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Abstract

Lipids, either endogenously synthesized or exogenous, have been linked to human cancer. Here we 

found that PML is frequently co-deleted with PTEN in metastatic human prostate cancer (CaP). 

We demonstrated that conditional inactivation of Pml in the mouse prostate morphs indolent Pten-

null tumors into lethal metastatic disease. We identified MAPK reactivation, subsequent 

hyperactivation of an aberrant SREBP prometastatic lipogenic program, and a distinctive 

lipidomic profile as key characteristic features of metastatic Pml and Pten double-null CaP. 

Furthermore, targeting SREBP in vivo by fatostatin blocked both tumor growth and distant 

metastasis. Importantly, a high-fat diet (HFD) induced lipid accumulation in prostate tumors and 

was sufficient to drive metastasis in a nonmetastatic Pten-null mouse model of CaP, and an SREBP 

signature was highly enriched in metastatic human CaP. Thus, our findings uncover a 

prometastatic lipogenic program and lend direct genetic and experimental support to the notion 

that a Western HFD can promote metastasis.

Life Sciences Reporting Summary.

Further information on experimental design is available in the Life Sciences Reporting Summary.

Although localized CaP is highly curable, metastatic CaP remains invariably fatal1. 

Although it has been widely postulated that a Western diet can promote CaP progression2,3, 

direct evidence supporting a strong association between dietary lipids and CaP is still 

lacking4. Indeed, the rates of cancer mortality associated with metastatic disease are much 

higher in Western countries for many cancer types, including CaP, and they correlate with 

lifestyle factors such as diet2,3,5. Moreover, the progression to metastasis is a pivotal event 

influencing patient outcomes and the available therapeutic options. Thus, understanding the 

molecular events that underlie progression to metastasis, at both the genetic and 

environmental levels, has the potential to substantially improve therapeutic options and 

facilitate preventive interventions. However, to date, CaP metastasis has proven to be 

particularly challenging to model in vivo, and the progression to metastasis from either 

primary indolent or advanced-stage disease is rarely observed in most genetically engineered 

mouse models (GEMMs) of CaP6.

PTEN is among the most frequently lost or mutated tumor-suppressor genes (TSGs) in 

human cancer7,8. Partial loss of PTEN occurs early in tumorigenesis and is present in up to 

70% of localized CaP (LPC)9–11, whereas complete loss of PTEN is linked to metastatic 

castration-resistant CaP (mCRPC)12–15. PTEN inactivation facilitates aberrant activation of 

the phosphoinositide-3-kinase (PI3K)-AKT pathway16. Intriguingly, studies from Pten-

knockout mouse models have shown that complete inactivation of Pten alone in the mouse 

prostate leads to indolent tumors with minimally invasive features after a long latency17–19. 

We and others have previously shown that TSGs induced after Pten loss serve as failsafe 

mechanisms that restrict cancer progression and that inactivation of such barriers promotes 
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indolent Pten-null tumorigenesis20,21. Therefore, identifying an additional event that 

cooperates with PTEN loss in driving metastatic progression is crucial to be able to model 

and study the lethal stage of CaP.

The Ras–Raf–MEK–ERK mitogen-activated protein kinase (MAPK) signaling cascade is 

another pathway that is often aberrantly activated in advanced metastatic CaP15,22,23. 

However, little is known about the underlying molecular mechanisms leading to MAPK 

activation, because genetic alterations in components of MAPK signaling are rare in human 

CaP14,24–29. Despite the low frequency of Ras and Raf mutations in CaP, recent studies have 

shown that oncogenic K-Ras p.Gly12Asp or B-Raf p.Val600Glu alterations, which activate 

MAPK signaling, cooperate with Pten loss in driving metastatic progression of CaP in 

GEMMs30,31. These findings underscore the critical role of MAPK signaling in cancer 

progression but do not address how this cascade is activated and what the key cellular events 

are in most cases of metastatic CaP

Here we identified an sterol regulatory element-binding protein (SREBP) prometastatic 

lipogenic program as a key downstream effector of MAPK activation. This program is 

opposed by the PML tumor suppressor (a potent failsafe mechanism that is genetically 

evaded in human cancer) and can be overcome by a HFD in vivo. Our results thus have 

potential implications in the prevention and treatment of metastatic CaP with stringent 

dietary regimens in combination with targeting of lipogenic enzymes.

Results

Concomitant loss of PTEN and PML expression in metastatic human CaP.

To identify cooperating genomic alterations that may be associated with PTEN loss in 

metastatic human CaP, we took advantage of a recent array-based comparative genomic 

hybridization dataset14 of 59 LPC and 35 mCRPC samples and evaluated the frequencies of 

co-deletion of PTEN with 58 high-confidence TSGs32. In this dataset, PTEN was lost in 

14% of LPC and 66% of mCRPC samples (Fig. 1a). The frequencies of co-deletion of the 

other TSGs with PTEN in metastatic disease ranged from 0% to 50% (Supplementary Fig. 

1a). Among the top 25 TSGs co-deleted with PTEN, PML was lost in 31% of mCRPC 

samples but remained intact in LPC samples (Fig. 1b) and was among several TSGs that 

were co-deleted with PTEN solely in metastatic disease (Supplementary Fig. 1a). 

Concomitant deletion of PTEN and PML occurred in 20% of mCRPC and was significantly 

associated with metastatic disease (Fig. 1c), thus suggesting that PML might suppress 

metastatic CaP in coordination with PTEN. To validate these findings, we analyzed a recent 

whole-exome sequencing dataset25 of 150 mCRPC samples. PTEN and PML were lost in 

38% and 30% of the mCRPC samples, respectively and co-deletion of PTEN and PML 

occurred in 11% of the mCRPC samples (Supplementary Fig. 1b,c). In contrast to frequent 

homozygous PTEN deletion in mCRPC (Fig. 1a and Supplementary Fig. 1b), homozygous 

PML deletion was less common than hemizygous PML deletion, which was frequently 

observed and was focal in many cases (Fig. 1b and Supplementary Fig. 1b,d).

We next evaluated PTEN and PML protein expression in human CaP and sought to identify 

whether PTEN and PML loss might represent cooperative predictors of overall survival after 
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prostatectomy. Tissue microarray (TMA) analysis was performed in prostatectomy 

specimens from 144 men with primary CaP (Supplementary Table 1). Loss of PTEN and/or 

PML was significantly correlated with disease progression (Fig. 1d,e and Supplementary 

Fig. 1e,f). Complete loss of PTEN and PML at the protein level occurred in 15% of the high-

grade CaP samples, but not in the low-grade CaP samples (Fig. 1f). We then applied Cox 

proportional hazards models to identify risk factors predicting overall survival after 

prostatectomy. Univariate analysis showed that PTEN and PML loss, Gleason grade (>7 vs. 

≤7) and pathologic stage (pT3–4 or N1 vs. pT1–2 N0) were associated with adverse 

prognosis (Fig. 1g). Importantly, through multivariable analysis, loss of PTEN and PML was 

confirmed as a statistically significant independent prognostic factor for overall survival 

(Fig. 1g) and had the most statistically significant power to stratify patient survival time 

(Fig. 1h and Supplementary Fig. 1g-j). These results further supported a model in which loss 

of PML and PTEN might cooperatively promote advanced CaP

Pml loss promotes metastatic progression in Pten-null CaP.

The tumor-suppressive function of the PML gene alone or in cooperation with PTEN has, to 

date, been studied in the context of primary CaP initiation and progression33. However, we 

postulated that generating conditional Pten and Pml compound inactivation would allow us 

to conduct a long-term follow-up and model a continuum of lesions beyond minimally 

invasive Pten-null cancer and to determine whether co-deletion of Pten and Pml would favor 

metastatic progression. We generated conditional Pmlflox/flox mice (Supplementary Fig. 2a–

c) and crossed them with mice carrying Pb-Cre4 and floxed Pten alleles to obtain prostate-

epithelium-specific Pten and Pml double-null mice (Ptenpc−/−; Pmlpc−/−).

Immunohistochemistry (IHC) assays showed that Pml protein levels were markedly higher 

in Ptenpc−/− prostate intraepithelial neoplasia (PIN) than in wild type (WT) prostate 

epithelium (Fig. 2a and Supplementary Fig. 3a), thus suggesting that Pml might serve as a 

potential failsafe mechanism restricting cancer progression in Pten-null indolent tumors. 

Moreover, Pml protein was almost undetectable in Ptenpc−/−; Pmlpc−/− PIN, thus confirming 

prostate-epithelium-specific inactivation of Pml (Fig. 2a and Supplementary Fig. 3a).

We next evaluated the consequences of Pml loss for Pten-null prostate tumorigenesis in 

mice. Histopathological analyses of prostate tumors were performed in cohorts of Ptenpc−/− 

mice and Ptenpc−/−; Pmlpc−/− mice at 12 to 40 weeks of age. At 12 weeks of age, Ptenpc−/− 

mice and Ptenpc−/−; Pmlpc−/− mice displayed low-to high-grade PIN, and higher penetrance 

of high-grade PIN was observed in Ptenpc−/−; Pmlpc−/− mice (Fig. 2b). In agreement with 

previously reported findings20, Ptenpc−/− mice developed invasive prostate adenocarcinoma 

after a 28-to 40-week latency and, in sharp contrast, Ptenpc−/−; Pmlpc−/− mice developed 

invasive prostate adenocarcinoma as early as 20 weeks and showed increasing penetrance 

over 28 and 40 weeks (Fig. 2b and Supplementary Fig. 3b). Furthermore, Ptenpc−/−; Pmlpc−/− 

tumors progressed to aggressive, poorly differentiated adenocarcinoma with little or no 

glandular structure and with focal features of sarcomatoid carcinoma with high-grade 

pleomorphic spindle cells at 52–60 weeks, whereas age-matched Ptenpc−/− tumors remained 

indolent (Fig. 2c and Supplementary Fig. 3c). Culture and serial passage of prostate spheres 

derived from WT, Ptenpc−/− and Ptenpc−/−; Pmlpc−/− mice showed that Ptenpc−/−; Pmlpc−/− 
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prostate epithelial cells, compared with WT and Ptenpc−/− cells, had significantly enhanced 

stem/progenitor self-renewal capacity and growth (Fig. 2d). These differences resulted in 

drastically impaired survival of the Ptenpc−/−; Pmlpc−/− mice compared with the Ptenpc−/− 

mice. All Ptenpc−/− mice survived beyond 18 months; in contrast, Ptenpc−/−; Pmlpc−/− mice 

succumbed to localized disease, probably because of bladder obstruction and renal failure, 

or were euthanized because of extensive tumor burden from 13 months of age. Although 

21% (4 out of 19) of the Pmlpc−/− mice exhibited low-grade PIN in ventral (VP) and 

dorsolateral (DLP) prostates after 12 months of age, none died of the disease (Fig. 2e and 

Supplementary Fig. 3d,e). These results supported the notion that inactivation of Pml can 

favor both CaP initiation and progression.

Critically, Pml loss can promote metastasis in Pten-null CaP Although Ptenpc−/− mice have 

not been found to develop distant metastasis in an 18-month follow-up20, we observed that 

30% of Ptenpc−/−; Pmlpc−/− mice developed lumbar lymph node metastasis at 13–15 months 

of age (Fig. 2f). Histological and molecular pathological analysis indicated that these 

metastases resembled primary prostate tumors and showed high levels of phospho-Akt as 

well as nuclear androgen receptor (AR) and CK8 staining (Fig. 2g and Supplementary Fig. 

3f).

PML loss reactivates MAPK signaling in PTEN-null cells.

To determine how Pml inactivation might affect Pten-null tumorigenesis and favor a 

prometastatic switch, we analyzed the expression of CaP-relevant metastatic 

pathways21,30,31,34. In agreement with previous findings33, compared with Ptenpc−/− 

prostates, Ptenpc−/−; Pmlpc−/− prostates displayed up to a 1.5-fold increase in the level of Akt 

phosphorylation, and in stark contrast, a 19-to 35-fold increase in the level of Erk 

phosphorylation (Fig. 3a). In line with the notion that PTEN loss or AKT–mechanistic target 

of rapamycin (mTOR) activation leads to a feedback inhibition on MAPK pathway35,36, 

Ptenpc−/− prostates displayed even lower level of Erk phosphorylation than did WT prostates 

(Fig. 3a), thus suggesting that Pml loss triggers relief of feedback inhibition and consequent 

reactivation of MAPK signaling in Pten-null prostates. IHC assays confirmed that Ptenpc−/−; 

Pmlpc−/−, compared with Ptenpc−/− prostates, showed similar widespread membrane staining 

for phospho-Akt, along with rare and scattered nuclear phospho-Akt staining, whereas 

phospho-Erk staining was markedly greater (Fig. 3b and Supplementary Fig. 3g). In 

contrast, we observed negligible changes in other pathways involved in metastasis21,34 

(Supplementary Fig. 3h). In agreement with the notion that PML is haploinsufficient for 

some of its tumor-suppressive functions37, Ptenpc−/−; Pmlpc+/− prostates also displayed high 

levels of Erk phosphorylation (Supplementary Fig. 3i). Collectively, the magnitudes of 

change in MAPK signaling strongly implicated Pml-loss-induced MAPK reactivation in 

metastatic progression of Ptenpc−/−; Pmlpc−/− tumors.

We then investigated the effects of knockdown of PML on MAPK activation via small 

interfering RNA (siRNA) in the PTEN-null CaP cell lines LNCaP and PC3. Knockdown of 

PML consistently resulted in MAPK activation (Fig. 3c, d). Moreover, the degradation of 

PML protein triggered by arsenic trioxide also led to upregulation of epidermal growth 
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factor (EGF)-induced ERK phosphorylation (Fig. 3e, f), thus lending further support to 

MAPK suppression by PML.

An SREBP-dependent lipogenic program is hyperactivated in Pten and Pml double-null 

CaP.

To gain insight into which effectors located downstream of this aberrant signaling drive 

metastatic progression in Ptenpc−/−; Pmlpc−/− tumors, we performed microarray 

transcriptomic analysis on 12-week-old WT, Ptenpc−/− and Ptenpc−/−; Pmlpc−/− prostates (n = 

3) (Supplementary Fig. 4a). We identified 101 genes whose expression was significantly 

upregulated and 158 genes whose expression was significantly downregulated at least 1.5-

fold (P < 0.01) in Ptenpc−/−; Pmlpc−/− prostates compared with Ptenpc−/− prostates 

(Supplementary Table 2). Gene ontology analysis showed that the three most significantly 

enriched gene categories in the Ptenpc−/−; Pmlpc−/− signature were ‘cell migration’ (P = 

0.0017), ‘cell motility’ (P = 0.0014) and ‘lipid-metabolic process’ (P = 0.007) (Fig. 4a). 

Although enrichment in genes affecting cell migration and cell motility was consistent with 

the high metastatic potential of Ptenpc−/−; Pmlpc−/− tumors, the lipid-metabolic-process 

signature was unexpected, because activation of lipogenesis is an early event in the 

development of CaP, and the potential role of aberrant lipogenesis in metastasis in vivo 

remains largely elusive38,39.

Additional unbiased gene set enrichment analysis (GSEA) showed that Ptenpc−/−; Pmlpc−/− 

prostates displayed a significantly upregulated gene set activated by the SREBP family of 

transcription factors, the master regulator of transcription of genes involved in fatty acid 

(FA) and cholesterol biosynthesis40 (Fig. 4b, right; Supplementary Fig. 4b and 

Supplementary Table 3), thus confirming the results of the gene ontology analysis (Fig. 4a). 

In Ptenpc−/− prostates compared with WT prostates, the lipid-metabolic-process signature 

and the SREBP signature were also mildly upregulated (Fig. 4a, gray, P < 0.0017 and Fig. 

4b, left)—in agreement with the finding that activation of AKT–mTOR–ribosomal protein 

S6 kinase (S6K) signaling promotes lipogenesis by activating SREBP41,42—but were more 

extensively enhanced in Ptenpc−/−; Pmlpc−/− prostates (Fig. 4a, orange, P < 0.00005 and Fig. 

4b, middle). qPCR analysis confirmed that SREBP-target genes were further upregulated in 

Ptenpc−/−; Pmlpc−/− prostates than in Ptenpc−/− prostates (Fig. 4c), and western blot assays 

demonstrated elevated protein expression of Mel, Elovl6, Hmgcs and Idil, four key 

lipogenesis/cholesterol-biosynthesis enzymes, in Ptenpc−/−; Pmlpc−/− prostate lysates (Fig. 

4d). The SREBP family comprises two members: SREBP-1 and SREBP-2. Ptenpc−/−; 

Pmlpc−/− prostates, compared with WT prostates, displayed higher levels of precursor and 

nuclear SREBP-1 and, to a lesser extent, nuclear SREBP-2 (Fig. 4d). In contrast, no 

significant differences in the gene signatures of other lipogenic transcription factors were 

observed (Supplementary Fig. 4c–f). Therefore, the SREBP pathway is hyperactivated and 

appears to be the main transcriptional factor responsible for the changes in lipid metabolism 

in Pten and Pml double-null CaP.
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Lipidomic analysis shows that de novo lipogenesis positively correlates with the 

aggressiveness and metastatic potential of CaP.

To confirm the aberrant alterations in de novo lipogenesis in Ptenpc−/−; Pmlpc−/− tumors, we 

performed a global lipidomic analysis in 12-week-old WT, Ptenpc−/− and Ptenpc−/−; Pmlpc−/− 

prostates (n = 3) by using untargeted high-resolution liquid chromatography-tandem mass 

spectrometry (LC–MS/MS)43–45. These analyses identified 1,743 lipid ions in the mouse 

prostate (Supplementary Tables 4 and 5), which belonged to 35 classes of lipids 

(Supplementary Table 6). Among all the identified lipid ions, 127 distinct fatty acyl chains, 

varying in chain length from 4 to 38 carbons and with 0 to 7 double bonds, were found 

(Supplementary Table 7). The most abundant lipid classes and fatty acyl chains in the mouse 

prostate were phosphatidylcholine, sphingomyelin, phosphatidylethanolamine, triglyceride, 

lysophosphatidylcholine and oleate (C18:1), palmitate (C16:0), linoleate (18:2), 

arachidonate (20:4) and stearate (C18:0) (Supplementary Fig. 4g,h).

We next performed unsupervised hierarchical clustering to identify the lipid ions with 

significant changes in abundance among WT, Ptenpc−/− and Ptenpc−/−; Pmlpc−/− prostates. 

Among the top 70 most significantly differential lipid ions, in agreement with the results of 

the transcriptome analysis in lipogenic signatures, the abundance of most of the lipid ions 

was mildly higher in Ptenpc−/− than WT prostates and was more extensively enhanced in 

Ptenpc−/−; Pmlpc−/− than WT prostates (Supplementary Fig. 4i). To further confirm the 

alterations in lipid abundance among the three mouse genotypes, we used a scatter plot of 

the log2 of the MS1 peak-area ratio between Ptenpc−/−; Pmlpc−/− and WT vs. that between 

Ptenpc−/− and WT, to illustrate the estimated number of down-or upregulated lipid ions while 

comparing two of the three genotypes of mice at a time44,45. This procedure allowed us to 

investigate the overall changes in the relative lipid abundance of all 1,743 identified lipid 

ions (Fig. 4e). Overall, 1,131 out of 1,743 lipid ions had log2(MS1 peak-area ratio between 

Ptenpc−/− and WT) values greater than zero, whereas 1,261 out of 1,743 lipid ions had 

log2(MS1 peak-area ratio between Ptenpc−/−; Pmlpc−/− and WT) values greater than zero, 

thus indicating a prominent upregulation of lipid abundance in both Ptenpc−/− and Ptenpc−/−; 

Pmlpc−/− prostates compared with WT prostates. Importantly, 1,154 lipid ions were above 

the diagonal x=y line, thus revealing a further augmentation of lipid abundance in Ptenpc−/−; 

Pmlpc−/− prostates compared with Ptenpc−/− prostates (Fig. 4e). These data are consistent 

with the transcriptome analysis showing that aberrantly increased lipogenesis correlates with 

the aggressiveness and metastatic potential of CaP.

Distinctive alterations in lipid species and lipid saturation in Pten and Pml double-null CaP.

We subsequently examined the qualitative changes in lipid profiles and found that 25 out of 

35 lipid classes identified had greater abundance in Ptenpc−/−; Pmlpc−/− prostates than 

Ptenpc−/− prostates (Supplementary Fig. 4g and Supplementary Table 8). Among them, the 

increases in the abundance of lysodi-methylphosphatidylethanolamine (LdMePE), 

monoglyceride (MG), phosphatidylglycerol (PG) and lysophosphatidylglycerol (LPG) were 

statistically significant (Fig. 4f and Supplementary Fig. 4g and Supplementary Table 8). 

Among the membrane phospholipids LdMePE, PG and LPG, PG is present at a level of 1–

2% in most animal tissues and, together with its hydrolytic product LPG, can serve as the 

precursor of cardiolipin found in mitochondrial membranes. PG lipids have recently been 

Chen et al. Page 7

Nat Genet. Author manuscript; available in PMC 2019 August 29.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



found to be the most significantly upregulated lipid species in MYC-driven cancer46–48, thus 

suggesting a possible link between PG lipids and tumorigenesis. Additionally, MG lipids, a 

class of glycerolipids, can be hydrolyzed by monoacylglycerol lipase and serve as the 

precursors for synthesis of prometastatic lipid messengers, including lysophosphatidic acid 

and prostaglandin49.

Elevated levels of saturated fatty acyl chains have been reported to protect cancer cells 

against oxidative damage by decreasing lipid peroxidation50. We therefore compared the 

levels of the 30 most abundant fatty acyl chains to assess the alterations in lipid saturation 

among the three genotypes of mice (Supplementary Fig. 4h and Supplementary Table 9). A 

total of seven fatty acyl chains had significantly greater abundance in Ptenpc−/−; Pmlpc−/− 

prostates than in Ptenpc−/− prostates (Fig. 4g and Supplementary Fig. 4h and Supplementary 

Table 9). Only one was a polyunsaturated FA (22:6), and the other six were saturated and 

monounsaturated FAs (14:0, 16:0, 18:0, 16:1, 18:1 and 24:1), thus indicating that 

hyperactivation of lipid metabolism in Ptenpc−/−; Pmlpc−/− prostates leads to higher levels of 

saturated and monounsaturated fatty acyl chains. These findings are consistent with earlier 

studies showing that elevated levels of saturated and monounsaturated FAs are associated 

with aggressive breast cancer51.

SREBP is the downstream target of PML-loss-induced MAPK activation.

Because the levels and transcriptional activity of SREBP are known to be regulated by 

growth-factor-induced phosphorylation52,53, we tested whether SREBP is a target of the 

MAPK activation induced by PML loss. PTEN-null CaP cells were cultured in medium 

supplemented with 10% lipoprotein-deficient serum to limit the availability of exogenous 

lipids and to increase endogenous synthesis. qPCR analysis showed that treatment of LNCaP 

cells with the MEK inhibitor U0126 resulted in decreased basal expression of all SREBP 

targets examined (Fig. 5a). Knockdown of PML led to upregulation of SREBP-target genes. 

Moreover, U0126 reversed the PML-depletion-induced upregulation of SREBP-target genes 

(Fig. 5a). Similar results were also obtained in PC3 cells (Fig. 5b). Cell fractionation 

experiments showed that U0126 strongly down-regulated protein levels of both nuclear 

SREBP-1 and SREBP-2 and markedly decreased SREBP-target-gene expression (Fig. 5c,d). 

In contrast, MAPK activation through either knockdown of PML or the presence of 

constitutively active MEK led to higher levels of nuclear SREBP proteins and of SREBP-

target-gene expression. These increases were largely suppressed by U0126 (Fig. 5c,d). We, 

and others, have previously shown that MAPK signaling inhibits the TSC complex’s tumor-

suppressor function to activate Mtor–S6K54,55. In agreement with these results, we found 

that the levels of both phospho-ERK and phospho-S6K appeared to mirror the changes in 

SREBP and their target genes. As such, we cannot exclude that SREBP might be an indirect 

target of MAPK signaling through mTOR–S6K, but we can conclude that PML-loss induced 

MAPK activation is sufficient to drive an SREBP-dependent lipogenic program.

SREBP-dependent lipogenesis is critical for PML-loss-induced CaP growth and 

metastasis.

We then assessed whether the PML-loss-induced prometastatic phenotype might be 

dependent on an SREBP-mediated lipogenic program. In an in vitro cell migration and 
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invasion assay, knockdown of either SREBP-1 or SREBP-2 by siRNA significantly inhibited 

LNCaP and PC3 cell migration and invasion (Fig. 6a and Supplementary Fig. 5a,b). 

Inhibition of FA synthesis by acetyl CoA carboxylase inhibitor (TOFA) or cholesterol 

synthesis by simvastatin (HMG-CoA reductase inhibitor) mimicked the effect of SREBP 

knockdown on cell migration and invasion (Fig. 6b). In contrast, CaP cells transfected with 

PML siRNA showed significantly increased migration and invasion. This effect was nearly 

abolished when cells were cotransfected with SREBP-1 siRNA (Fig. 6a and Supplementary 

Fig. 5a).

To further corroborate the crucial role of SREBP-dependent lipogenesis in PML-loss-driven 

CaP growth and metastasis, we carried out in vivo preclinical studies of fatostatin targeting 

SREBP in Ptenpc−/−; Pmlpc−/− mice. Fatostatin is a recently discovered SREBP chemical 

inhibitor that directly binds SREBP cleavage-activating protein and blocks the endoplasmic 

reticulum–Golgi transport and the subsequent activation of SREBP56–58. Treatment with 

fatostatin for two months in Ptenpc−/−; Pmlpc−/− mice inhibited both prostate tumor growth 

(Fig. 6c, d) and distant lymph node metastasis (Fig. 6e and Supplementary Fig. 5c). This 

potent antitumor and antimetastatic activity of fatostatin is presumably due to the 

suppression of SREBP pathway, because fatostatin-treated Ptenpc−/−; Pmlpc−/− tumors 

displayed markedly lower expression of SREBP-regulated enzymes for synthesis of FA and 

cholesterol (Fig. 6f, g). In agreement with the crucial role of lipid metabolism in various 

aspects of cancer development39, fatostatin-treated Ptenpc−/−; Pmlpc−/− tumors, compared 

with vehicle-treated tumors, displayed a drastic decrease in the frequency of mitotic cells 

positive for Ki-67 staining, along with a concomitant induction of apoptosis, as indicated by 

higher expression of cleaved Parp and cleaved caspase 3 (Fig. 6f, g). These functional data 

suggested that SREBP-mediated lipogenesis is a key downstream effector of PML-loss-

driven CaP growth and metastasis.

A HFD drives metastatic progression and increases lipid abundance in prostate tumors.

Given that HFD feeding stimulates the expression of SREBP and subsequent expression of 

genes encoding lipogenic enzymes59, and induces lipid accumulation in nonadipose 

tissues40,60, 12-month-old Ptenpc−/− and Ptenpc−/−; Pmlpc−/− mice were fed a HFD for 3 

months to test whether a causal relationship exists among lipogenesis, lipid accumulation 

and metastasis. To mimic hyperactivated de novo lipogenesis (new lipids enriched in 

saturated and monounsaturated fatty acyl chains), we chose a lard-based HFD enriched in 

saturated and monounsaturated FAs and capable of inducing classic HFD effects in 

rodents61. As expected, HFD-fed mice gained considerably more weight than chow-fed mice 

(Fig. 7a). Ptenpc−/−; Pmlpc−/− mice displayed limited metastasis to lymph nodes when fed a 

chow diet but, after HFD feeding, developed lymph node metastases in 6 out of 8 cases, and 

lung metastasis in 4 out of 8 cases (Fig. 7b,c and Supplementary Fig. 6a). Ptenpc−/− mice are 

nonmetastatic when fed a chow diet20, but they developed lymph node metastases in 3 out of 

8 cases, and lung metastases in 3 out of 8 cases after HFD feeding (Fig. 7d,e and 

Supplementary Fig. 6b). These metastases resembled primary prostate tumors and displayed 

high levels of phospho-Akt as well as nuclear AR staining. Strong CK8 staining was also 

observed in lymph node metastases, but this staining was less intense in lung metastases 

(Fig. 7b,d and Supplementary Fig. 6a,b). No other distant metastases or substantial effects 
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on survival were observed in HFD-fed Ptenpc−/− or Ptenpc−/−; Pmlpc−/− mice (Supplementary 

Fig. 6c).

To further establish the causal relationship between dietary lipids and metastasis, we 

conducted Oil Red O (ORO) staining to determine whether lipids accumulated in prostate 

tumors after HFD feeding. Compared with tumors from chow-fed mice, tumors from HFD-

fed Ptenpc−/− or Ptenpc−/−; Pmlpc−/− mice showed much stronger ORO staining (Fig. 7f). To 

validate the results of the ORO staining, we performed an additional global lipidomic 

analysis in prostate tumors from chow-or HFD-fed Ptenpc−/− and Ptenpc−/−; Pmlpc−/− mice 

(Supplementary Tables 10–12). Analyses of the top 70 most significantly differential lipid 

ions (Fig. 7g), significantly increased lipid classes (Fig. 7h, Supplementary Fig. 6d and 

Supplementary Table 13) and significantly increased fatty acyl chains from the 30 most 

abundant chain types (Fig. 7i, Supplementary Fig. 6e and Supplementary Table 14) showed 

that the abundance of most lipids was markedly higher in tumors from Ptenpc−/− or 

Ptenpc−/−; Pmlpc−/− mice fed a HFD rather than a chow diet. Among the four groups of 

tumors, the lowest lipid abundance was observed in tumors from chow-fed Ptenpc−/− mice, 

whereas in response to HFD feeding, Ptenpc−/− tumors displayed higher lipid abundance 

than that in tumors from chow-fed Ptenpc−/−; Pmlpc−/− mice but a largely similar lipid profile 

to that in HFD-fed Ptenpc−/−; Pmlpc−/− tumors (Fig. 7g–i). These findings indicated that 

HFD feeding causes a much greater increase in lipid abundance in prostate tumors than does 

the de novo lipogenesis driven by Pml inactivation; moreover, they suggested that a HFD 

affects metastatic progression, at least in part through increased lipid accumulation in 

prostate tumors.

We then sought to determine whether dietary constituents of the HFD might affect CaP cell 

invasiveness by recapitulating aspects of the HFD-induced metastatic phenotype. CaP cells 

were cultured in medium supplemented with a lipid mixture, palmitic acid or oleic acid, 

representing the main lipid components of the lard-based HFD61. In agreement with the 

findings in HFD-fed prostate tumors, CaP cells treated with dietary lipids showed markedly 

greater lipid droplet accumulation than that in vehicle-treated cells, as shown by ORO 

staining (Fig. 7j and Supplementary Fig. 6f). Moreover, these cells displayed significantly 

greater cell migration and invasion (Fig. 7k and Supplementary Fig. 6g), thus suggesting that 

dietary lipids directly affect CaP cells and are sufficient to recapitulate aspects of the in vivo 

HFD-induced metastatic phenotypes.

A highly enriched SREBP signature in metastatic human CaP.

To assess the relevance of these findings to human CaP, we performed a GSEA of the 

metastasis-gene signatures in mCRPC vs. LPC from a dataset from Grasso et al.14. Our 

analysis identified significant enrichment of SREBP-1-target genes in mCRPC compared 

with LPC (Fig. 8a). Additionally, we analyzed a dataset from Taylor et al.15, which contains 

181 primary and 37 metastatic CaP samples. In agreement with the findings for the Grasso et 

al. dataset, the SREBP-1 signature was highly enriched in metastatic vs. primary CaP (Fig. 

8b). Thus, the highly enriched SREBP/lipogenesis signature is frequently observed in 

metastatic human CaP, a finding consistent with our transcriptomic data showing enrichment 

of the SREBP signature in Pten and Pml double-null metastatic CaP (Fig. 4b) and our in 
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vivo preclinical studies showing that lipid accumulation promotes metastatic progression 

(Fig. 7b–i).

Discussion

Our data provide a strong genetic foundation elucidating the mechanisms underlying 

metastatic progression, and they demonstrate how environmental dietary factors can boost 

progression from primary to metastatic cancer, intertwining with the genetic makeup of 

cancer (Fig. 8c). We demonstrated that SREBP-dependent lipogenesis, which can be 

hyperactivated by concomitant activation of the PI3K–AKT and MAPK pathways, or a HFD 

regimen, functions as an underlying rheostat toward metastatic cancer progression. 

Furthermore, we identified PML as a critical mediator of feedback inhibition of MAPK 

signaling and lipogenesis, and its inactivation propels metastatic progression in cancers 

driven by PTEN loss and PI3K–AKT activation. Interestingly, Cph2, the yeast homolog of 

SREBP, has been shown to be involved in invasive/pseudohyphal growth in yeast, thereby 

suggesting a conserved evolutionary function of SREBP in invasiveness62.

In agreement with findings from earlier studies showing that lipid metabolism is required for 

metastasis in other cancer systems63,64, our analysis identified a highly enriched SREBP-1-

dependent lipogenic signature in metastatic human CaP. Concordantly, a HFD enriched in 

saturated and monounsaturated FAs triggered metastasis in a nonmetastatic Ptenpc−/− CaP 

model and further enhanced metastasis in a metastatic Ptenpc−/−; Pmlpc−/− CaP model. In 

addition to our genetic and experimental evidence in GEMMs of CaP, a HFD has been 

reported to favor metastatic progression in xenograft models from cell lines of various 

histological origin63,65,66. Numerous mechanisms have been proposed to explain a possible 

association between dietary lipids and CaP67, including paracrine mechanisms through 

secreted cytokines from adipose tissues, endocrine mechanisms through alteration of 

androgen levels (Supplementary Fig. 6h) and an induction of basal-to-luminal cell 

differentiation caused by immune-cell infiltration68. However, we showed here that specific 

genetic perturbations or a HFD are probably able to exert a direct effect on metastasis 

through increased lipid accumulation. We also characterized the intracellular lipid changes 

in GEMMs of CaP and detected qualitative changes in four different lipid classes as well as 

in the saturation of fatty acyl chains. Together, these results established a strong mechanistic 

and causal link among aberrant lipogenesis, excess lipid accumulation and metastasis, thus 

providing a compelling rationale for integrating lifestyle data (for example, diet) and tumor 

genetics into clinical practice to identify patients at high risk of metastasis. Additionally, 

lipid metabolism itself is an attractive therapeutic target through inhibition of lipogenic 

enzymes39,69. Notably, such inhibition decreases CaP cell viability only in the absence of an 

exogenous lipid source such as lipoprotein70, thereby highlighting the importance of 

integrating pharmacologic approaches with stringent dietary regimens to prevent metastasis. 

Future studies are warranted to evaluate whether specific lipid subsets/signatures may serve 

as prognostic biomarkers to distinguish CaP with metastatic potential from indolent disease.

Finally, given that PML is lost in human cancer of multiple histological origins71, our study 

suggests that PML loss may underlie MAPK activation in cancers lacking genetic alterations 

in MAPK-signaling components26–28,72. In an accompanying study, we have demonstrated 
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that PP1α is a B-Raf-activating phosphatase genetically amplified in CaP, and that PML 

suppresses PP1α-dependent activation of MAPK signaling73. Moreover, Ptenpc−/−; Pmlpc−/− 

tumors displayed a significantly upregulated gene set induced by hypoxia, in agreement with 

findings from earlier studies showing that PML is a key player orchestrating the cellular 

response to hypoxia through repression of mTOR74 (Supplementary Table 3 and 

Supplementary Fig. 4j). This finding has equally important implications for tumorigenesis, 

because PML loss in the hypoxic core or tumoral lesions not only would activate mTOR, 

thus resulting in sustained HIF-1 activation, but also would relieve the feedback inhibition of 

MAPK signaling triggered by mTOR activation, thereby leading to simultaneous activation 

of both mTOR and MAPK signaling. Together, our results provide a potential roadmap for 

targeted therapies tailored to individual patients for the prevention and treatment of 

metastatic cancer.

Methods

Mouse models.

All animal experiments were approved by the Beth Israel Deaconess Medical Center IACUC 

Committee on Animal Research. The floxed Pml allele was created following the scheme 

shown in Supplementary Fig. 2a. The Pb-Cre4 transgenic mice and Ptenflox/flox mice have 

been previously described20. Ptenflox/flox mice were first crossed with Pb-Cre4 mice. The 

resulting compound mice or Pb-Cre4 transgenic mice were then crossed with Pmlflox/flox 

mice to generate the conditional knockout of Pten and/or Pml in the prostate epithelium. The 

three mouse genotypes were maintained on a mixed C57BL/6 (80%) × 129S1/SvImJ (20%) 

background. Ten mice per genotype were randomly chosen and used to examine the tumor 

grade at the indicated ages. The histological grade was determined by a pathologist in a 

blinded manner. For HFD feeding, male mice were given a dietary chow consisting of 60% 

kcal fat (Teklad Diet TD.06414) starting at the age of 12 months and continuing for 3 

months. All other mice were fed standard chow consisting of 17% kcal fat (Lab Diet 5008). 

Male mice were housed one per cage during preclinical studies of both HFD and fatostatin.

Plasmids, reagents and antibodies.

HA-MEK1 p.Ser218Asp/p.Ser222Asp was purchased from Upstate. Two independent siRNA 

duplexes targeted to PML, SREBP-1 or SREBP-2 and control nontarget siRNA were 

purchased from Dharmacon or Sigma. The sequences for the siRNAs are listed in 

Supplementary Table 15. U0126 was from Selleck Chemicals. TOFA and simvastatin were 

from Cayman Chemical. Fatostatin was from EMD Millipore. EGF, Lipofectamine 2000, 

Lipofectamine RNAiMAX, RPMI, DMEM, Opti-MEM reduced-serum medium and FBS 

were from Invitrogen. TransIT-X2 was from Mirus Bio. FA free BSA, sodium palmitate, 

oleic acid, lipid mixture, polybrene and puromycin were from Sigma. We used the following 

primary antibodies: anti-p-ERK (9101), anti-p-ERK (4376, 20G11), anti-ERK (9102), anti-

p-MEK (9154), anti-MEK (9126), anti-p-AKT (9271), anti-p-AKT (4060, D9E), anti-AKT 

(9272), anti-PTEN (9559), anti-EZH2 (5246), anti-PARP (9532), anti-cleaved caspase-3 

(9661) and anti-GAPDH (2118) from Cell Signaling Technology; anti-Rb (IF8) and anti-

HSP90 (H-114) from Santa Cruz; anti-IDI1 (NBP1–57587) from Novus Biologicals; anti-

SREBP1 (2A4) from Active Motif; anti-β-actin (AC-74) from Sigma; anti-SREBP2 (A303–
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125A), anti-PML (A301–167A), anti-FASN (A301–324A) and anti-HMGCS1 (A304–590A) 

from Bethyl Laboratories; anti-PML (MAB3738, for detecting mouse Pml protein) from 

Millipore; anti-AR (EPR1535) and anti-SMAD4 (EP618Y) from Abcam; anti-Ki-67 (SP6) 

from Thermo Fisher Scientific; anti-CK8 (MMS-162P) from Covance; anti-α-SM-actin 

(1A4) from Dako; and anti-ELOVL6 (PA5–20520), anti-HMGCR (PA5–37367) and anti-

ME1 (PA5–40600) from Invitrogen.

Cell culture and transfection.

All cell lines were obtained from ATCC and were checked for mycoplasma with a 

MycoAlert Mycoplasma Detection Kit (Lonza). Cells were maintained in DMEM or RPMI 

supplemented with 10% FBS, 2 mM glutamine, 100 U/ml penicillin and streptomycin 

(Invitrogen). To study the effects of PML and MAPK signaling on SREBP and SREBP 

targets, LNCaP or PC3 cells were seeded and cultured in medium with 10% lipoprotein-

deficient serum (Kalen Biomedical) throughout the course of the experiments. Transfections 

were performed with Lipofectamine 2000, Lipofectamine RNAiMAX reagent or TransIT-X2 

according to the manufacturer’s instructions. In brief, 50 nM mixtures of two independent 

siRNA pairs targeting each gene or 1 μg of DNA plasmids were transfected into 1 × 105 

cells in a six-well dish. Cells were allowed to recover in complete medium after 12-h 

transfections and then harvested at the indicated times. For the treatment of dietary lipids, 

palmitic and oleic acid were conjugated to FA-free BSA as previously described75. CaP cells 

were cultured with BSA vehicle control, 2% lipid mixture, 30 μm BSA-conjugated palmitic 

acid or oleic acid for 7 d, then subjected to ORO staining, cell migration and invasion assays.

Western blotting.

For western blotting, prostate tissues or cells were lysed in RIPA buffer (Sigma) 

supplemented with protease (Roche) and phosphatase (Sigma) inhibitors. Proteins were 

separated on 4–12% Bis-Tris gradient gels (Invitrogen) and transferred to polyvinylidine 

difluoride membranes (Immobilon P, Millipore), and the blots were probed with the 

indicated antibodies. Densitometry quantification was performed in ImageJ. Nuclear/

cytoplasmic fractionation was performed as previously described76.

Histology, IHC and ORO staining.

Individual prostate lobes were dissected and fixed in 4% paraformaldehyde for histology and 

IHC analysis, or were cryoembedded in OCT compound (Sakura) for ORO staining. For 

staining, the tissues were embedded in paraffin through standard procedures. 5-μm sections 

were cut and processed for histology or immunostaining. Primary antibodies to the 

following proteins were used for IHC: PML (MAB3738, 1:300), p-ERK (20G11, 1:100), p-

AKT (D9E, 1:100), CK8 (MMS-162P, 1:200), AR (EPR1535, 1:100), Ki-67 (SP6, 1:200), 

cleaved caspase-3 (9661, 1:300), FASN (A301–324A, 1:100), HMGCR (PA5–37367, 1:100) 

and smooth muscle α-actin (1A4, 1:1000). For ORO staining, cells were prepared by drying 

drop on poly-L-lysine slides after 7-d treatment with dietary lipids. Frozen tissues or cells 

were stained by ORO working solution as previously described77. The stained slides were 

visualized with a bright-field microscope.
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Prostate sphere assay.

The culture and passage of prostate spheres were carried out as previously described78. 

Dissociated prostate epithelial cells were prepared from mice at 12 weeks of age. To initiate 

sphere formation, unsorted mouse prostate cells were prepared in PrEGM medium (Lonza) 

at a density of 2.5 × 105 cells per ml. 40 μl of cell suspension was mixed with 60 μl cold 

Matrigel (BD Bioscience), and pipetted around the rim of a well of a 12-well plate and 

allowed to solidify at 37 °C for 30 min. 1 ml warm PrEGM was then added to each well. 

The spheres were cultured and monitored for 14 d, and 50% of the medium was changed 

every 3 d. To passage spheres, Matrigel was digested with 1 mg/ml dispase solution 

(StemCell Technologies) for 30 min at 37 °C. Digested cultures were collected, pelleted, 

resuspended and subjected to sequential digestion by 2 mg/ml type I collagenase (Sigma) for 

1 h and 0.05% trypsin/EDTA (Invitrogen) for 5 min at 37 °C, and then passed through a 27-

gauge syringe 5–10 times, and filtered through a 40-μm cell strainer. Cells were counted 

with a hemocytometer and replated at a density of 1 × 104 cells per 12 wells.

Microarray analysis.

RNA was extracted from WT and knockout mice with QIAzol (Qiagen). 200 ng of total 

RNA was hybridized to Affymetrix Mouse Gene 2.1 ST arrays at the Beth Israel Deaconess 

Medical Center Genomics and Proteomics Core. The obtained raw intensity.cel files were 

normalized through robust multichip analysis (Bioconductor release 3.1), and differential 

expression was determined with the limma Bioconductor package by fitting a linear model. 

GSEA was conducted with the gene sets from the Molecular Signatures Database 

(MolSigDB v3.1). Gene Ontology analysis was conducted with the Panther Annotation 

System (version 9.0).

qPCR.

Total RNA was prepared with TRIzol (Invitrogen). cDNA was obtained with an iScript 

cDNA Synthesis kit (Bio-Rad). Triplicate samples for qPCR were run in a Lightcycler 480 

(Roche) by using SYBR Green I Master Mix (Roche). Each value was adjusted according to 

the levels of Sdha (for mouse genes) or RPLP0 (for human genes) as a reference (primer 

sequences in Supplementary Table 16).

Lipidomics by untargeted high-resolution liquid chromatography-tandem mass 

spectrometry (LC–MS/MS).

The lipidomic analysis was performed as previously described44. Briefly, nonpolar lipids 

were extracted from 5 mg prostate tissues with MTBE. The upper phase containing the 

nonpolar lipids was dried in a SpeedVac rotary evaporator with no heat. Lipid samples were 

resuspended in 35 μl of 50% isopropanol (IPA)/50% MeOH. 10 μl of samples was injected 

for reversed-phase (C18) LC–MS/MS with a hybrid QExactive Plus Orbitrap mass 

spectrometer (Thermo Fisher Scientific) coupled to an Agilent 1100 HPLC in DDA mode 

with positive/negative-ion polarity switching (top 8 in both modes). The lipidomics data 

were analyzed with LipidSearch 4.1.9 software. The software identifies intact lipid 

molecules on the basis of their molecular weight and fragmentation pattern by using an 

internal library of predicted fragment ions per lipid class, the spectra are then aligned on the 
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basis of retention time, and MS1 peak areas are quantified across sample conditions. Excel 

2010 was used to calculate intensity, and the R program (version 3.2.5) was used for data 

manipulation and statistical analyses, including unsupervised hierarchical clustering and 

heat-map visualization.

Cell migration and invasion assays.

PC3 or LNCaP cells were transfected with the indicated siRNAs or pretreated with 10 μg/ml 

TOFA or 10 μM simvastatin for 48 h, then detached into single-cell suspensions. LNCaP (1 

× 105) or PC3 (5 × 103 and 5 × 104 for migration and invasion assays, respectively) cells 

were resuspended in 100 μl of RPMI medium containing 0.1% FBS and placed into the top 

chamber of 8-μm Transwell inserts for migration assays or Matrigel-coated Transwell inserts 

for invasion assays (BD Biosciences). The bottom wells contained 600 μl RPMI 

supplemented with 10% FBS. After 24 h or 48 h (for LNCaP invasion assay only), cells on 

the upper surfaces of the inserts were removed with a cotton swab. Migrated cells were fixed 

in 10% formalin, then stained with 0.2% crystal violet for 10 min. Cells were counted in 

four microscopic fields under 20× magnification. Results are representative of three to five 

independent experiments.

In vivo treatment.

Ptenpc−/−; Pmlpc−/− mice at 12–13 months of age were treated with fatostatin (15 mg/kg) or 

corn oil (vehicle control) by intraperitoneal (i.p.) injections, every other day for 2 months. 

Mice were then euthanized, and mouse tissues, including prostate tumors, were dissected, 

weighed and processed for histopathology and molecular analyses.

Blood sampling and testosterone ELISA.

After 90 d of chow or HFD feeding, blood samples were collected from the mice through 

cardiac puncture into BD Vacutainer SST Serum Separation Tubes (BD 367986) and 

immediately mixed by proper inversion. The SST blood specimens were allowed to clot for 

30 min and then centrifuged at 1,000 g for 10 min in a swing-bucket centrifuge to recover 

the serum. Serum levels of testosterone were measured with a competitive ELISA kit 

according to the manufacturer’s instructions (Abcam 108666).

Array CGH analysis.

We downloaded the data from the GEO database (Grasso et al., GSE35988; Taylor et al., 

GSE21032) or cBioportal (for the Robinson et al. dataset25), with a focus on the array-based 

comparative genomic hybridization datasets. We wrote R scripts to process the data and to 

generate the heat map based on the log2-transformed ratio. The cutoff thresholds used were 

−0.35 to −0.8 as heterozygous deletions and lower than −0.8 as homozygous deletions.

TMA analysis.

All the prostate specimens were obtained with informed consent and with approval from the 

Memorial Sloan-Kettering Cancer Center (MSKCC) ethics committee. Clinical 

histopathological and follow-up information is included in Supplementary Table 1. The 

study cohort comprised radical prostatectomy specimens from 144 patients with primary 
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CaP. Tumor samples were collected at the time of surgical resection after written informed 

consent was obtained. The patients were treated and followed at Memorial Sloan-Kettering 

Cancer Center. PML (Santa Cruz) and PTEN (Cell Signaling Technology) staining were 

performed as previously described71. Cases that had more than 50% of the core composed of 

tumor cells were analyzed.

Statistical analysis.

No statistical methods were applied to determine sample size. The mouse studies were 

randomized. The investigators were not blinded to allocation during experiments and 

outcome assessment. For analysis of average data, datasets were compared using unpaired 

two-tailed Student’s t tests. For analysis of categorical data (for example, copy number 

alteration), 2 × 2 contingency tables were constructed, and datasets were compared with 

Fisher’s exact test, For the correlation of TMA staining with clinical parameters, datasets 

were compared using Pearson’s chi-square test. Survival outcomes were evaluated with 

Kaplan–Meier survival estimates, log-rank (Mantel–Cox) tests and univariate and 

multivariate Cox proportional hazards models. All tests were two sided, and an α-error of 

5% was considered significant. Univariate exploratory analyses showed that grouping PTEN 

and PML loss (defined as a lack of both markers or a lack of one marker and low expression 

of the other), Gleason score (≤7 vs. >7) and pathologic stage (pT1–2 N0 vs. pT3–4 or N1) 

maximized the likelihood-ratio chi-square value for overall survival; these groupings were 

used in the multivariable model. P values <0.05 were considered to be statistically 

significant. Statistical tests were executed in the statistical software R (version 3.1.2) or 

GraphPad Prism software.
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Fig. 1 |. Co-loss of PTEN and PML expression in advanced and metastatic human CaP.

a–c, Bar graph showing the percentage of deletion of PTEN (a), PML (b) or PTEN and 

PML (c) in LPC and mCRPC samples from the Grasso et al. dataset14. Co-loss events 

include homozygous, heterozygous or mixed co-loss events. d,e, Bar graph showing the 

correlation of disease progression with low levels of PTEN (d) or PML (e) protein in 

primary CaP. The color bar represents the intensity of staining, which was ranked as one of 

three groups: normal = 2, low = 1 and negative = 0. f, Bar graph showing the percentage of 

co-loss of PTEN and PML proteins in low-grade and high-grade primary CaP. g, Univariate 

and multivariable Cox proportional regression analysis of PTEN and PML loss, Gleason 

score and pathologic stage. h, Kaplan–Meier plot of overall survival data for patients with 

CaP after radical prostatectomy on the basis of co-loss of PTEN and PML protein. In a–f, n 

is the number of independent samples. In c and f, Fisher’s exact test (two tailed) was used to 

determine significance. In d and e, Pearson’s chi-square test was used to determine 

significance. In h, log-rank test was used to determine significance.
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Fig. 2 |. Pml loss renders localized Pten-null tumors lethal and metastatic to lymph nodes.

a, IHC staining for Pml in the DLP and anterior prostate (AP) tissues from WT, Ptenpc−/− 

and Ptenpc−/−; Pmlpc−/− mice at 12 weeks of age. Scale bar, 20 μm. b, Bar graph showing 

prostate tumor progression in Ptenpc−/− and Ptenpc−/−; Pmlpc−/− mice in different age cohorts 

(n = 10). The AP was excluded from the analysis because of cystic lesions after the 12-week 

time point. HGPIN, high-grade PIN; LGPIN, low-grade PIN. c, Hematoxylin-eosin (H&E)-

stained mouse prostate tissues and gross anatomy of representative WT, Ptenpc−/− and 

Ptenpc−/−; Pmlpc−/− urogenital tracts from mice at 13 months of age (n = 10 mice per 

genotype). Scale bars, 50 ^m (top) and 5 mm (bottom). d, Plot showing the sphere-forming 

ability of WT, Ptenpc−/− and Ptenpc−/−; Pmlpc−/− prostate epithelia after serial passage. For 

comparative purposes, the results are shown as percentages relative to the sphere number of 

the WT (set at 100%) at the passages examined. Representative images of spheres at P1 are 

shown at bottom. Scale bars, 20 μm. e, Cumulative survival analysis of WT, Pmlpc−/−, 
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Ptenpc−/− and Ptenpc−/−; Pmlpc−/− mice. f, Incidence of lymph node metastasis (meta) in 

cohorts of Ptenpc−/− and Ptenpc−/−; Pmlpc−/− mice. g, H&E and IHC staining of lumbar 

lymph node metastases from two representative Ptenpc−/−; Pmlpc−/− mice. Arrows indicate 

metastases. Scale bars, 50 μm. p, phospho. In d, the results of one representative experiment 

are shown (n = 5 experiments). Data are from three independent cultures and are mean

±s.e.m. Student’s t test (two tailed) was used to determine significance. In e and f, n is the 

number of mice. In e, log-rank test was used to determine signifcance. In f, Fisher’s exact 

test (two tailed) was used to determine significance.
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Fig. 3 |. PML loss triggers MAPK reactivation in PTEN-null cells.

a,b, Immunoblot (a) and IHC (b) analyses of the DLP tissues from WT, Pmlpc−/−, Ptenpc−/− 

and Ptenpc−/−; Pmlpc−/− mice at 12 weeks of age. Scale bars, 50 μm. c-f, Immunoblot of 

lysates from LNCaP (c) or PC3 (d) cells transfected with control or PML siRNA for 72 h, 

and of lysates from LNCaP (e) or PC3 (f) cells pretreated with vehicle or 1 arsenic trioxide 

(AS2O3) for 12 h, serum starved for 4 h and stimulated with 10 ng/ml EGF for 5 min. In a, 

numbers above blots indicate the relative ratios to values for Ptenpc−/− mice for 

phosphoprotein/total protein; in c-f, numbers above blots indicate the relative ratios to values 

for controls for phosphoprotein/total protein; numbers to left of blots indicate molecular 

weight (kDa). Uncropped images are shown in Supplementary Fig. 7.
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Fig. 4 |. An SREBP-dependent lipogenic program is hyperactivated in prostate tumors from 
Ptenpc−/−; Pmlpc−/− mice.

a, Top enriched biological-process categories from Gene Ontology enrichment analysis 

among WT, Ptenpc−/− and Ptenpc−/−; Pmlpc−/− prostates. b, GSEA enrichment plot for one of 

the top-scoring gene sets, SREBP targets, among WT, Ptenpc−/− and Ptenpc−/−; Pmlpc−/− 

prostates. c,d, Validation of the expression changes in SREBP targets through qPCR (c) and 

immunoblot (d) analyses of the DLP tissues from WT, Ptenpc−/− and Ptenpc−/−; Pmlpc−/− 

mice at 12 weeks of age. In d, P and N denote the precursor and cleaved nuclear forms, 
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respectively, of SREBP-1 or SREBP-2. Uncropped images are shown in Supplementary Fig. 

7. Numbers to left of blot indicate molecular weight (kDa). e, Scatter plot showing the 

distribution of all 1,743 identifiable lipid ions in prostate tissues from the three mouse 

genotypes. Each dot represents one lipid ion, and each color represents a class of lipids. 

Representative lipid classes (6 out of 35) are shown. Inset, same chart with 3D visual effect 

with z axis plotting the log10(mean intensity) of each lipid ion across the three genotypes. 

PS, phosphatidylserine; PG, phosphatidylglycerol; PC, phosphatidylcholine; PE, 

phosphatidylethanolamine; PI, phosphatidylinositol; PEt, phosphatidylethanol. f,g, A 

statistically significant increase in abundance of various lipid classes (f) or fatty acyl chains 

(g) in Ptenpc−/−; Pmlpc−/− tumors compared with Ptenpc−/− tumors. The plot represents fold 

change in relative intensity. LdMePE, lysodimethylphosphatidylethanolamine; MG, 

monoglyceride; LPG, lysophosphatidylglycerol. In c, the results of one representative 

experiment are shown (n = 3 experiments). Data are from three independent mice per 

genotype and are shown as mean± s.e.m. In f and g, n = 3 mice per genotype; data are shown 

as mean±s.e.m. Student’s t test (two tailed) was used to determine significance.
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Fig. 5 |. SREBP is the downstream target of PML-loss-induced MAPK activation.

a,b, qPCR of SREBP targets in LNCaP (a) or PC3 (b) cells. CaP cells were transfected with 

control or PML siRNA for 48 h, then treated for 12 h with DMSO or 20 μM U0126 in 

medium with 10% lipoprotein-deficient serum. c,d, Immunoblot analysis of total lysates or 

nuclear extracts from LNCaP cells. LNCaP cells were transfected with control or PML 

siRNA (c) or empty vector or HA-MEK1p.Ser218Asp/p.Ser222Asp (d) for 24h, then treated for 

24h with DMSO or 20μM U0126 in medium with 10% lipoprotein-deficient serum. In a and 

b, the results of one representative experiment are shown (n = 3 experiments). Data are from 

three independent cultures and are shown as mean±s.e.m. In c and d, the results of one 

representative experiment are shown (n = 3 experiments). Uncropped images for c and d are 

shown in Supplementary Fig. 7. Numbers to left of blots indicate molecular weight (kDa).
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Fig. 6 |. SREBP-dependent lipogenesis is critical for PML-loss-induced CaP growth and 
metastasis.

a,b, Representative images and quantification of migrated or invaded LNCaP cells in the 

migration and invasion assay. LNCaP cells were transfected with the indicated control or 

target siRNAs against PML or/and SREBP-1 (a) or were pretreated with DMSO, 10 μg/ml 

TOFA or 10 μM simvastatin (b) for 48 h, then subjected to migration (24 h) or invasion (48 

h) assays. Scale bars, 50 μm. c-g, Gross anatomy of representative Ptenpc−/−; Pmlpc−/− 

tumors (c), quantification of tumor weight (d) and the incidence of metastasis (e) and 

immunoblot (f) and IHC (g) analyses of tumors from Ptenpc−/−; Pmlpc−/− mice after 

treatment with vehicle or 15mg/kg fatostatin for two months. Scale bars, 5 mm (c) and 50 

μm (g). Arrowheads in g indicate apoptotic cells. In a and b, the results of one representative 
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experiment are shown (n = 5 experiments). Data are from three independent cultures (4 

fields per insert). In d, n= 6 mice per treatment. Data shown in a, b and d are mean± s.e.m. 

Student’s t test (two tailed) was used to determine significance. Uncropped images for f are 

shown in Supplementary Fig. 7. Numbers to left of blot indicate molecular weight (kDa).
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Fig. 7 |. A HFD drives metastatic progression in mouse models of CaP and increases lipid 
abundance in prostate tumors.

a, HFD-fed mice gain body weight. Mice (n = 8) at 12 months of age were fed chow or HFD 

for 3 months. Body weights of mice were measured each month. b-e, H&E and IHC staining 

of metastases in the lumbar lymph node and lung of a representative HFD-fed Ptenpc−/−; 

Pmlpc−/− mouse (b) or Ptenpc−/− mouse (d) and comparison of the incidence of metastasis 

between chow-and HFD-fed Ptenpc−/−; Pmlpc−/− mice (c) or Ptenpc−/− mice (e). f, ORO 

staining of tumors from chow-or HFD-fed Ptenpc−/− and Ptenpc−/−; Pmlpc−/− mice. g-i, Heat 
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map of the top 70 most regulated lipid ions (g), plot of significantly increased lipid classes 

(h) and plot of fatty acyl chains (i) in tumors from HFD-fed Ptenpc−/− and Ptenpc−/−; 

Pmlpc−/− mice compared with chow-fed counterparts. dMePE, 

dimethylphosphatidylethanolamine; LPE, lysophosphatidylethanolamine; Cer, ceramides; 

DG, diglyceride, OAHFA, (O-acyl)-omega-hydroxy fatty acids; TG, triglyceride. j, ORO 

staining of vehicle-or dietary-lipid-treated LNCaP cells. k, Representative images and 

quantification of migrated or invaded LNCaP cells in the migration and invasion assay. 

LNCaP cells were pretreated with BSA vehicle control, 2% lipid mixture, or 30 μm BSA-

conjugated palmitic acid or oleic acid for 7 d, then subjected to migration (24h) or invasion 

(48 h) assays. Arrows in b and d indicate metastases. In c, chow-fed mice (n = 20) and HFD-

fed mice (n = 8). In e, chow-fed mice (n = 19) and HFD-fed mice (n = 8). In h and i, n = 3 

mice per group. In k, the results of one representative experiment are shown (n = 5 

experiments). Data are from three independent cultures (4 fields per insert). In a, h, i and k, 

data shown are mean ±s.e.m. Student’s t test (two tailed) was used to determine significance. 

In c and e, Fisher’s exact test (two tailed) was used to determine significance. Scale bars in 

all panels, 50 μm.
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Fig. 8 |. An SREBP signature is highly enriched in metastatic human CaP.

a,b, GSEA enrichment plot for the gene set derived from the SREBP-1 signature. The up-to 

downregulated genes from the ranked gene list for metastasis vs. primary samples in the 

Grasso et al.14 (a) or Taylor et al.15 (b) dataset were analyzed with the GSEA algorithm for 

enrichment of the SREBP-1 signature. The SREBP-1 signature was inferred through an 

information-theory-based CLR algorithm by using the RNA-seq data from The Cancer 

Genome Atlas normal prostate samples. The SREBP-1 signature was split into two subsets: 

positively correlated (POS) and negatively correlated (NEG) between SREBP-1 and its 

targets. (c) Mechanisms of aberrant lipid metabolism, regulated by PML, and the increased 

lipid influx by HFD as a potential risk factor for metastatic CaP.

Chen et al. Page 32

Nat Genet. Author manuscript; available in PMC 2019 August 29.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t


