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Abstract

COVID-19 is caused by SARS-CoV-2 infection and characterized by diverse clinical symptoms. Type I interferon (IFN-I)
production is impaired and severe cases lead to ARDS and widespread coagulopathy. We propose that COVID-19
pathophysiology is initiated by SARS-CoV-2 gene products, the NSP1 and ORF6 proteins, leading to a catastrophic cascade
of failures. These viral components induce signal transducer and activator of transcription 1 (STAT1) dysfunction and
compensatory hyperactivation of STAT3. In SARS-CoV-2-infected cells, a positive feedback loop established between
STAT3 and plasminogen activator inhibitor-1 (PAI-1) may lead to an escalating cycle of activation in common with the
interdependent signaling networks affected in COVID-19. Specifically, PAI-1 upregulation leads to coagulopathy
characterized by intravascular thrombi. Overproduced PAI-1 binds to TLR4 on macrophages, inducing the secretion of
proinflammatory cytokines and chemokines. The recruitment and subsequent activation of innate immune cells within an
infected lung drives the destruction of lung architecture, which leads to the infection of regional endothelial cells and
produces a hypoxic environment that further stimulates PAI-1 production. Acute lung injury also activates EGFR and leads
to the phosphorylation of STAT3. COVID-19 patients’ autopsies frequently exhibit diffuse alveolar damage (DAD) and
increased hyaluronan (HA) production which also leads to higher levels of PAI-1. COVID-19 risk factors are consistent with
this scenario, as PAI-1 levels are increased in hypertension, obesity, diabetes, cardiovascular diseases, and old age. We
discuss the possibility of using various approved drugs, or drugs currently in clinical development, to treat COVID-19. This
perspective suggests to enhance STAT1 activity and/or inhibit STAT3 functions for COVID-19 treatment. This might derail
the escalating STAT3/PAI-1 cycle central to COVID-19.

Introduction

The etiology of severe acute respiratory syndrome cor-
onavirus 2 (SARS-CoV-2) infection and the progression of
the resulting coronavirus disease of 2019 (COVID-19) dis-
ease are novel. A person may be contagious 48–72 h before
clinical symptoms appear, and 44% of transmissions are
presymptomatic [1]. Viral loads are high at symptom onset
but decrease within days. In contrast, in the severe acute
respiratory syndrome (SARS) disease caused by SARS-
CoV-1, the highest viral shedding occurs 10 days after
symptom onset [2]. SARS-CoV-2 also binds more tightly
than SARS-CoV-1 to their common cell entry receptor,
human angiotensin-converting enzyme 2 (ACE2) [3–5].

SARS-CoV-1 chiefly infects the lower airways, while
SARS-CoV-2 is initially present in the upper respiratory
tract and later moves to the lower airways. For SARS-CoV-
2, the highest viral load in the upper respiratory tract
occurred during the first 5 days, and viral load is higher and
persists for longer in the lower respiratory tract of patients
who are severely ill with COVID-19. For SARS, upper
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respiratory tract infection rarely occurred, and as a con-
sequence, the transmission of SARS-CoV-1 was rare during
the first 5 days of illness [6]. These differences accentuate
the greater infectivity of SARS-CoV-2.

A strong correlation exists between SARS-CoV-2 viral
load and disease severity and progression [7]. Pathological
examinations have established that COVID-19 causes
widespread thrombosis with microangiopathy in pulmonary
vessels [8]. Among 184 COVID-19 patients in the intensive
care unit (ICU) with pneumonia, the cumulative incidence
of thrombotic complications was 31% [9]. Levels of D-
dimer, a coagulopathy indicator, correlated well with
COVID-19 illness severity [10]. Accordingly, coagulopathy
and thrombosis are pervasive pathological features of
COVID-19. Hospitalized patients also commonly exhibit
lymphopenia [11].

Pronounced laboratory abnormalities are also present in
severe COVID-19 disease. Immunopathologic phenomena
include the temporal downregulation of the type I and type
III interferon responses, with concomitant increases in
proinflammatory cytokine and chemokine production [12].
In contrast to other viral infections [13], CRP levels are
significantly elevated and positively correlated with disease
severity in COVID-19 [14, 15]. These high CRP levels have
never been observed in any other infectious viral disease
[16]. Clinical studies of 5700 hospitalized patients revealed
that the most common comorbidities were hypertension
(56.6%), obesity (41.7%), and diabetes (33.8%) [17].

SARS-CoV-2 is a sarbecovirus with an overall structure
similar to that of SARS-CoV-1. The SARS-CoV-2 genome
contains the large 5′ open reading frame (ORF) 1ab
encoding two polyproteins, including 16 nonstructural pro-
teins (NSPs), namely NSP1–NSP16. The 3′ end of the
genome encodes the structural proteins spike (S, composed
of two subunits S1 and S2), envelope (E), membrane (M),
and nucleocapsid (N). Interspersed among these genes are
ORFs encoding the nonstructural accessory proteins ORF3a,
ORF3b, ORF6, ORF7a, ORF7b, and ORF8 [18–20].

Several SARS-CoV-1 proteins antagonize the antiviral
activities of IFNs and the downstream JAK (Janus kinase)-
STAT signaling pathways they activate. JAK family kinases
(JAK1, JAK2, JAK3, TYK2) display a wide range of
functions during ontogeny, in immunity as well as in
chronic inflammation, fibrosis, and cancer [21].

Comparative genetic structural studies have suggested
that SARS-CoV-2 has similar IFN antagonist activity
[18, 22]. After a careful review of the scientific literature,
we realized that the SARS-CoV-2-mediated inhibition of
IFN and STAT1, and the subsequent shift to a STAT3-
dominant signaling network (see below), could result in
almost all of the clinical features of COVID-19. Here, we
discuss the pathophysiology of SARS-CoV-2, with a spe-
cific focus on SARS-CoV-2’s effects on IFN and JAK/

STAT signaling. We propose that COVID-19 is a disease
caused by a catastrophic cascade of failures stemming from
the SARS-CoV-2-mediated dysregulation of STATs. Spe-
cifically, the dysfunctions of STAT1 and STAT3 induced
by SARS-CoV-2 proteins may be the foundation of severe
COVID-19 pathophysiology.

SARS-CoV-2 infection and effects on IFN and
STATs

Target cell entry

SARS-CoV-2 cell entry depends on the binding of the
Spike protein’s S1 subunit to ACE2 on the target cell sur-
face [3–5]. Host proteases, furin [23], as well as TMPRSS2
(transmembrane serine protease 2) [24], then processes the
S protein to facilitate membrane fusion. Cleavage at the S1/
S2 junction and S2’ site mediates the fusion of the viral and
cellular membranes, in a process driven by the S2 subunit
[23, 24]. Furin is ubiquitously expressed and its cleavage
site at the boundary between the S1/S2 subunits is not
present in SARS-CoV-1 and SARS-related viruses [23, 24],
allowing SARS-CoV-2 to have enhanced proteolytic acti-
vation in a wider range of tissues [23].

Potential host cells for SARS-CoV-2 express high levels
of both ACE2 and TMPRSS2, and include type 2 alveolar
cells, nasal goblet cells, nasal ciliated cells, corneal cells,
and intestinal epithelial cells [25]. SARS-CoV-2 can also
directly infect endothelial cells [8, 26] and engineered
human blood vessels in kidney organoids in vitro [27].
Among immune cells, SARS-CoV-2 appears to infect
mononuclear phagocytes, but not lymphocytes [28, 29].

Initiation of IFN production and signaling

Cells detect viral attack through membrane-bound or
intracellular pattern recognition receptors (PRRs). Among
these, coronaviruses activate the Toll-like receptors (TLRs),
retinoic acid-inducible gene I (RIG-I), and melanoma
differentiation-associated protein 5 (Fig. 1) [30]. Virus-
induced oligomerization of PRRs leads to the activation of
downstream interferon regulatory factors (IRFs) and nuclear
factor-kappa B (NF-κB) transcription factors that induce the
production of IFN-I, IFN-II, and IFN-III [30].

The IFN released from infected cells binds to IFN
receptors on neighboring cells, alerting them to a viral
attack (Fig. 2). The IFN-I and IFN-II receptors are almost
ubiquitously expressed, while IFN-III receptors are only
expressed on cells lining the epithelial barrier [30]. The
engagement of IFN-I and IFN-III receptors activates various
members of the JAK (1, Fig. 3) and STAT families (2 and 3,
Fig. 3), and specific transcription factor complexes are
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formed. For example, STAT1 interacts with STAT2 and IRF-
9 to constitute the transcription factor complex “IFN-stimu-
lated gene factor 3” (ISGF3) [30]. In contrast, IFN-II activates
JAK1 and JAK2, producing a phosphorylated STAT1
homodimer known as “γ-interferon activation factor” (GAF)
[31]. Interestingly, both ISGF3 and GAF can be evoked by all
IFNs [32, 33]. In any case, before they can exert their tran-
scription factor activity, the ISGF3 and GAF complexes must
be transported to the nucleus and the subsequent upregulation
of the interferon-stimulated gene products (ISGs) [31].
Karyopherin-α1 (KPNA1) is essential for the nuclear trans-
port of STAT1 [34], and the interaction between STAT1 and
KPNA1 (STAT1/KPNA1) involves a nonclassical nuclear
localization signal (NLS). In addition to IFN signaling, STAT
proteins are involved in signal transduction for other families
of cytokines, including IL-6 [31, 35].

Inhibition of IFN activity by SARS-CoV-2

The SARS coronaviruses use various mechanisms to hamper
IFN production and response [30]. Consequently, target cells
proximal to the site of the initial infection fail to receive
critical and protective IFN signals, allowing the virus to
spread and replicate without hindrance. A hallmark of SAR-
CoV-2 infection is impaired IFN-I and III production and

responses, which masks the IFN-related fever symptoms
[36] and leads to naive spreading of the virus [12, 37, 38].

The SARS-CoV-1 NSP1 protein impedes STAT1 phos-
phorylation [39], and NSP3, NSP4, and NSP6 are involved
in the establishment of double-membrane vesicles (DMVs)
[40]. DMVs create a platform by assembling the replicase
proteins, virus genomes, and host proteins required for
replication, while physically separating the replication sites
from the cytoplasmic sensors of the innate immune response
[40, 41]. NSP16 and NSP10 prevent detection by the host’s
RIG-I, which recognizes unmethylated RNAs as non-self
[42]. SARS-CoV-1 structural proteins also quench the IFN
response. The N protein binds to the E3 ubiquitin ligase
TRIM25 (tripartite motif protein 25) and interferes with the
association between TRIM25 and RIG-I [43]. The M pro-
tein impairs the formation of the TRAF3/TANK/TBK1/IKK
ϵ complex, which is important in IRF3/IRF7 signaling [44].
The ORF3a protein induces serine phosphorylation within
the degradation motif of IFN alpha-receptor subunit 1
(IFNAR1) and enhances IFNAR1 ubiquitination [45].
Finally, the SARS-CoV-1 ORF3b, ORF6, and N proteins
block IRF3 phosphorylation [46].

SARS-CoV-2 proteins structurally resemble those of
SARS-CoV-1 and thus are likely to have the similar effects
on IFN production and response (Figs. 1 and 2), but there
are some important differences. The SARS-CoV-2 ORF3b
gene contains a premature stop codon, resulting in a trun-
cated protein (22 aa) as compared to the SARS-CoV-1
ORF3b protein (154 aa) [18]. Although this SARS-CoV-2
ORF3b 22 aa peptide lacks the C-terminal NLS, it retains
the ability to efficiently inhibit IFN-I signaling [47]. ORF3b
proteins in bat coronaviruses (SL-CoVs) [48] also inhibit

Fig. 1 Possible differential effects of SARS-CoV-2 RNA/proteins

on IFN-I and proinflammatory cytokine/chemokine production.

Molecular patterns derived from SARS-CoV-2-associated molecules,
such as ssRNA, dsRNA, and viral proteins, bind to host PRRs and
trigger the activation of signal transducers and transcription factors that
drive the production of IFN-I and proinflammatory cytokines and
chemokines. Soon after infection, the engagement of RIG-I and MDA-
5 by these molecular patterns induces the activation of IRF3, or IRF7,
through MAVS. In addition, viral ssRNA, dsRNA, and proteins can
engage TLRs to trigger the MyD88- and TRIF-dependent pathways,
primarily leading to the activation of the NF-κB (p50/p65) transcrip-
tional complex. SARS-CoV-2 proteins that inhibit IFN-I production
are indicated in black boxes, and the associated blocked pathways are
indicated as dashed lines. Note that only the IFN-I production path-
way, and not the secretion of proinflammatory cytokines/chemokines,
is inhibited by the viral proteins. Proinflammatory cytokine/chemokine
production is further activated by the engagement of TLRs by a high
viral load.

Fig. 2 Possible effects of SARS-CoV-2 proteins on IFN-I signaling.

The IFN-I protein is secreted from infected cells and amplifies the IFN
response by activating the ISGF3 complex (STAT1/STAT2/IRF9) to
induce IFN-I-stimulated genes. The SARS-CoV-2 proteins that inhibit
IFN-I signaling are indicated in black boxes, and the associated
blocked pathways are indicated by dashed lines.
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IFN-I and Konno et al. have described a larger, natural
SARS-CoV-2 ORF3b variant (56 aa) with increased anti-
IFN-I activity [47]. Yang et al. found that the SARS-CoV-2
inhibition of STAT1 phosphorylation leads to the attenua-
tion of the interferon-stimulated genes transcription in
monocyte-derived dendritic cells and macrophages [49].
Perhaps SARS-CoV-2 NSP1 blocks STAT1 phosphoryla-
tion in a similar manner as SARS-CoV-1 NSP1 [39], con-
tributing to the inhibition of interferon response.

The SARS-CoV-1 ORF6 protein is a particularly vital
viral factor that uses multiple measures to inhibit IFN pro-
duction and responses. The SARS-CoV-2 ORF6 protein
appears to have similar functions. Several lines of evidence
demonstrate the effect of SARS-CoV-2 ORF6 on the IFN
response.

(1) Frieman et al. showed that SARS-CoV-1 ORF6 is an
ER/Golgi membrane protein that binds KPNA2,
together with KPNB1. This recruitment of KPNB1

into the membrane complex limits the bioavailability
of KPNB1 needed for the nuclear import of STAT1/
KPNA1 complexes. As a result, ORF6 blocks the
nuclear import of STAT1 [50].

(2) ORF6 is incorporated into mature SARS-CoV-1
virions [51], and thus the cell is exposed to ORF6
immediately upon viral infection. Moreover, when co-
expressed with the SARS-CoV-1 S, M, and E
proteins, ORF6 is incorporated into virus-like parti-
cles [51]. Therefore, the ORF6 protein may interfere
with intracellular signaling prior to authentic viral
replication.

(3) SARS-CoV-1 ORF6 modifies membranes and pro-
duces perinuclear vesicles resembling DMVs [52].
ORF6 co-immunoprecipitated with viral RNAs and
co-localized on cytoplasmic vesicles with replicating
viral RNAs [53]. Thus, ORF6 is also involved in
establishing DMVs for viral RNA replication.

(4) The introduction of SARS-CoV-1 ORF6 into a

Fig. 3 STAT1- and STAT3-dependent drug targets in IFN-I sig-

naling. A IFN-I signaling before SARS-CoV-2 infection. JAK1 and
TYK2 (1) are activated after IFN-I stimulation. STAT1 is normally
activated in IFN-I signaling to induce ISGs (STAT1-ISGs) by ISGF3
(STAT1/STAT2/IRF9). STAT3 is also activated and becomes a
homodimer, but the response is small. B IFN-I signaling with SARS-
CoV-2 infection. After the infection, STAT1 activity is inhibited by
the SARS-CoV-2 proteins, NSP1, and ORF6 (2). With STAT1 activity
restricted, STAT3 (3) then becomes dominant and induces STAT3-
ISGs. Both STAT1 and STAT3 induce SOCS1 and SOCS3 (4) that
inhibit the kinase activity of JAKs for the negative feedback of IFN-I
signaling. PIAS1 and PIAS3 (5) inhibit the binding of STAT1 and

STAT3 to DNA, respectively, to regulate IFN-I signaling. The role of
PIAS3 becomes critical when STAT3 is aberrantly activated and
uncoupled from SOCSs regulation. Protein tyrosine phosphatases
(PTPs, 6) have regulatory activities on activated JAKs and STATs, but
their role in the viral infection needs further clarification. EGFR (7) is
upregulated by acute lung injury or by reduced STAT1 activity in the
SARS-CoV-2-infected lung. STAT3 is activated through directly
binding to EGFR, through EGFR-activated SRC (8), or through JAK2
(data not shown). PIAS3 normally limits the activity of STAT3 but
PAI-1 produced during infection blocks PIAS3 activity (9) and an
escalating cascade in the STAT3/PAI-1 axis is established.
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sublethal mouse hepatitis virus (MHV) strain pro-
moted viral proliferation and caused fatal encephalitis
in infected mice [53, 54]. The expression of ORF6
before infection with wild-type MHV facilitated the
production of significantly more progeny.

(5) Yuen et al. analyzed the anti-IFN-I activities of 27
SARS-CoV-2-encoded proteins and found that the
ORF6 protein was the most potent antagonist.
Although SARS-CoV-2 ORF6 shares only 69%
sequence homology with SARS-CoV-1 ORF6, the
SARS-CoV-2 ORF6 protein reduced the IFN-beta
promoter activity by 100-fold and suppressed IFN
signaling to levels comparable to those imposed by
SARS-CoV-1 ORF6. The SARS-CoV-1 and SARS-
CoV-2 ORF6 proteins inhibit IFN-I and IFN-III
secretion induced by Sendai virus infection, a method
often used to elicit IFN-I production, and have
profound effects on IRF3 phosphorylation, thus
accounting for their potent inhibition of IFN-I
production [20, 46].

STAT1 and STAT3 activation and compensation in
IFN signaling

Once STAT1 function is impaired by the NSP1 or ORF6
protein of SARS-CoV-2 (2, Fig. 3), a concomitant and
compensatory shift to signaling via STAT1-independent
pathways may occur, and a STAT3-dependent transcrip-
tional profile becomes dominant in many situations (3,
Fig. 3) [55–57]. Notably, IFN-I signaling not only activates
STAT1 but also STAT3, and STAT3 has a fine-tuning role
in STAT1-mediated IFN-I responses [58].

Several potential mechanisms have been proposed as to
how STAT3 inhibits the STAT1-mediated IFN-I response:
(1) STAT3 prevents the formation of the STAT1 homo-
dimer by making heterodimers with STAT1, (2) STAT3
inhibits the binding of ISGF3 (STAT1/STAT2/IRF9) to
DNA in cooperation with repressors, (3) STAT3 directly
and indirectly reduces the expression of ISGF3 components
[58]. STAT3 may also compete with STAT1 for a nuclear
translocation factor, KPNA1 [59]. If competition between
STAT1 and STAT3 for these nuclear translocation factors
occurs in SARS-CoV-2-infected cells, then STAT1 would
have to outcompete STAT3 for binding to KPNA1 [59] and
ORF6 for binding to KPNB2 [50] to achieve proper nuclear
localization. These situations would create a higher func-
tional STAT3:STAT1 ratio immediately after virus infec-
tion, shifting the dominant transcriptional network to that
governed by STAT3, the STAT3-stimulated genes (STAT3-
ISGs; 3, Fig. 3) [58].

Both STAT3 and STAT1 transcriptionally induce both
suppressor of cytokine signaling1 (SOCS1) and SOCS3 that

inhibit activity of JAKs (4, Fig. 3). In the nucleus, protein
inhibitor of activated STAT3 (PIAS3) and PIAS1 can bind
activated STAT3 and STAT1 dimers (5, Fig. 3), respec-
tively, and block them from binding to DNA, thus inhibit-
ing STAT mediated transcription. Tyrosine-phosphorylated
STATs or JAKs are targets of tyrosine phosphatases, such
as SHP1, SHP2, PTP1B, and TC-PTP [60] (6, Fig. 3).
However, their roles in COVID-19 remains to be clarified.

Sometimes the negative regulation of STAT3 by SOCS1/
SOCS3 becomes dysfunctional. Ramana et al. reported that
the IFN-II induction of SOCS3 in STAT1-deficient mouse
embryonic fibroblasts was derived from activated STAT3
[61]. In wild-type fibroblasts, STAT1 is normally dominant,
but in STAT1-deficient fibroblasts STAT3 is activated
strongly and in a sustained manner. The SRC kinase inhi-
bitor SU6656 suppressed IFN-II activation of
STAT3 significantly in STAT1-deficient fibroblasts but not
in wild-type fibroblasts indicating that STAT3 is activated
through SRC kinase activity in the absence of STAT1.
STAT3 can be tyrosine-phosphorylated by the dimerized
epidermal growth factor receptor (EGFR), EGFR-activated
SRC (8, Fig. 3), or by EGFR-activated JAK2 [62], but only
the latter pathway is regulated by SOCS3. Recently, EGFR
signaling was shown to inhibit IFN-I through activated
STAT3 [63]. EGFR is upregulated (7, Fig. 3) during acute
lung injury [64], or when STAT1 is deficient [65]. This
scenario is consistent with a study with an alpha cor-
onavirus, porcine epidemic diarrhea virus. STAT1 was
virologically suppressed by the infection [66] and IFN-I
signaling was inhibited by upregulated EGFR and activated
STAT3 [67]. Therefore, in COVID-19, EGFR signaling
may become an alternative pathway that activates
STAT3 specifically when the lung is damaged while the
production of IFN-I is severely impaired by SARS-CoV-2
infection [12].

This aberrant transcriptional rewiring toward STAT3
may lead to the symptoms most commonly observed in
hospitalized COVID-19 patients: rapid coagulopathy/
thrombosis, proinflammatory conditions, profibrotic status,
and T cell lymphopenia. The next sections describe how
STAT3 hyperactivation can be linked to each of these
abnormalities. A summary of these events, starting with the
downregulation of STAT1 (1, Fig. 4) and compensatory
upregulation of STAT3 (2, Fig. 4) induced by NSP1 and
ORF6 of SARS-CoV-2, is presented in Fig. 4.

STAT3 and coagulopathy

Pervasive hemostasis disorders are a life-threatening feature
of COVID-19 [68]. Inflammation-induced coagulation is
initiated by the expression of the transmembrane protein
“Tissue Factor” (TF) [69]. In the lung, TF is expressed in
alveolar epithelial cells [70], myeloid cells [71], and
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endothelial cells [72] in response to proinflammatory
cytokines [73] or CRP [74–78]. TF promotes the transfor-
mation of prothrombin into thrombin, which converts cir-
culating fibrinogen into fibrin, leading to fibrin-based blood
clots [79]. Recombinant human CRP, administered in
concentrations commonly seen in patients with inflamma-
tion, induced a 75-fold increase in the TF procoagulant
activity of human PBMCs [74]. Because TF is induced by
CRP, and CRP is a downstream target of STAT3 [80],
aberrantly activated STAT3 may prime the initial phase of
coagulation (7, Fig. 4). In addition, the full transcriptional
induction of CRP requires the synergistic cooperation of
STAT3, c-FOS, and T cell factor 7 (TCF-7, or HNF-1α)
[81]. c-FOS is activated by SARS-CoV-1 ORF3b [82] and
TCF-7 is expressed in lung cells [83]. Thus STAT3, c-FOS,
and TCF-7 could participate in SARS-CoV-2-infected cells
and act to raise plasma CRP levels. It then follows that the
positive correlation between CRP level and disease severity
in COVID-19 patients [14, 15] also reflects the number of
virus-infected cells.

Another critical factor in coagulopathy and thrombosis is
PAI-1 (SERPIN E1), a serine protease inhibitor secreted by
vascular endothelial cells, hepatocytes, adipocytes, and
epithelial cells [84, 85]. Several lines of evidence suggest
that PAI-1 and STAT3 interact to promote coagulopathy
and thrombosis in COVID-19 (7, Fig. 4).

(1) PAI-1 is upregulated by STAT3. PAI-1 is expressed in
damaged type 2 alveolar cells [86] and indirectly
upregulated by STAT3 through five pathways. First,
microRNA-34a (miR-34a) targets the PAI-1 gene in
non-small cell lung carcinoma (NSCLC), and miR-
34a transcription is suppressed by STAT3 [87]. This
negative regulation of PAI-1 by miR-34a [88], and of
miR-34a by STAT3 [89], has also been documented
in cancer cell lines. Therefore, STAT3 indirectly
upregulates PAI-1 through miR-34a (4, Fig. 4).
Second, STAT3 (plus c-FOS and TCF-7) induces
CRP [81], and CRP induces PAI-1 in human aortic
endothelial cells [90]. Third, the tumor suppressor p53

Fig. 4 A dysregulated STAT3-PAI-1 signaling node is common to

COVID-19 pathophysiology. Proposed role of STAT3-PAI-1 sig-

naling node in catastrophic cascades underlying COVID-19

pathophysiology. Infection by SARS-CoV-2 intracellularly delivers
NSP1 and ORF6, which efficiently inhibit STAT1 function (1).
Repression of STAT1 increases STAT3 (2) activity. STAT3 upregu-
lates PAI-1 (3) by repressing miR-34a, a PAI-1 inhibitor (4). This
increased PAI-1 reciprocally activates STAT3 by blocking PIAS3, a
STAT3 inhibitor (5). STAT3 can activate HAS2, a hyaluronic acid
synthase, which produces hyaluronan (HA) and leads to diffuse
alveolar damage (DAD) characterized by hyaline membrane formation
(6). Fragments of HA (LMW-HA) activate PAI-1 (3). An escalating
cycle of stimulation between STAT3 and PAI-1 begins a catastrophic

cascade of events, resulting in combinations of coagulopathy/throm-
bosis (7), macrophage production of cytokines and chemokines (8),
and profibrotic changes (9). Hypoxia eventually results, which further
induces PAI-1 transcription through HIF-1α (10). This elevated PAI-1
activity then drives IL-6 production via TLR4, which in turn stimulates
even more STAT3 activity (No. 11). Elevated STAT3 also activates
PD-L1 in endothelial cells, leading to T cell lymphopenia (No. 12).
Details of these events are described in the main text. Italicized outside
labels are cell types, and non-italicized outside labels are locations.
Bolded italicized text indicates disease states. Bent arrows indicate the
transcriptional induction of the indicated target proteins. Straight
arrows indicate direct activation. Dashed lines indicate direct
inhibition.
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activates PAI-1 production [91], and activated STAT3
induces p53 transcription [92]. Fourth, as detailed
below, STAT3 indirectly activates TGF-β in the
extracellular matrix (ECM), and TGF-β upregulates
PAI-1 production [93]. Fifth, severe ARDS cases of
COVID-19 result in diffuse alveolar damage (DAD)
and the formation of hyaline membranes [94].
Hyaluronan (HA) is essential for many biological
functions, but it is a causative agent in ARDS when it
becomes a low-molecular-weight HA (LMW-HA)
[95]. Both STAT3 and PAI-1 are associated with the
production of HA. STAT3 activates the transcription
of HAS2, the gene for HA synthase [96], and LMW-
HA stimulate the production of PAI-1(6, Fig. 4)
[97, 98]. Furthermore, variations in genes involved in
HA synthesis control the levels of plasma PAI-1.(3,
Fig. 4) [99] Indeed, the STAT3/PAI-1 axis is
intimately connected to the production of HA.

(2) PAI-1 may activate STAT3. PAI-1 can interact with
PIAS3 (5, Fig. 4), an endogenous STAT3 inhibitor (9,
Fig. 3), to regulate STAT3-dependent gene expression
in NSCLC [87]. Other studies have found a more
indirect effect. For example, PAI-1 engages TLR4
[100] and activates IL-6, which could then activate
STAT3 [101]. In addition, PAI-1 can promote
monocyte migration through its interaction with
lipoprotein receptor protein-1 (LRP-1). PAI-1/LRP-1
binding influences monocyte/macrophage polarization
toward the M2 type, which features transcriptional
upregulation of IL-6 and activation of STAT3 [102].

(3) PAI-1 is highly expressed in plasma and lungs in

COVID-19 cases. SARS patients were characterized by
increased plasma levels of PAI-1 [103] and high PAI-1
protein expression in alveolar cells [104] compared to
controls. Consistently, PAI-1 is significantly elevated
in the plasma of hospitalized COVID-19 patients [105].
Furthermore, PAI-1 mRNA levels are higher in the
lungs of COVID-19 patients, as compared to those of
uninfected or influenza patients [8].

(4) PAI-1 is closely linked with COVID-19 risk factors.
Network pathway analyses have identified PAI-1 as a
key protein in obesity, diabetes [106], and cardiovas-
cular disease [107]. Furthermore, higher levels of plasma
PAI-1 are present in hypertensive patients [108, 109]
and older adults [110, 111]. All of these conditions are
high-risk factors for severe COVID-19 pathology.

The above studies suggest that the increase in PAI-1
levels due to STAT3 activation may efficiently inhibit both
tissue-type plasminogen activator (tPA) and urokinase-type
plasminogen activator, leading to coagulopathy/thrombosis
(7, Fig. 4). In addition, IFN-I has been shown to upregulate
tPA expression through STAT1 [112]. Therefore, the early

repression of STAT1 and IFN activities imposed by viral
proteins could synergistically inhibit tPA and promote
coagulopathy/thrombosis.

In addition to the coagulopathic changes within the
pulmonary vasculature, Copin et al. observed a peculiar
pattern in the lungs of six COVID-19 patients that was
different from the classical DAD pattern of ARDS [113].
The pattern, acute fibrinous and organizing pneumonia,
consisted of a fibrin component and was characterized by
extensive deposition of intra-alveolar fibrin (“fibrin balls”)
in the lungs. McGonagle et al. suggested that the occurrence
of enhanced thrombin generation and fibrin deposition
within the bronchoalveolar system might be primarily dri-
ven by the upregulation of TF expression within the alveoli,
coupled with a PAI-1-induced reduction in fibrinolysis
[114]. Because TF is a downstream target of activated
STAT3 [115] and produced in type 2 alveolar cells [70], the
secretion of both TF and PAI-1 into the alveolar space may
lead to the enhanced deposition of intra-alveolar fibrin.

STAT3 and induction of inflammatory cytokines and
chemokines

Significant efforts are presently underway to define the
proinflammatory cytokines and chemokines active in
COVID-19. Huang et al. studied 41 in-patients (13 ICU
patients and 28 non-ICU patients) and reported that the
plasma levels of inflammatory cytokines, including IL-7,
IL-10, G-CSF, IP-10, MCP-1, MIP1A, and TNF-α, were all
elevated in critically ill patients [116]. In critically ill
COVID-19 patients, serum IL-6 is significantly greater than
those with moderate or severe disease [117]. The excessive
production of these inflammatory cytokines in the lungs of
COVID-19 patients appears to be due to increased macro-
phage activation [118–120]. Gupta et al. reported that PAI-1
activates macrophages and increases their proinflammatory
cytokine production by binding to TLR4 [100] (8, Fig. 4).
PAI-1 binding to TLR4 leads to the activation of NF-κB,
which induces the production of chemokines and IL-6. IL-6
stimulates STAT3 (11, Fig. 4) to produce TGF-β [101] in a
positively regulated reciprocal feedback loop involving
PAI-1 [121], thereby amplifying the TLR4-mediated
inflammatory response. PAI-1 thus appears to be partly
responsible for the excessive production of inflammatory
cytokines and chemokines by macrophages in the lungs of
severely ill COVID-19 patients. In addition, accumulation
of LMW-HA molecules in the small airways not only sti-
mulates macrophages to release chemokines, cytokines, and
growth factors, but also promotes fluid retention in the
extracellular space, contributing to interstitial and alveolar
edema [95].

Interstitial and alveolar edema severely impairs physio-
logical gas exchange, causing hypoxia, which further
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stimulates PAI-1 expression through hypoxia-inducible
factor 1 α (HIF-1α) [122, 123]. Thus, the central node
involving STAT3 and PAI-1 may favor hypoxia through
multiple routes (10, Fig. 4).

STAT3 and TGF-β-related profibrosis

TGF-β plays a key role in COVID-19. Xiong et al. per-
formed transcriptome sequencing of RNAs isolated from
bronchoalveolar lavage fluid and PBMC specimens of
COVID-19 patients, and found that SARS-CoV-2 infection
induced IL-10 and TGF-β production [124]. Many viral
infections modulate TGF-β signaling to block cell apoptosis
and promote fibroblast proliferation and myofibroblast dif-
ferentiation. Thus, the increased expression of TGF-β in
COVID-19 patients may drive the observed pulmonary
fibrosis [124]. The possible sources of TGF-β in COVID-19
are the ECM, blood-circulating platelets, recruited neu-
trophils, macrophages, and infected type 2 alveolar cells
[125, 126]. The latent form of TGF-β in the ECM requires
activation by integrin αvβ6 and thrombospondin, which are
induced by STAT3 [126–130]. Therefore, aberrantly acti-
vated STAT3 in type 2 alveolar cells may contribute to
TGF-β activation and subsequent fibrosis (9, Fig. 4).

Experiments in a murine model of systemic sclerosis
support the indirect upregulation of PAI-1 (3, Fig. 4) by
STAT3 through TGF-β [93]. Activated TGF-β induces PAI-
1 transcription [121], establishing another positive feedback
loop involving STAT3 and PAI-1. The transcription of
profibrotic genes encoding collagens, proteoglycans, integ-
rins, connective tissue growth factor, and matrix metallo-
proteinases (MMPs) is also actuated by activated TGF-β
[131], establishing a profibrotic environment. In fact, les-
sons from SARS-CoV-1 suggest that the SARS-CoV-2 N
protein may enhance TGF-β-induced expression of PAI-1
and collagen I, and thus promote lung fibrosis [132].

STAT3 and T cell lymphopenia

Lymphopenia is a common characteristic of COVID-19
patients [11, 133, 134] and correlates with disease pro-
gression, but its etiology remains unclear. Diao et al.
reported that, in 499 hospitalized cases, 76% of the patients
had remarkably reduced total T cell counts, which were
significantly lower in ICU patients than in non-ICU cases.
They also observed that PD1 expression on T cells
increased as patients progressed from the prodromal to the
overtly symptomatic stage. Because PD1 is a marker of T
cell exhaustion, this group proposed that the elevated
proinflammatory cytokines in COVID-19 patients are
responsible for their T cell lymphopenia [11]. Moreover,
Chen et al. analyzed spleens and lymph nodes from six
autopsy cases, and suggested that SARS-CoV-2 could

directly infect tissue-resident CD169+ macrophages in
secondary lymphoid organs and induce lymphocyte apop-
tosis [28].

Alternatively, T cell lymphopenia could be caused
directly by SARS-CoV-2 entering T cells via CD147 [135].
Although SARS-CoV-2 cannot replicate in T cells, the
apoptosis-inducing activity of the SARS-CoV-2 ORF3a
protein [136] could effectuate T cell lymphopenia.

The effects of SARS-CoV-2 on PD1 and its binding
partner PD-L1 differ by disease phase; i.e., the early/mild
phase vs. the late/critical phase of COVID-19.

Early/Mild phase

The early/mild phase of SARS-CoV-2 infection is limited to
type 2 alveolar cells and alveolar macrophages. Once
infected, these cells secrete chemokines, including IP-10
(CXCL10), in a process that requires STAT3 activation
[137]. As a result, plasma IP-10 is increased in severely ill
COVID-19 patients [138]. IP-10 recruits activated CXCR3+

T cells from the regional capillaries [138–141], and lym-
phocytes infiltrate the diseased lung tissues of these patients
[8, 113, 114]. Because type 2 alveolar cells [142] and
alveolar macrophages [143] express PD-L1 together with
virus antigens, virus-specific T cells migrate to the area and
then upregulate PD1 upon recognition of the antigens [144].
PD-L1 engagement with PD1 induces the apoptosis of the
activated T cells [145, 146], resulting in moderate T cell
lymphopenia (12, Fig. 4).

Late/Critical phase

In the severe phase of SARS-CoV-2 infection, activated
STAT3 promotes the secretion of MMP-9 by type 2
alveolar cells [147] and alveolar macrophages [148]. MMP9
degrades collagen IV, the major component of the basement
membrane, and compromises its integrity. The virus may
then migrate into the interstitium and enter capillaries,
where it could infect endothelial cells. The infection causes
aberrant STAT3 regulation in these endothelial cells and
may also induce PD-L1 activity, as demonstrated for some
cancer cells with constitutively active STAT3 [149, 150]. In
the critical stages of COVID-19, the PD1/PD-L1-induced
death of T cells becomes systemic, resulting in severe T cell
lymphopenia (12, Fig. 4).

Therapeutic considerations

We hypothesize that COVID-19 disease is due in large part
to the actions of the SARS-CoV-2 NSP1 and ORF6 pro-
teins, which cripple STAT1 function and predominantly
promote STAT3 activation. STAT3 in turn upregulates
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PAI-1, and together these molecules serve as a central hub of
reactions that perpetuate a catastrophic cascade. Our
understanding of immune responses, coupled with lessons
from SARS-CoV-1 and recent research on SARS-CoV-2,
point to STAT1 and STAT3 as enticing drug targets because
they function upstream of the cytokine storm and throm-
bosis. Developing vaccines will take some time, and
attacking the downstream cytokine storm is difficult due to
its many targets. Hence, in the short term, the manipulation
of STAT1 and/or STAT3 may be the most practical strategy
for treating COVID-19. Fortunately, many therapeutic reg-
ulators of these STATs have been, or are being, developed.

The first consideration in treating SARS-CoV-2 infection
should be to preserve STAT1 function in its earliest stages.
However, patients may be asymptomatic or presymptomatic
for days while the virus replicates, spreads, and evades the
IFN response. If the virus has already compromised STAT1
when symptoms arise, then treatment should focus on pre-
venting the excessive activation of STAT3 that drives the
release of proinflammatory cytokines and chemokines. Care
must be taken to apply these therapeutic strategies in a stage-
appropriate manner, because some approaches that may help
in the earlier stages of the disease could be detrimental if
used in its later stages. In the following sections, we discuss
the potential use for COVID-19 treatment of existing drugs
that enhance STAT1 or inhibit STAT3 functions.

Problems could arise from this STAT-approach to
COVID-19 therapy. Chronic mucocutaneous candidiasis
(CMC) was present in 98% of patients with gain of function
(GOF) mutations in STAT1 in one study of 274 individuals,
and the few that did not have CMC, had invasive fungal or
bacterial infections. Generally, the immune profile was
relatively normal, but 82% had decreased Th17 cells [151].
STAT1 and STAT3 reciprocally regulate each other, and
consistently, STAT1 GOF patients have reduced levels of
STAT3 [152]. STAT3 IgE syndrome (STAT3-HIES) is a
rare autosomal dominant condition caused by loss of
function mutations in the STAT3 gene. Patients have
eczema, recurrent skin and respiratory tract infections, and
usually high levels of IgE [153]. These examples of genetic
defects are likely the most extreme consequences of
increased STAT1 or decreased STAT3 activities. It is
unknown if temporary treatment with STAT1 activators and
STAT3 inhibitors would be detrimental, but it is promising
that a high STAT1 to STAT3 ratio is advantageous in
cancer treatment [154].

Enhancement of STAT1 function

IFN-I

At the very onset of infection, SARS-CoV-2 infects a
minority of cells, making its invasion hard to detect. The

virus acts to delay antiviral responses while it hijacks the
cell’s functions for viral replication. If the infection is
detected early, then an effective strategy might be to use
IFN-I to activate STAT1 in neighboring uninfected cells. It
is proposed that the timing of IFN treatment is critical [30].
Early induction of IFN-I signaling protects the patients, but
delay in IFN administration not only fail to inhibit viral
replication, but also increase proinflammatory cytokine
production, leading to fatal pneumonia [30]. Since the upper
respiratory tract is the primary entry site for SARS-CoV-2,
mucosal treatments with IFN-I for prevention of COVID-19
is an ideal strategy. Meng et al. used IFN-I nasal drops
prophylactically applied to more than 500 high-risk medical
staff who were in direct contact with SARS-CoV-2-infected
patients. Remarkably, the use of the IFN-I nasal drops, with
thymosin-α1, an immune-stimulator, protected all of the
high-risk staff from COVID-19 pneumonia [155].

IFN-I inducers

The use of agents that induce IFN production is another
option for activating STAT1 in uninfected cells. Ampligen,
poly(I:C(12)U), is a synthetic dsRNA polymer that stimu-
lates IFN production [156]. Mice treated with Ampligen 16
h prior to lethal infection with SARS-CoV-1 were protected
against death, showed reduced virus titers in the lungs, and
exhibited significantly reduced lung disease scores and
weight loss [157]. Notably, because IFN-I inducers can be
administered prophylactically, the innate immune system
can theoretically be primed to respond to a SARS-CoV-2
attack by immediately activating STAT1. However, such
use of IFN inducers must be carefully monitored, because
these agents can exacerbate the disease in the later stages of
infection.

Histamine receptor-2 blocker (H-2 blocker)

Administration of the H-2 blocker famotidine to patients
hospitalized with COVID-19, but not initially in the ICU,
was associated with a twofold reduction in clinical dete-
rioration leading to intubation or death [158]. Computa-
tional modeling indicated that famotidine directly binds and
inhibits the SARS-CoV-2 processing enzyme NSP5 [158],
but this drug lacked a direct anti-SARS-CoV-2 effect
in vitro in Vero cells, and H-2-mediated antiviral effect is
suggested [159]. In vitro, histamine pretreatment of C57BL/
6 mouse splenocytes enhances STAT1 phosphorylation,
and an H-2 antagonist (but not an H-1 antagonist) can
augment STAT1 phosphorylation to a similar extent [160].
Famotidine may function as an H-2 receptor antagonist that
promotes STAT1 activation and IFN responses. Therefore,
early stage treatment with famotidine might significantly
decrease the mortality rate of COVID-19 patients.
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Ivermectin

Ivermectin displays broad-spectrum antiparasitic and antiviral
activities. Caly et al. reported that a single dose of ivermectin
reduced the amount of SARS-CoV-2 RNA by 5000-fold.
They speculated that ivermectin inhibits the KPNA/KPNB1-
mediated nuclear import of viral proteins [161]. Apart from its
possible role in blocking nuclear transport, Ivermectin may
promote a positive clinical outcome by inhibiting STAT3 and
IL-6 production. Ivermectin inhibits p21 activated kinase 1
(PAK1), a serine/threonine kinase with oncogenic activity,
which then compromises STAT3 activity. In this case, iver-
mectin suppresses Akt/mTOR signaling by promoting the
ubiquitination-mediated degradation of PAK1 [162]. In
addition, PAK1 physically binds to both JAK1 and STAT3,
and the resultant PAK1/STAT3 complex activates IL-6 gene
transcription [163]. When ivermectin inhibits JAK/
STAT3 signaling by promoting PAK1 degradation, STAT3
activity is compromised and IL-6 production is decreased.

Inhibition of STAT3 function

There are a number of approved drugs, or drugs in cancer
development, that inhibit STAT3 directly. STAT3 antago-
nists have been described comprehensively in recent
reviews by Qin et al. [164] and Bharadwaj et al. [21]. A
brief description of some prominent candidates follows.

Napabucasin

Napabucasin was initially identified by its ability to inhibit
the properties of cancer cell stemness and STAT3 activity in
gel retardation assays [21]. A Phase III clinical trial invol-
ving napabucasin in combination with other standard che-
motherapeutic agents is currently underway for several
advanced malignancies [21]. In rectal cancer, napabucasin
reduced not only pSTAT3 levels but also angiogenesis
through a ROS-mediated effect [165].

Danvatirsen

Another promising anti-STAT3 agent is the 16-mer anti-
sense oligonucleotide AZD9150 (danvatirsen), which tar-
gets the 3′UTR of the STAT3 gene and inhibits its
transcription [166]. A Phase II trial of danvatirsen plus anti-
PD-L1 monoclonal antibody in patients with head-and-neck
squamous cell carcinoma is currently underway, with
encouraging results thus far [21].

Metformin

Metformin is a first-line oral antidiabetic drug that has been
used to treat type 2 diabetic patients for over 60 years.

Metformin inhibits STAT3 by specifically reducing its
phosphorylation at Tyr705 and Ser727 [167]. In addition,
metformin prevents both venous and arterial thrombosis by
inhibiting platelet activation and extracellular mitochondrial
DNA (mtDNA) release. mtDNA induces platelet activation
through a DC-SIGN-dependent pathway [168]. Despite
metformin’s apparent utility in reducing STAT3 activation
and thrombosis, a major concern is that the dose that elicits
these activities is very high (200–400 mg/kg/day).

PIAS3 activators

The regulation of endogenous inhibitors is another way to
control aberrantly activated STAT3. PIAS3 is an ideal target
because of its potency to inhibit the activated STAT3 [169].
Specifically, curcumin and resveratrol have been shown to
suppress constitutive activation of STAT3, through upre-
gulation of PIAS3 [170, 171] Although widely used for
many indications, curcumin and resveratrol have not been
shown to be conclusively effective in any randomized,
placebo-controlled, clinical trial.

JAK inhibitors

The occurrence of a cytokine storm in COVID-19 (IL-2, IL-
6, IL-7, IL-10, G-CSF, IFNγ, MIP1α, and TNF-α
[116, 117], which triggers cytokine receptors coupled to
the JAK-STAT pathway, suggests that inhibition of the
JAK pathway may be an appropriate therapeutic strategy for
the management of COVID-19. Although the JAK pathway
affects many STATs, perhaps the inhibition of the JAK
pathway may lead to the therapeutically favorable effect of
quenching cytokine storm via STAT3 inhibition. The
available JAK1/2 inhibitors [21] could be studied for their
effects in COVID-19. However, as JAK inhibitors also
inhibit STAT1 activation, the application of JAK inhibitors
in COVID-19 cases needs careful consideration.

EGFR signaling inhibitors as an IFN-I potentiator

As discussed earlier and shown in Fig. 3, acute lung injury
and/or the loss of functional STAT1 can lead to the upre-
gulation of EGFR that may cause the constitutive activation
of STAT3. Therefore, it is reasonable to assume that tar-
geting EGFR signaling is an attractive strategy for COVID-
19 treatment. A promising candidate is erlotinib. Lupberger
et al. reported the combination of erlotinib and IFN-I
resulted in a highly synergistic antiviral response against
hepatitis C virus. Furthermore, erlotinib reduced IFN-I-
induced STAT3 activity by induction of SOCS3 expression
[63]. Very recently, the remarkable inhibition of SARS-
CoV-2 replication by several growth factor signaling inhi-
bitors was reported [172]. These include lonafarnib (RAS
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inhibitor), omipalisib (PI3K inhibitor), pictilisib (PI3K
inhibitor), RO5126766 (RAF and MEK inhibitor), sorafenib
(RAF inhibitor, STAT3 inhibitor [62]), because Ras/Raf/
MAPK pathway [173] and PI3K pathway [174] are also
involved in EGFR-mediated STAT3 activation, these inhi-
bitors can possibly synergistically potentiate IFN-I’s anti-
SARS-CoV-2 activity.

PAI-1 inhibitors and TLR4 inhibitors

As noted above, PAI-1 is intimately involved in the
pathogenesis of COVID-19, and its inhibition may be a key
point at which to treat the disease once the escalating cycle
between PAI-1 and STAT3 has been established. Unfortu-
nately, no FDA-approved PAI-1 inhibitor is currently
available. PAI-1’s labile structure appears to make it a
difficult target for the development of small-molecule
inhibitors [175]. Alternatively, therapeutically targeting
TLR4, PAI-1’s binding partner, may be equally effective.
TLR4 has already attracted keen interest as a therapeutic
target for sepsis cases. Although the molecular mechanisms
have yet to be clarified, it is worth investigating whether
PAI-1/TLR4 binding can be inhibited by the several TLR4
antagonists in development, or by approved drugs with anti-
TLR4 activity. One TLR4 inhibitor, Eritoran, is now in
clinical trials to treat ARDS in COVID-19 [176].

Concluding remarks

The SARS-CoV-2 virus has evolved multiple tools to escape
immune detection and destruction, and thus has become the
most formidable virus in over 100 years. Our survey of the
current literature reveals that severe cases of COVID-19 are
commonly dependent on the over-stimulation of the STAT3/
PAI-1 signaling network. We believe that this shared node
may be the Achilles’ Heel of COVID-19 and a vulnerable
point of the disease. We therefore urge the immediate
investigation and application of STAT therapy as a treatment
for this perplexing disorder, and hope that our article pro-
vides a sound foundation for doing so.

A final note: during our analysis of the literature on
COVID-19 and related topics, we noticed many similarities
in the pathogenesis of COVID-19 and cancers. In fact, both
STAT3 and PAI-1 have been separately implicated in
cancer development and are the subjects of extensive clin-
ical investigations. A shared node of STAT3 and PAI-1
activities may also function in some pSTAT3-positive
cancers, creating a cascade of harmful responses compar-
able to those of COVID-19. Any STAT-related agents
developed to treat COVID-19 may therefore eventually
enjoy much wider clinical use.

Facts

● Specific SARS-CoV proteins inhibit the functions of
STAT1 and IFNs.

● In the absence of STAT1, STAT3 is activated in a
compensatory manner.

● STAT3 upregulates PAI-1 through five signaling path-
ways mediated by miR-34a, CRP, p53, transforming
growth factor-β (TGF-), or hyaluronan fragments.

● PAI-1 is upregulated in aged individuals and in those
suffering from hypertension, obesity, or diabetes, which
are risk factors for COVID-19.

● In severe cases of COVID-19, there is a common
escalating cycle of STAT3 and PAI-1 activation that is
shared among diverse disease manifestations and leads
to catastrophic consequences.

Open questions

● Is IFN production different between asymptomatic
carriers, and patients with less or more severe cases of
COVID-19?

● Is IFN production different between people infected
with SARS-CoV-2, SARS-CoV-1, MERS coronavirus,
or other coronaviruses?

● Is STAT3 activated in SARS-CoV-2-infected tissues?
● Will prophylactic activation of STAT1 protect against

the severe symptoms of COVID-19?
● Will inhibition of the STAT3/PAI-1 axis decrease the

severities of the cytokine storm and thrombosis/
coagulopathy in COVID-19?

● Will inhibition of EGFR signaling potentiate the
antiviral activity of IFN-I against SARS-CoV-2?

● Will inhibition of EGFR signaling ameliorate the disease
severity?

● Are genetic polymorphisms of STAT1, STAT3, PAI-1,
HA, or EGFR related to the severity of COVID-19?

● How does the STAT3/PAI-1 axis contribute to other
disease conditions, including cancer?
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