a, f, t1) (EC4)
∧ t1 <t2 ∧ ¬Declipped(t1, f, t2)]

(iii) fluents only change status via occurrence of initiating or terminating events:

HoldsAt(f, t2) ← [HoldsAt(f, t1) ∧ t1 <t2 (EC5)
∧ ¬Clipped(t1, f, t2)]

¬HoldsAt(f, t2) ← [¬HoldsAt(f, t1) ∧ t1 <t2 (EC6)
∧ ¬Declipped(t1, f, t2)]

To illustrate how the effects of particular events may be described in the
domain-dependent part of a specification using Initiates and Terminates,
we will describe an electric circuit consisting of a single light bulb and two
switches A and B all connected in series. We need three fluents, SwitchAOn,
SwitchBOn and LightOn, and two actions FlickA and FlickB . We can describe
facts such as (i) that flicking switch A turns the light on, provided that switch
A is not already on and that switch B is already on (i.e. connected) and is
not simultaneously flicked, (ii) that if neither switch is on, flicking them both
simultaneously causes the light to come on, and (iii) that if either switch is on,
flicking it causes the light to go off (irrespective of the state of the other switch):

Initiates(FlickA,LightOn, t) ← [¬HoldsAt(SwitchAOn, t)
∧ HoldsAt(SwitchBOn, t) ∧ ¬Happens(FlickB , t)]

Initiates(FlickA,LightOn, t) ← [¬HoldsAt(SwitchAOn, t)
∧ ¬HoldsAt(SwitchBOn, t) ∧ Happens(FlickB , t)]

Terminates(FlickA,LightOn, t) ← HoldsAt(SwitchAOn, t)



Terminates(FlickB ,LightOn, t) ← HoldsAt(SwitchBOn, t)

In fact, in this example we need a total of five such sentences to describe the
effects of particular events or combinations of events on the light, and a further
four sentences to describe the effects on the switches themselves. Although for
readability these sentences are written separately here, it is the completions (i.e.
the if-and-only-if transformations) of the sets of sentences describing Initiates
and Terminates that are actually included in the specification (see [22] for de-
tails). The use of completions avoids the frame problem, i.e. it allows us to
assume that the only effects of events are those explicitly described.

For many applications, it is appropriate to include similar (completions
of) sets of sentences describing which events occur (when using the predicate
Happens). However, in this paper we wish to prove properties of systems under
all possible scenarios, i.e. irrespective of which events actually occur. Hence our
descriptions leave Happens undefined, i.e. they allow models with arbitrary in-
terpretations for Happens. In this way, we effectively simulate a branching time
structure that covers every possible series of events. In other words, by leav-
ing Happens undefined we effectively consider, in one model or another, every
possible path through a state-transition graph.

2.3 Efficient Abduction with Event Calculus

In this paper, we wish to take an EC description such as that above and
use it to test system invariants. In the language of the EC these are ex-
pressions involving HoldsAt and universally quantified over time, such as
∀t.[HoldsAt(SwitchAOn, t) ∨ ¬HoldsAt(LightOn, t)]. It is (potentially) compu-
tationally expensive to prove such sentences by standard (deductive or abduc-
tive) theorem-proving. To overcome this problem we have reduced this inference
task to a simpler one as stated by the following theorem.

Theorem 1. Let EC(N) be an Event Calculus description with time-points in-
terpreted as the natural numbers N, and let ∀t.I(t) be an invariant. Let S be
the time structure consisting of two points Sc and Sn, with Sc < Sn. Then
EC(N) |= ∀t.I(t) if and only if EC(N) |= I(0) and EC(S) ∪ I(Sc) |= I(Sn).
(Proof by induction over N, see [26].)

Hence to show for some invariant ∀t.I(t) that EC (N) |= ∀t.I(t) it is sufficient
to consider only a symbolic time-point Sc and its immediate successor Sn (“c”
for “current” and “n” for “next”), assume the invariant to be true at Sc, and
demonstrate that its truth then follows at Sn. Theorem 1 is applicable even when
complete information about the initial state of the system is not available. Its
utilisation reduces computational costs considerably because, in the context of
EC (S), it allows us to re-write all our EC axioms with ground time-point terms.
For example, (EC5) becomes:

HoldsAt(f, Sn) ← [HoldsAt(f, Sc) ∧ ¬Clipped(Sc, f, Sn)]



Once the EC representation of an event-based requirements specification is
provided (perhaps by automatic translation), the approach applies existing ab-
ductive tools to analyse this specification. Using the reduced time structure de-
scribed above, our approach proves assertions of the form EC (S)∪I(Sc) |= I(Sn)
by showing that a complete abductive procedure fails to produce a set ∆ of
HoldsAt and Happens facts (grounded at Sc) such that EC (S) ∪ I(Sc) ∪ ∆ |=
¬I(Sn). This procedure is valid given the particular form of the EC descriptions
and under reasonable assumption that only a finite number of events can occur in
a given instant. Theorem 1 then allows us to confirm that, provided I(0) is true,
∀t.I(t) is also true. If on the other hand the abductive procedure produces such
a set ∆, then this ∆ is an explicit indicator of where in the specification there
is a problem. The case study gives such an example of generation of diagnostic
information from the violation of invariants.

The particular form of our EC system descriptions allows us to further reduce
computational costs by largely avoiding the consistency checking normally asso-
ciated with abduction. This is because it ensures that any internally consistent,
finite collection of Happens literals is consistent with any related description.
Therefore, it is necessary only to check the consistency of candidate HoldsAt
literals against the system invariants, and this can be done efficiently because
both these types of expression are grounded at Sc.

Logic Programming Implementation Page limitations prevent us from de-
scribing in detail the implementation of our abductive tool. However, it is im-
plemented in Prolog, using a simplified version of the abductive logic program
module described in [14]. The logic program conversion of the given (classical
logic) Event Calculus specification is achieved using the method described in
[15], which overcomes the potential mismatch between the negation-as-failure
used in the implementation and the classical negation used in the specification.

We have been able to formally prove the correctness of our Prolog tool with
respect to the theoretical framework described in this paper, and this is fully
documented in [26]. Because we are using abduction in what we have described
as “refutation mode”, the proof relies on demonstrating both the soundness
and completeness of the Prolog abductive computation w.r.t. the classical logic
description of abduction (at least in the context of the EC axiomatisation) de-
scribed here. The proof of completeness builds on the work in [13] on a gener-
alised stable model semantics for abduction, and is valid for a well-defined class
of deterministic EC domain descriptions.

3 A Case Study

In this section we describe, via an example, an application of our approach to
analysing Software Cost Reduction (SCR) specifications. We show how our tool
analyses particular SCR-style system invariants, called mode invariants, with
respect to event-based system descriptions expressed as SCR mode transition



tables. The SCR approach has been proven useful for expressing the require-
ments of a wide range of large-scale real-world applications [1, 7, 10, 23] and is
an established method for specifying and analysing event-based systems.

3.1 SCR Specifications

The SCR method is based on Parnas’s “Four Variable Model”, which describes
a required system’s behavior as a set of mathematical relations between mon-
itored and controlled variables, and input and output data items [25]. Moni-
tored variables are environmental entities that influence the system behavior,
and controlled variables are environmental entities that the system controls. For
simplicity, our case study uses only Boolean variables. (Non-Boolean variables
can always be reduced to Boolean variables, i.e. predicates defined over their
values.) SCR facilitates the description of natural constraints on the system be-
havior, such as those imposed by physical laws, and defines system requirements
in terms of relations between monitored and controlled variables, expressed in
tabular notation.

Predicates representing monitored and controlled variables are called condi-
tions and are defined over single system states. An event occurs when a system
component (e.g, a monitored or controlled variable) changes value. Full SCR
specifications can include mode transition, event and condition tables to describe
a required system behavior, assertions to define properties of the environment,
and invariants to specify properties that are required to always hold in the sys-
tem (see [4, 9, 10]). However, this case study concerns a simple SCR specification
consisting of just a single mode transition table and a list of system invariants.

Mode Transition Tables Mode classes are abstractions of the system state
space with respect to monitored variables. Each mode class can be seen as a state
machine, defined on the monitored variables, whose states are modes and whose
transitions, called mode transitions, are triggered by changes on the monitored
variables. Mode transition tables represent mode classes and their respective
transitions in a tabular format. The mode transition table for our case study,
taken from [3], is given in Table 1. It is for an automobile cruise control system.
Note that the table already reflects basic properties of monitored variables. For
example, the two transitions from “Inactive” to “Cruise” take into account the
environmental property that in any state a cruise control lever is in exactly one
of the three positions “Activate”, “Deactivate” or “Resume”. So, for example,
whenever “Activate” changes to true, either “Deactivate” or “Resume” changes
to false. For a more detailed description of this case study see [3].

Mode transition events occur when one or more monitored variables change
their values. Events are of two types: “@T(C)” when a condition C changes
from false to true, and “@F(C)” when C changes from true to false. C is called
a triggered condition. For example, in the automobile cruise control system the
event “@T(Ignited)” denotes that the engine of the automobile has changed
from not being ignited to being ignited. Event occurrences can also depend on



the truth/falsity of other conditions. In this case, they are called conditioned
events. For example, in Table 1 the mode transition defined in the second row
is caused by the occurrence of conditioned event “@F(Ignited)” whose condition
is that “Running” is false. Different semantics have been used for conditioned
events [11], all of which are expressible in our Event Calculus approach. In this
case study, we have adopted the following interpretation. An event “@T(C)”
conditional on “D” means that “C” is false in the current mode and is changed
to true in the new mode, while “D” is true in the current mode and stays true in
the new mode. The interpretation is similar for an event “@F(C)” conditional on
“D”, but with “C” changing truth value from true to false. In a mode transition
table, each row is a transition from a current mode, indicated in the left most
column of the table, to a new mode, specified in the right most column. The
central part of the table defines the events that cause the transition. A triggered
event “C” can have entries equal to “@T” or “@F”. Monitored variables that
are conditions for the occurrence of an event can have entry equal to “t” or “f”.
Monitored variables that are irrelevant for the transition have a “-” entry.

Current
Mode

Ignited Running Toofast Brake Activate Deactivate Resume
New
Mode

Off @T - - - - - - Inactive
Inactive @F f - - - - - Off

@F @F - - - - -
t t - f @T @F f Cruise
t t - f @T f @F

Cruise @F @F - - - - - Off
t @F - - - - - Inactive
t - @T - - - -
t t f @T - - - Override
t t f - @F @T f
t t f - f @T @F

Override @F @F - - - - - Off
t @F - - - - - Inactive
t t - f @T @F f Cruise
t t - f @T f @F
t t - f f @F @T
t t - f @F f @T

Table 1: Mode Transition Table for an Automobile Cruise Control System

SCR mode transition tables can be seen as shorthand for much larger tables
in two respects. First, a “-” entry for a condition in the table is shorthand for
any of the four possible condition entries “@T”, “@F”, “t” and “f”. This means
that any transition between a current and new mode specified in a table using n
dashes is in effect shorthand for up to 4n different transitions, between the same
current and new modes, given by the different combinations of entries for each
of the dashed monitored variables. For instance, the first transition in Table 1
from “Inactive” to “Cruise” is shorthand for four different transitions between
“Inactive” and “Cruise” given, respectively, by each of the four entries “t”, “f”,
“@T” and “@F” for the condition “Toofast”. Second, tables are made much
more concise by the non-specification of transitions between identical modes. A
table basically describes a function that defines, for each current mode and each
combination of condition values, a next mode of the system. This next mode
may or may not be equal to the current mode. The function thus uniquely cap-
tures the system requirements. However in specifying real system behavior only



the transitions between current and next modes that are different are explic-
itly represented in SCR tables. The other “transitions” (where current and next
modes are identical) are implicit and thus omitted or “hidden” from the table.
Hence we may regard the meaning of real SCR mode transition tables as being
given by “full extended” (and very long!) mode transition tables which do not
utilise “-” dashes and include a row (which might otherwise be “hidden” in the
sense described above) for each possible combination of current mode and “t”,
“f”, “@T” and “@F” condition entries. Both the implicit “hidden rows” and the
dashes need to be taken into account when analysing invariants with respect to
the real (concise) version of an SCR mode transition table. Our case study shows
that both can indeed be causes for mismatch between SCR tables and system
invariants, as they may obscure system behaviors that violate these invariants.

Mode Invariants Mode invariants are unchanging properties (specification
assertions) of the system regarding mode classes, which should be satisfied by the
system specification. In our case study of an automobile cruise control system,
an example of an invariant is [Cruise → (Ignited ∧ Running ∧ ¬Brake)]. This
means that whenever the system is in mode “Cruise”, the conditions “Ignited”
and “Running” must be true and “Brake” must be false. In SCR notation mode
invariants are formulae of the form m → P , where m is a mode value of a
certain mode class and P is a logical proposition over the conditions used in the
associated mode transition table. A mode transition table of a given mode class
has to satisfy the mode invariants related to that mode class.

3.2 Abductive Analysis of Invariants

The Translation We can now illustrate the use of our abductive EC approach
to analysing mode invariants in SCR mode transition tables. In our translation,
both conditions and modes are represented as fluents, which we will refer to
as condition fluents and mode fluents respectively. Although in reality many
different types of external, real-word events may affect a given condition, SCR
tables abstract these differences away and essentially identify only two types
of events for each condition - a “change-to-true” (@T) and a “change-to-false”
(@F) event. Hence in our EC translation there are no independent event
constants, but instead two functions @T and @F from fluents to events, and
for each condition fluent C, the two axioms:

Initiates(@T (C), C, t) (S1)
Terminates(@F (C), C, t) (S2)

The translation of tables into EC axioms (rules) is modular, in that a single
Initiates and a single Terminates rule is generated for each row. For a given
row, the procedure for generating the Initiates rule is as follows. The Initiates
literal in the left-hand side of the rule has the new mode (on the far right of
the row) as its fluent argument, and the first @T or @F event (reading from



the left) as its event argument. The right-hand side of the rule includes a
HoldsAt literal for the current mode and a pair of HoldsAt and Happens literals
for each “non-dash” condition entry in the row. Specifically, if the entry for
condition C is a “t” this pair is HoldsAt(C, t) ∧ ¬Happens(@F (C), t), for “f”
it is ¬HoldsAt(C, t) ∧ ¬Happens(@T (C), t), for “@T” it is ¬HoldsAt(C, t) ∧
Happens(@T (C), t), and for “@F” it is HoldsAt(C, t)∧Happens(@F (C), t). The
Terminates rule is generated in exactly the same way, but with the current
mode as the fluent argument in the Terminates literal. For example, the seventh
row in Table 1 is translated as follows:

Initiates(@F (Running), Inactive, t) ← [HoldsAt(Cruise, t)
∧ HoldsAt(Ignited , t) ∧ ¬Happens(@F (Ignited), t)
∧ HoldsAt(Running , t) ∧ Happens(@F (Running), t)]

Terminates(@F (Running),Cruise, t) ← [HoldsAt(Cruise, t)
∧ HoldsAt(Ignited , t) ∧ ¬Happens(@F (Ignited), t)
∧ HoldsAt(Running , t) ∧ Happens(@F (Running), t)]

Clearly, this axiom pair captures the intended meaning of individual rows as
described in Section 3.1.

The semantics of the whole table is given by the two completions of the
collections of Initiates and Terminates rules. These completions (standard in
the EC) reflect the implicit information in a given SCR table that combinations
of condition values not explicitly identified are not mode transitions. As discussed
in Section 3.1 we may regard SCR tables as also containing “hidden” rows (which
the engineer does not list) in which the current and the new mode are identical.
Violations of system invariants are just as likely to be caused by these “hidden”
rows as by the real rows of the table. Because our translation utilises completions,
the abductive tool is able to identify problems in “hidden” as well as real rows.

Our EC translation supplies a semantics to mode transition tables that is
independent from other parts of the SCR specification. In particular, the trans-
lation does not include information about the initial state, and the abductive
tool does not rely on such information to check system invariants. Our technique
is therefore also applicable to systems where complete information about the ini-
tial configuration of the environment is not available. The abductive tool does
not need to use defaults to “fill in” missing initial values for conditions. (Infor-
mation about the initial state may also be represented; e.g, HoldsAt(Off , 0), so
that system invariants may be checked w.r.t. to the initial state separately).

The Abductive Procedure For the purposes of discussion, let us suppose
Table 1 has been translated into an EC specification ECA(N). The system
invariants in this particular case are translated into 4 universally quantified
sentences ∀t.I1(t), . . . ,∀t.I4(t). In general there will be n such constraints, but
we always add an additional constraint ∀t.I0(t) which simply states (via an
exclusive or) that the system is in exactly one mode at any one time. We use the



term ∀t.I(t) to stand for ∀t.I1(t), . . . ,∀t.In(t). For our case study the invariants
are (reading “|” as exclusive or):

I0: [HoldsAt(Off , t) | HoldsAt(Inactive, t) |
HoldsAt(Cruise, t) | HoldsAt(Override, t)]

I1: HoldsAt(Off , t) ≡ ¬HoldsAt(Ignited , t)
I2: HoldsAt(Inactive, t) → [HoldsAt(Ignited , t) ∧

[¬HoldsAt(Running , t) ∨ ¬HoldsAt(Activate, t)]]
I3: HoldsAt(Cruise, t) → [HoldsAt(Ignited , t) ∧

HoldsAt(Running , t) ∧ ¬HoldsAt(Brake, t)]
I4: HoldsAt(Override, t) → [HoldsAt(Ignited , t) ∧ HoldsAt(Running , t)]

As stated previously, Theorem 1 allows us to use our tool with a reduced
version of the EC specification that uses a time structure S consisting of just
two points Sc and Sn with Sc < Sn. To recap, our abductive procedure attempts
to find system behaviors that are counterexamples of the system invariants
by generating a consistent set ∆ of HoldsAt and Happens facts (positive or
negative literals grounded at Sc), such that EC (S) ∪ I(Sc) ∪ ∆ |= ¬I(Sn).
We can also check the specification against a particular invariant ∀t.Ii(t) by
attempting to abduce a ∆ such that EC (S)∪ I(Sc)∪∆ |= ¬Ii(Sn). Because the
abductive procedure is complete, failure to find such a ∆ ensures that the table
satisfies the invariant(s). If, on the other hand, the tool generates a ∆, this ∆
is effectively a pointer to a particular row in the table that is problematic. For
example, when checking the table against I3 the tool produces the following:

∆ = {HoldsAt(Ignited , Sc),HoldsAt(Running , Sc),HoldsAt(Toofast , Sc),
¬HoldsAt(Brake, Sc),HoldsAt(Cruise, Sc),¬Happens(@F (Ignited), Sc),
¬Happens(@F (Running), Sc),¬Happens(@F (Toofast), Sc),
Happens(@T (Brake), Sc)}

Clearly, this ∆ identifies one of the “hidden” rows of the table in which a
“@T(Brake)” event merely results in the system staying in mode “Cruise”. The
requirements engineer now has a choice: (1) alter the new mode in this (hid-
den) row so that invariant I3 is satisfied (in this case the obvious choice is to
change the new mode from “Cruise” to “Override”, and make this previously
hidden row explicit in the table), (2) weaken or delete the system invariant (in
this case I3) that has been violated, or (3) add an extra invariant that forbids
the combination of HoldsAt literals in ∆ (e.g. add I5 = [HoldsAt(Cruise, t) →
¬HoldsAt(Toofast , t)]). This example illustrates all the types of choices for
change that will be available when violation of an invariant is detected. Choices
such as these will be highly domain-specific and therefore appropriate for the
engineer, rather than the tool, to select. After the selected change has been im-
plemented, the tool should be run again, and this process repeated until no more
inconsistencies are identified.



4 Conclusions, Related and Future Work

Our case study illustrates the two characteristics of our approach mentioned
in the introduction. It was able to detect violations of invariants even though
the SCR specification used did not include information about an initial state.
The counterexamples generated acted as pointers to rows in the mode transition
tables and to individual invariants that were problematic. It avoids high compu-
tational overheads because of the choice of logical representation and theoretical
results, which allow us to reduce the reasoning task before applying the tool.
We believe our approach could be more widely applicable. In particular, we are
investigating its use in analysing LTS [18] specifications.

A variety of techniques have been developed for analysing requirements spec-
ifications. These range from structured inspections [8], to more formal techniques
such as model checking, theorem proving [6] and other logic-based approaches
(e.g. [20, 27, 28]). Most techniques based on model checking facilitate automated
analysis of requirements specifications and generation of counterexamples when
errors are detected [2, 4, 11]. However, in contrast to our approach they pre-
suppose complete descriptions of the initial state(s) of the system to compute
successor states. Moreover, they need to apply abstraction techniques to reduce
the size of the state space, and can only handle finite state systems.

For example, in the context of SCR, [11] illustrates how both explicit state
model checkers, such as Spin [12], and symbolic model checkers, like SMV [19],
can be used to detect safety violations in SCR specifications. The first type of
model checking verifies system invariants by means of state exploration. Prob-
lems related to state explosion are dealt with by the use of sound and complete
abstraction techniques, which reduce the number of variables to just those that
are relevant to the invariant to be tested [11]. The goal-driven nature of our
abductive EC has the same effect, in that abduction focuses reasoning on goals
relevant to the invariant, and the EC ensures that this reasoning is at the level
of relevant variables (fluents) rather than via the manipulation of entire states.
The essential differences between our approach and this type of model check-
ing are that our system (i) deals with specifications in which information about
the initial state is incomplete, and (ii) reports problems in terms of individual
mode transitions (which correspond directly to rows in the tables) rather than
in terms of particular paths through a state space. The approach will in certain
cases be over-zealous in its reporting of potential errors, in that it will also report
problems associated with system states that are in reality unreachable from any
possible initial state if such information is given elsewhere in the specifications.
However, this feature can only result in overly robust, rather then incorrect, spec-
ifications. If desired we can reapply the abductive procedure, with information
about the initial state and a full time structure, to test for reachability.

Theorem proving [24] provides an alternative way of analysing requirements
specifications, even for infinite state systems. However, in contrast to our ap-
proach this does not provide useful diagnostic information when a verification
fails, and computations may not always terminate. [5] uses a hybrid approach
based on a combination of specialised decision procedures and model checking



for overcoming some of the limitations described above. This approach makes
use of induction to prove the safety-critical properties in SCR specifications, and
so again states identified as counterexamples may not be reachable.

Of logic-based approaches, the work in [28] is particularly relevant. This de-
scribes a goal-driven approach to requirement engineering in which “obstacles”
are parts of a specification that lead to a negated goal. This approach is com-
parable to ours in that its notion of goals is similar to our notion of invariants,
and its notion of obstacles is analogous to our notion of abducibles. However,
the underlying goal-regression technique is not completely analogous to our ab-
ductive decision procedure. Although it uses backward reasoning and classical
unification as in the abductive phase of our decision procedure, no checking for
consistency or satisfaction of domain-dependent constraints is performed once an
obstacle is generated. Moreover, the identification of obstacles is not automated.
Our procedure might also be used effectively to support automated identification
of obstacles in [28]’s framework.

Recent work has also demonstrated the applicability of abductive reasoning
to software engineering in general. Menzies has proposed the use of abductive
techniques for knowledge-based software engineering, providing an inference pro-
cedure for “knowledge-level modeling” that can support prediction, explanation,
and planning [20]. Satoh has also proposed the use of abduction for handling the
evolution of (requirements) specification, by showing that minimal revised speci-
fications can efficiently be computed using logic programming abductive decision
procedures [27].

Our next aim is to test our approach on larger and more complex specifica-
tions, for example of systems with infinite states or including non-determinism.
As mentioned in Section 2.2, the EC allows the representation of such types of
specifications, but further experimentation is needed.
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