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Abstract: Starting from the Luneberg lens index profile, we apply the
transformation design method to the problem of far-field imaging of (in-
finitely) distant objects. This analysis yields a single element lens with
a planar image surface, zero aberrations of all orders, zero F-number
and (in some cases) constant aperture for all angles of incidence.

1 Introduction

Transformation design — the use of coordinate transforms to design material objects — has
proven useful for obtaining specifications that will implement interesting and useful elec-
tromagnetic and acoustic devices. As the required material specifications can be quite
complex it would be difficult to find them by other means. However, with transforma-
tion design, once the technique is understood, one can proceed directly (albeit carefully)
from concept to material specification. Specifications for invisibility cloaks[1, 2, 3], near-
field focusing devices[4], beam steering devices[5], and reflecting surfaces[6] have all been
found with this technique. Though there have been advantageous designs for near-field
focusing using the transformation method (and significant recent designs that do not
use this method[7, 8]), the impact thus far on far-field imaging has been minimal. The
reason for this is likely that straightforward application of the transformation method
to free space, results in devices that affect no permanent change to fields outside the
transformation media region. Since all practical devices are of finite size, manipulation
of far-fields requires some extra considerations. One method to accomplish this involves
the handling of discontinuities in the coordinate transformation[5]. Another method,
the one employed here, is to transform a device, that already manipulates far-fields in
some useful way, to improve or alter this functionality. Our starting point will be the
Luneberg lens.
It is worth noting that the mathematical tools required for transformation design

have been available for many decades[9]. What makes the method relevant now is the
advancement of the field of metamaterials. Metamaterial technology allows one to im-
plement the resulting complex material specifications which are often anisotropic and
inhomogenous (with specific functional forms). To date, only one transformation based
design has been built and tested[10], but I anticipate that advantageous transforma-
tion designs will provide additional incentive for further development of this enabling
technology.
The Luneberg lens is far from being a new design[11]. It is sphere composed of an

isotropic medium with refractive index functional form

nL (r) =

r
2− r2

a2
(1)

The index is unity on the surface of the bounding sphere of radius a, and
√
2 at its

center. It possess quite remarkable focusing properties. In the geometric limit, it can
focus parallel rays (i.e. those from an infinitely distant source) from any direction to a
point on the opposite side of the sphere. Thus a spherical surface at infinity is aplanatic
to the bounding spherical surface of the lens. Despite these remarkable and nearly ideal
focusing properties, the Luneberg lens is rarely used. There are two reasons for this. One



Fig. 1. The Luneberg lens. Paths of oblique rays (blue lines) from an infinitely distant
source are focused onto the spherical surface of the lens opposite the source. The
gray grid lines indicate the flat, Cartesian coordinates used in the untransformed
domain.

is the need for precise control of the index profile which has large variations relative to
those available with common glass GRIN technology. The second is that the image
surface is spherical, requiring a spherical focal-plane detector-array for parallel image
acquisition (i.e. acquisition without mechanical scanning). Planar focal-plane arrays or
imaging chips represent a highly developed technology which leverages very mature
planar lithographic processing techniques. This technology cannot be easily adapted
for use with non-planar surfaces.
The essential idea presented in this article is to transform the Luneberg lens’ spherical

image surface into a planar one without compromising its aplanicity. The resulting
transformation-modified Luneberg lens can have a pair of planar aplanatic surfaces, i.e.
the lens produces a planar image with zero aberrations of all orders. Additionally, since
the image can still form on the (now flat) back surface of the lens, the back focal length
is zero as is the F-number defined from this focal length.

2 Transformation Design

As described elsewhere[12], the material properties that give the same electromagnetic
behavior as a distorted space, are found from the transformation properties of the elec-
tromagnetic material property tensors. The electric permittivity, ε (or the magnetic



permeability , μ), transforms as a second rank tensor-density of unit weight[9].
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where Λi
0

i is the transformation operator. When the bases denoted by the indices i and
i0 are coordinate bases, the transformation operator derives quite simply as
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from the functions describing the coordinate transformation
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However, it is common practice to write the desired transformation in terms of spherical
or cylindrical coordinates and use the spherical unit basis (or the cylindrical unit basis)
to describe the material properties. These unit bases are not directly derivable from their
respective coordinate transformation functions[13]. Thus additional steps are needed to
calculate the desired transformation operator. In this case the transformation operator
can be written

Λi
0

i
= Λi

0

i0Λ
i0

iΛ
i
i

(5)

where the hat on the indices denotes a unit basis. The right-most operator, Λi
i
, trans-

forms geometric objects from a unit basis, bi, to a coordinate basis, i. The next operator,
Λi

0

i , transforms from one coordinate basis, i, to another, i0, (and can be found from
the matrix of partials of the coordinate transformation functions (4)). The last (or left-
most) operator, Λi

0

i0 , transforms from the resulting coordinate basis, i0, back to a unit
basis, bi0. To determine the transformation operators involving unit bases, one can use
the relationship (valid for both coordinate and non-coordinate bases) between the basis
vectors

−→e i0 = Λ
i
i0
−→e i (6)

From this one finds
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In matrix form the Kronecker deltas will not be needed for consistency of contra- and
covariant indices. ³
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For example, the functional relationship between Cartesian and spherical coordinates is

x = r sin θ cosφ (9a)

y = r sin θ sinφ (9b)

z = r cos θ (9c)

so that using (3) the transformation operator from the spherical coordinate basis to the
Cartesian basis is

¡
Λii0

¢
=

⎛⎝ sin θ cosφ r cos θ cosφ −r sin θ sinφ
sin θ sinφ r cos θ sinφ r sin θ cosφ
cos θ −r sin θ 0

⎞⎠ (10)



and from (6) the spherical coordinate basis vectors are
−→er = sin θ cosφ−→e x + sin θ sinφ

−→e y + cos θ
−→e z =

−→e r (11a)
−→e θ = r cos θ cosφ−→e x + r cos θ sinφ−→e y − r sin θ−→e z = r−→e θ (11b)
−→e φ = −r sin θ sinφ−→e x + r sin θ cosφ−→e y = r sin θ−→e φ (11c)

and their relationship to the traditional unit basis is as shown on the right hand side.
Then using (8) the relevant transformation matrices are given by³
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Similarly, these transformation matrices for cylindrical coordinates are³
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Note the consistent use of primed and un-primed coordinates. In (5), one first transforms
from the un-primed unit to the coordinate basis, and last transforms from the primed
coordinate to primed unit basis.

As an example of material property calculation, consider the spherical cloak coorinate
transformation

r0 = a+
b− a

b
r (14a)

θ0 = θ (14b)

φ0 = φ (14c)

for which the transformation operator between the coordinate bases is³
Λi

0

i

´
=

⎛⎝ b−a
b 0 0
0 1 0
0 0 1

⎞⎠ (15)

and the total transformation operator is

³
Λi

0

i

´
=

⎛⎝ b−a
b 0 0

0 r0

r 0

0 0 r0 sin θ0

r sin θ

⎞⎠ =

⎛⎝ b−a
b 0 0

0 r0

r 0

0 0 r0

r

⎞⎠ (16)

From (2), and using free space as the initial material (which is represented by the
identity matrix in the spherical unit basis, but not in the spherical coordinate basis),
and expressing solely in terms of the primed coordinates, one obtains the well known
result[1]. ³
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3 Transforming the Luneberg lens

3.1 Simple Case

There are an infinite number of ways to flatten the image surface of a Luneberg lens.
Perhaps the simplest is

ρ0 = ρ (18a)

φ0 = φ (18b)

z0 =
1

2
(z + za) (18c)

written in standard cylindrical coordinates. These transformation functions apply on
the domain of the un-flattened Luneberg sphere,

p
ρ2 + z2 < a, where a is the radius

of the sphere, and za is defined by

za =
p
a2 − ρ2 (19)

No attempt is made to maintain continuity of the coordinate transformation at z0 = 0
since it is assumed that an opaque focal-plane array-detector will be located at that posi-
tion, and the fields will not penetrate beyond that point. The coordinate transformation
matrix is given by ³
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and in this case, where the cylindrical radial coordinate is un-transformed, the total
transformation matrix is the same expression. Using (2) and combining with (13) the
material properties are
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where I have assumed the Luneberg index profile is comprised of equal values of the
permittivity and the permeability

εij = μij = nL (r) δ
ij (22)

The un-primed spherical radial coordinate, r, is expressed in terms of the primed cylin-
drical coordinates as
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p
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q
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For implementation using metamaterials, it is helpful to express (21) in a principle (i.e.
diagonalizing) basis. An orthogonal diagonalizing basis can always be found since (2)
always provides Hermitian matrices. Using standard techniques one finds
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Fig. 2. Simple transformation of Luneberg lens, where the cylindrical radial coordi-
nate is untransformed. (A) Paths of oblique rays (blue lines) from a distant source
are focused onto the flat image plane. The grid (gray lines) is the same as that shown
in Fig. 1, but transformed according to (18). (B) Principle elements of the mate-
rial property tensors represented in the three color channels, red, green and blue.
Isotropic media would be represented by gray scale regions where the three color
channels would have equal values. The red channel (which can be associated with
the cylindrical radial component in the untransformed coordinate system) saturates
at the lens edge since that material component is divergent there. (C) The three
principle directions of the material property tensors. The green channel direction is
out of the page and represents the φ component which is untransformed.



where

η =
5a2 − 4ρ02 − a

p
9a2 − 8ρ02

4 (a2 − ρ02)
(25)

The function η ranges from plus one half to zero as ρ0 ranges from zero to a. This of
course means that the first component of the material property tensors, ε1

00100 = μ1
00100 ,

diverges at the circumference of the lens. However, it does so sharply and near the
boundary, so that the most of the aperture can be correctly implemented with material
property values less than ten. The diagonal basis vectors are

−→e 100 → (−1/γ, 0, 1) /
p
1/γ2 + 1 (26a)

−→e 200 → (0, 1, 0) (26b)
−→e 300 → (γ, 0, 1) /

p
γ2 + 1 (26c)
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3.2 Distortion Free

While the previous transformation results in a lens that does not introduce any de-
focusing geometric aberrations, the lens does contribute non-lossy distortions such as
"barrel" distortion. One can in principle correct these types of distortions in post
processing of the image file, but this results in sensor pixel data being distributed in a
non-uniform way over the corrected image, and in any case, the post processing trans-
formation can be built into the lens, resulting in a completely geometric aberration free
lens. In removing these distortions, several other changes are introduced.
Unlike the lens described above, which has a field-of-view approaching 180 degrees

(i.e. 2π steradians of solid angle), the field-of-view must be restricted. For a zero F-
number lens, the field stop and the aperture stop are the same, and restricted to be less
than (or equal to) the lens diameter, which is finite. Clearly, an infiniteobject (filling a
180 degree field-of-view) cannot be mapped into a finite field stop without distortion.
The transformation (and all those like it with fields of view less than 180 degrees)

will result in material properties that are everywhere finite.
If the field-of-view is set to less than 90 degrees, the lens will have constant aperture of

area, πa2, for all incident angles within the field-of-view. In contrast, the lens described
above presents an aperture of area πa2 for direct incidence, but only half that for edge-
on incidence. All traditional lenses that use only partial spherical surfaces also have
aperture reduction off axis. Constant aperture, and thus constant and undiminished
light collection capability is a useful feature.
The proposed distortion free transformation is
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where ψ is the half angle of the field-of-view cone. These functions apply on the domain
where ρ < a sinψ. (The identity transformation is used elsewhere in the spherical domainp
ρ2 + z2 < a.) This transformation remaps a portion of the spherical surface onto a flat

truncation of the sphere in such a way that the resulting lens focuses flat object planes
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Fig. 3. Distortion free transformation of Luneberg lens with 90 degree field of view
(i.e. ψ = π/4). (A) Paths of oblique rays (blue lines) from a distant source are
focused onto the flat image plane. The grid (gray lines) is the same as that shown
in Fig. 1, but transformed according to(28). (B) Principle elements of the mater-
ial property tensors represented in the three color channels, red, green and blue.
Isotropic media are represented by gray scale regions where the three color channels
have equal values. There is no saturation in this figure. The principle values are
everywhere between 0.39 and 2.64. (C) The three principle directions of the mater-
ial property tensors. The green channel direction is out of the page and represents
the φ component which is untransformed.



without distortion onto the resulting flat image plane. This image plane remapping can
be found by setting z = −za (i.e. the back surface of the sphere) in (28a) yielding

ρ0 =
a cosψ

za
ρ (29)

where ρ is the cylindrical radius of a point on the spherical section and ρ0 is the cylin-
drical radius of the corresponding point on the truncation flat. The remaining details
of the transformation are set by requiring it to be the identity when z = za (i.e. the
front surface of the sphere), and a linear combination of the the identity and (29) in the
intervening volume.
There is no point (nor sufficient space) to show the calculation leading to the diagonal

material property tensors for this transformation. In any case, analytical inversion of
(28) does not appear to be feasible. As this is required to find the material properties in
terms of the coordinates applicable to material space, a complete analytical expression
may not be possible. To generate the data for Fig. (3), numerical inversion was used.
Fig. (3) shows the ray trajectories and material properties for a lens with ψ = π/4 (i.e.
a field-of-view of 90 degrees).

4 Conclusion

With its aplanatic surfaces the Luneberg lens is an excellent starting point for transfor-
mation design enhancements. Enabling the use of high performance off-the-shelf detector
arrays, transforming to a flat image surface makes the Luneberg lens much more practi-
cal. Such a lens, with its complete lack of image aberration, zero F-number and constant
aperture is attractive for any application where a single element, high performance and
extremely compact far-field imaging system is desired. However, even with recent ad-
vances in the field of metamaterials, it will be a challenge to implement. And like all
metamaterial devices, will be subject to limited bandwidth and non-negligable absorp-
tion. However, perhaps this and other advantageous transformation designs will help to
drive progress in these areas.
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