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ON AN ABEL-TAUBER THEOREM FOR LAPLACE TRANSFORMS

by Laurens de Haan

1: INTRODUCTION

The well known Abel-Tauber theorems for Laplace transforms of

probability distributions (given e.g. in Feller 1,. XIII, 5 ex. c) for 
indices

-a of regular variation with 0 < a < 1 'can be complemented by a similar

theorem for a = I (cf. Wichura, 5). This result can be derived by 
comparing

two sets of equivalent conditions on the distribution function and its

transform respectively for the domain of attraction of a stable 
distribution

of exponent a = 1 .(Nevels, 3). Here we present a direct approach to th
is

result. In Section 1 We derive the theorem for a = I Using Karamata's

Tauberian theorem and some simple considerations. Section 2 contains 
the

corresponding result for a = 2, 3, ... All these results are known. In the

final section we present a more general result.

2. a = 1

Let F be a distribution function with F(0-) = 0 and let it: be its

Laplace transform. Write T(t) = t-1(1 Pf(t)). We shall prove

(1)

and

(2)
t+0

THEOREM . The following assertions are equivalent:

-I
lim   

x 
for all x > 0

I F(t)
t-÷co

lim Itx) T(t) 

T te) - T(t)
= log x for all x > 0 .

Both imply

f(i- F(s))ds -

li(3) 
0 

m
t(1 F(t))

t400

Euler's constant.

Y 5
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Remark. Relation (1)" says that 1 F is -1-Varying at infinity and

(2) says that 'i'(1/t) E II (cf. 2 section 1.4).

For the proof we need the following

LEMMA. Suppose U has a negative non-increasing derivative -u. Then

(4) rn
1. U(tx) - It) 

= log x for all x 0

-t4-0

if and only if u is -1-Varying at 0+. Moreover then -t.u(t) ft, {U(te) - U(t)1

as t O.

u(tx) -1
Remark. "u is -1-varying at Ot" lim = x for x > O.

u(t)
t+0

Proof

The method of proof is adapted from 2, section 2.7.

If u is -1-Varying, then

Its) 
{U(tx) - U(t)}/tu(t) 

I t) us'

Since the integrand tends to s 
-1
 uniformly, (4) follows.

Next suppose (4) holds. We write

Hence

U(tx) U(t) _  -t.u(t)  ucts) 
U(te) - U(t) U(te) - U(t) u(t) 

ds.
1

The last integral by our assumption on u is at most x - 1 When x

lim sup u
t-4-0

for all x > 1. Similarly

-t.u(t)  log x 
te) - U(t

< 
x -

lim -t.u(t)  log x 
t+0 U(te) - -U(t) x - 1 "

for all 0 < x < 1.. Hence-t.u(t) qi(U(te) - U(t))as t 00. By (4)
U(t).- U(te) is a slowly varying function, so is t.u(t).

Remark. A similar property is true at t = 00.
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Proof of theorem 1. Let U(t) = 1 (1 = F(s))ds and v(t) = I s(1 = F(s))ds.

Let 6" and V be the Laplace-Stiatjes transforms of U and V. Simple

calculations show

T(t) = Il(t) = I IT(s)ds.

Now 1 - F is -1-varying at infinity if and only if V is 1-varying at

infinity (this can be seen by the method of proof of the lemma above

cf. Pitman, )). By a standard Abel-Tauber theorem (Feller 1, XIII,

5 theorem 2) the 1-Variation of V is equivalent to the -1-Variation of

4 at 0+. This in turn by the lemma above is equivalent to (2).
To show (3) we write

1 "
(1 = F(s))ds - T(I/t) = I t(1 = F(st))ds

0 0

= I t(1 = F(st))ds - I te-s( = F(st))ds
0 0
1 

= e
-s

= st(1 = F(st))ds -
0

00
e o

- F(s))ds

Co -S

7s 
st(1 = F(st))ds.

1

Now (st)P(1 " F(st))/tP(1 = F(t)) tends to s
-1

as t -± 00 uniformly

on (0, 1] when p > I and uniformly on [1;00) when p < I hence

1 ' 
e
-i s

lim If ' - 
st(1 = F(st)) 

ds - 7 e:st.,.. 0 . to -._ F(t), 1
1 1-. : e-s 

. _s
.e

= f   ds - J ds = Y .
s s

0 1

st(1 - F(s),) dt1 =• t(1 F(t))

Corollary. Under the conditions of the theorem

2d 
(
1 , 1(t))

t -
dt t 

lim = ...1

t+0

Proof. Use the final conclusion of the lemma and a similar property

with respect to ')JC (1 - F(t))dt.
0



3. a > 1

For completeness we mention an analogous result when 1 = F is

-n-varying with n =2, 3, ..., given also by Nevels. Define F
1 
(t) = F(t)

and 1 = F +I(t) = I (1 = F (s))ds < co for n = 2, ... and t > O. When
n .

finite 1 = F
n 
is a 'histribution tail. Now 1 = F is -n-varying at infinity if

and onlytif 1 = Fn is finite and -1-Verying at infinity. Define

U
n
(t) = 1 (1 Fn(s))ds. Its Laplace-Stieltjes transform is

0

n v k con-1
(-t) 

U
n

 f x
k
dF(x)1.

k!
k=0 0

Application of theorem 1 rields

THEOREM 2. Let n be a positive integer. The following two statements

are equivalent: lim . = x for all x > 0
. '  = F(tx) -n 

F(t)1 -
t÷co

and 
Un(tx) -

Both imply

lim
t+0 Un(te) - U

n
(t)

u(t) -
lim  

t(1 = Fn
 (t))' = Y4

= log x for all x > O.

4. A MORE GENERAL RESULT

The
t
approach to theorem 1 is through the measure corresponding to

U(t) = 1 (1 = F(s))ds which has a monotone derivative. The latter

property
O
is not necessary as the following result shows.

THEOREM 3. Suppose U is non-decreasing and right-continuous; furthermore

U(0-) = O. Suppose U(t) = 1 e---dU(s) is finite for all t > 0. The following.

assertions are equivalent:°

(5) • U(tx) - U(t) 
lim / 

Ukte) - Uk /t) 
= log x for all x > 0



and

(6) l. U(tx) - 6(t) im = log x for all x > 0.
t+0 U(te) -

Both imply

(7) aim U(t) - 6(l/t) y.

t÷co -1 
t

t f sdU(s)
0

Remark. In the formulation of (5) we tacitly assume

(8) U(te) - U(t) > 0 for sufficiently large t.

This is implied by (6).

Proof. Define Q(t) = I sdU(s). By theorem 1.4.1,a/b of 2 relation (5)
0

holds if and only if q is 1-Varying at infinity. So (5) is equivalent to
co ,

-1-Variation of Q(t) at 0+. Now u(t) = f Q(s)ds hence by the lemma the
equivalence of (5) and (6) is established.

To show (7) we use the representation

t 
1 t

U(t) = g(t) + f 
g(s)

 ds with g(t) = I sdU(s)
0 s 0 •

(cf. proof of theorem 1.4.1 in 1,.'part b. => d.). Then

5;0 CO CO -s
v„ -s/t

= f e Uks)ds = I e-sg(ts)ds + I e
s 
..4ts)ds

so that (analogous to the proof of theorem l)' 
CO 1 . -s CO5

U(t) - IvJ(1/t) = g(t) - I e-sg(ts)ds + I 
1 - e 

g(ts)ds - I g(ts)ds .

0 0 1 is



Hence

6

lim 
U(t) - 

g(t)
t4.00

= y

Corollary. Under the conditions of the theorem

d

lim 
-dt U(t) 

= -1.
1/t

t+0 f sdU(s
0
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