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Abstract

An abstract framework for structured arguments is presented that instantiates Dung’s (1995) abstract ar-
gumentation frameworks. Arguments are defined as inference trees formed by applying two kinds of
inference rules: strict and defeasible rules. This naturally leads to three ways of attacking an argument:
attacking a premise, attacking a conclusion and attacking an inference. To resolve such attacks, pref-
erences may be used, which leads to three corresponding kinds of defeat: undermining, rebutting and
undercutting defeat. The nature of the inference rules, the structure of the logical language on which
they operate and the origin of the preferences are, apart from some basic assumptions, left unspecified.

The resulting framework integrates work of Pollock, Vreeswijk and others on the structure of ar-
guments and the nature of defeat, and extends it in several respects. Various rationality postulates are
proven to be satisfied by the framework, and several existing approaches are proven to be a special case
of the framework, including assumption-based argumentation and DefLog.

1 Introduction
In 1995 Phan Minh Dung introduced an abstract formalism for argumentation-based inference (Dung,
1995), which assumes as input nothing else but a set (of arguments) ordered by a binary relation (of at-
tack). Although he thus fully abstracted from the structure of arguments and the nature of the attack
relation, he was still able to develop an extremely interesting theory. His article was a breakthrough in
three ways: it provided a general and intuitive semantics for the consequence notions of argumentation
logics (and for nonmonotonic logics in general); it made a precise comparison possible between different
systems (by translating them into his abstract format); and it made a general study of formal properties of
systems possible, which are inherited by instantiations of his framework. In consequence, Dung’s work has
given an enormous boost to research in computational argumentation. Yet it has also been criticised for not
specifying the structure of arguments and the nature of the attack relation, which makes it less suitable for
modelling specific argumentation problems. I believe that such criticism fails to appreciate the nature of
Dung’s formalism. It is best seen not as a formalism for directly representing argumentation-based infer-
ence problems but as a tool for analysing particular argumentation systems and for developing a metatheory
of such systems. As such it has been very successful: differences between particular systems can be char-
acterised in terms of some simple notions, and formal results established for the framework are inherited
by its instantiations. This was already illustrated by Dung (1995) with reconstructions of Pollock’s (1987)
system, various logic-programming semantics and Reiter’s (1980) default logic in his formalism.

Nevertheless, it is true that when actual argumentation-based inference has to be modelled, Dung’s
framework is by itself usually too abstract and instead an instantiated version of his approach should be
used. However, here too abstraction is still possible and worthwhile. The aim of this paper is to instantiate
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Verheij and Gerard Vreeswijk gave useful feedback on earlier versions of this paper. Finally, I thank my former collaborators in the
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Dung’s abstract approach with a general account of the structure of arguments and the nature of the defeat
relation1. The framework defines arguments as inference trees formed by applying two kinds of inference
rules, strict and defeasible rules. This naturally leads to three ways of attacking an argument: attacking a
premise, attacking a conclusion and attacking an inference. To resolve such attacks, preferences may be
used, which leads to three corresponding kinds of defeat: undermining, rebutting and undercutting defeat.
To characterise them, some minimal assumptions on the logical object language must be made, namely that
certain well-formed formulas are a contrary or contradictory of certain other well-formed formulas. Apart
from this the framework is still abstract: it applies to any set of inference rules, as long as it is divided into
strict and defeasible ones, and to any logical language with a contrary relation defined over it.

The choice for tree-structured arguments based on two types of inference rules arguably is very natural
both in light of logic and argumentation theory and when looking at argumentation as it occurs in human
thinking and dialogue. The notion of arguments as trees of inferences is very common in standard logic and
in argumentation theory, and is the basis of many software tools for argument visualisation. Moreover, in
actual argumentation humans often express their arguments as claims supported with one or more premises,
which can in turn be supported with further premises, and so on. Finally, as will be further explained in
Section 4, the setup with general defeasible inference rules is very suited for modelling reasoning with
argumentation schemes (Walton et al., 2008).

The account offered in this paper is not completely new. In fact, a rhetorical aim of the paper is to
counter the idea that the computational study of argumentation started with Dung’s abstract approach and
that only then researchers made it more concrete with accounts of the structure of arguments and the nature
of defeat. As a matter of fact, much work on these two issues was already done or going on at the time
when Dung wrote his paper, and some of this work is still state-of the art. For instance, both John Pollock
(1987; 1994) and Gerard Vreeswijk (1993; 1997) did important work on the structure of arguments, while
Pollock (1974; 1987) introduced an important distinction between two kinds of defeat, namely rebutting
defeat (attack on a conclusion) and undercutting defeat (attack on an inference rule). One aim of the present
paper is to profit from, integrate and build on this and other important work as much as possible. As such
this paper is a further development of the integration attempt that was undertaken in the European ASPIC
project (Amgoud et al., 2006). In this project, Vreeswijk’s formalisation of the structure of arguments was
combined with Pollock’s definitions of rebutting and undercutting defeat in a way that also used insights
from other work. The result was a characterisation of a set of tree-structured arguments ordered with a
binary defeat relation, so that an instantiation of Dung’s abstract approach was achieved and any of Dung’s
semantics could be used to compute the acceptability status of the structured arguments.

The ASPIC framework was developed by Leila Amgoud, Martin Caminada, Claudette Cayrol, Marie-
Christine Lagasquie-Schieux, myself and Gerard Vreeswijk, and was first reported in a European project
deliverable (Amgoud et al., 2006). The added expressiveness compared to Dung’s abstract formalism gave
rise to further work by Caminada and Amgoud (2007) on rationality postulates for systems instantiating the
ASPIC framework. The aim of this work was to propose the idea of rationality postulates and to criticise
some specific rule-based argumentation systems for failing to satisfy them. For this aim only a simplified
version of the ASPIC framework was needed, without preferences and without the notion of a knowledge
base. Moreover, the examples discussed by Caminada and Amgoud (2007) were all with domain-specific
inference rules instead of with general inference patterns, which in effect somewhat obscured the potential
of the framework to be a general account of structured argumentation.

By contrast, the present paper aims to present the ASPIC framework as a general abstract model of
argumentation with structured arguments.2 To achieve this aim, the ASPIC framework will be extended
and generalised in four respects.

1. A third way of argument attack, namely premise attack or ‘undermining’ will be added, in a way
inspired by Vreeswijk’s (1993, Ch. 8) combination of “plausible” and “defeasible” argumentation.

1For reasons explained in Section 3 this paper will rename Dung’s attack relations to ‘defeat’ relations and reserve the term ‘attack’
for something else.

2In this paper the term ‘framework’ will be used to denote the general model, to highlight that it can be instantiated in various ways
(such instantiations will in turn be called argumentation systems). This contrasts with Dung’s (1995) use of the term ‘argumentation
framework’, which denotes a specific set of arguments with a specific attack relation. In the present paper such specific inputs to an
argumentation system will be called argumentation theories.
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Apart from the naturalness of having all three kinds of attack in a general framework for argumen-
tation, this will make it easier to formalise argument schemes in the framework and it will make it
possible to regard existing systems with premise attack as special cases of the framework.

2. The three notions of attack will be generalised from the notion of contradiction between formulas ϕ
and ¬ϕ to an abstract relation of contrariness between formulas which is not necessarily symmetric.
This idea is taken from Bondarenko et al. (1997) and Verheij (2003) and will help in showing that
their systems are a special case of the present framework.

3. Four types of premises will be distinguished, inspired by a similar distinction of Gordon et al. (2007).

4. Attack relations will be partly resolved with preference orderings on arguments, defeasible rules and
the knowledge base (although Amgoud et al. 2006 also has preferences, the results of Caminada and
Amgoud 2007 do not cover them).

It will then be investigated to what extent the results of Caminada and Amgoud (2007) on rationality pos-
tulates generalise to the thus extended ASPIC framework. The final aim of this paper is to compare the
resulting framework to recent related work. It will turn out that assumption-based argumentation (Bon-
darenko et al., 1997; Dung et al., 2006, 2007), DefLog (Verheij, 2003) and Amgoud and Cayrol (2002)’s
version of deductive argumentation are special cases of this paper’s version of the ASPIC framework.

2 Dung’s abstract argumentation frameworks
First without explanation the basic concepts and insights of Dung’s abstract argumentation approach are
listed. For a state-of the art introduction see Baroni and Giacomin (2009).

Definition 2.1 [Abstract argumentation framework] An abstract argumentation framework (AF) is a pair
〈A, Def 〉. A is a set arguments and Def ⊆ A × A is a binary relation of defeat. We say that an argument
A defeats an argument B iff (A,B) ∈ Def .

Definition 2.2 [Conflict-free, Defence] Let B ⊆ A.

• A set B is conflict-free iff there exist no Ai, Aj in B such that Ai defeats Aj .

• A set B defends an argument Ai iff for each argument Aj ∈ A, if Aj defeats Ai, then there exists Ak

in B such that Ak defeats Aj .

Definition 2.3 [Acceptability semantics] Let B be a conflict-free set of arguments, and let F : 2A 7→ 2A

be a function such that F(B) = {A | B defends A}.

• B is admissible iff B ⊆ F(B).

• B is a complete extension iff B = F(B).

• B is a grounded extension iff it is the smallest (w.r.t. set-inclusion) complete extension.

• B is a preferred extension iff it is a maximal (w.r.t. set-inclusion) complete extension (or, equiva-
lently, if B is a maximal (w.r.t. set inclusion) admissible set).

• B is a stable extension iff it is a preferred extension that defeats all arguments in A\B.

Note that this implies that each grounded, preferred or stable extension of an AF is also a complete exten-
sion of that AF. Some other known results are that

• the grounded extension is indeed unique but all other semantics allow for multiple extensions of an
AF;

• each AF has a grounded and at least one preferred and complete extension, but there are AFs without
stable extensions;

• the grounded extension of an AF is contained in all other extensions of that AF.
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3 Argumentation systems with structured arguments
In this section the arguments of Dung’s argumentation frameworks are given structure and its defeat relation
is defined in terms of the structure of arguments plus external preference information. Apart from this,
the resulting formalism is still as abstract as possible, allowing for different logical languages, different
sets of inference rules for building arguments and different preference orderings. The framework uses
Vreeswijk’s (1993; 1997) definition of the structure of arguments and then adds Pollock’s (1987; 1994)
distinction between rebutting and undercutting attack, as well as a variant of the notion of premise attack
proposed by Vreeswijk (1993, Ch. 8). These notions are then generalised to languages with arbitrary
relations of contrariness and contradiction between well-formed formulas. Then the three notions of attack
are combined into a notion of defeat in a way inspired by Vreeswijk (1993, Ch. 8) and Prakken and Sartor
(1997). It is this combination that makes it possible to regard the system as an instantiation of Dung’s
abstract framework.

The resulting framework unifies two ways to capture the defeasibility of reasoning. Some, e.g. Bon-
darenko et al. (1997); Amgoud and Cayrol (2002); Verheij (2003); Besnard and Hunter (2008), locate the
defeasibility of arguments in the uncertainty of their premises, so that arguments can only be attacked on
their premises. Others, e.g. Pollock (1994); Vreeswijk (1997), instead locate the defeasibility of arguments
in the riskiness of their inference rules: in these logics inference rules are of two kinds, being either deduc-
tive or defeasible, and arguments can only be attacked on their applications of defeasible inference rules.
Typically, in this approach inconsistency of the knowledge base makes the system collapse. Vreeswijk
(1993, Ch. 8) called these two approaches plausible and defeasible reasoning: he described plausible rea-
soning as sound (i.e, deductive) reasoning on an uncertain basis, and defeasible reasoning as unsound (but
still rational) reasoning on a solid basis. In his chapter 8, Vreeswijk attempted to combine both forms
of reasoning in a single formalism, but since then most formal accounts of argumentation have modelled
either only plausible or only defeasible reasoning.

3.1 Basic definitions
The basic notion of the present framework is that of an argumentation system, which extends the familiar
notion of a proof system with a distinction between strict and defeasible inference rules 3 and a preference
ordering on the defeasible inference rules.

Definition 3.1 [Argumentation system] An argumentation system is a tuple AS = (L,−,R,≤) where

• L is a logical language,

• − is a contrariness function from L to 2L,

• R = Rs ∪Rd is a set of strict (Rs) and defeasible (Rd) inference rules such that Rs ∩Rd = ∅,

• ≤ is a partial preorder on Rd.

Amgoud et al. (2006) and Caminada and Amgoud (2007) assume that arguments are expressed in a
logical language that is left unspecified except that it is closed under classical negation. In this paper this
assumption will be generalised in two ways. Firstly, non-symmetric conflict relations between formulas
will be allowed, such as the contrariness relation of Bondarenko et al. (1997) (which captures, for instance,
negation as failure) and its inverse, the dialectical negation of Verheij (2003) (which means ‘it is defeated
that’). Secondly, in addition to classical negation, other symmetric conflict relations will be allowed, so
that, for instance, formulas like ‘bachelor’ and ‘married’ can, if desired, be declared contradictory without
having to reason with an axiom ¬(bachelor ∧ married).

Definition 3.2 [Logical language] Let L, a set, be a logical language and − a contrariness function from L
to 2L. If ϕ ∈ ψ then if ψ 6∈ ϕ then ϕ is called a contrary of ψ, otherwise ϕ and ψ are called contradictory.
The latter case is denoted by ϕ = −ψ (i.e., ϕ ∈ ψ and ψ ∈ ϕ).

3Pollock (1987, 1994) calls these ‘conclusive’ and ‘prima facie reasons’.
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In examples with classical negation ¬ it will be assumed that ¬ϕ ∈ ϕ and ϕ ∈ ¬ϕ.
Now that the notion of negation has been generalised, the same must be done with the notion of con-

sistency.

Definition 3.3 [consistent set] Let P ⊆ L. P is consistent iff @ ψ, ϕ ∈ P such that ψ ∈ ϕ, otherwise it is
inconsistent.

Note that this is a weak form of consistency, determined by whether a set contains contrary or contradictory
formulas. Caminada and Amgoud (2007) call this direct consistency and they call consistency of the closure
of a set under strict inference indirect consistency.

Arguments are built by applying inference rules to subsets of L. Inference rules are either strict or
defeasible. This distinction goes back to Pollock (1987); Lin and Shoham (1989) and Vreeswijk (1993), as
does the idea of abstracting from their nature.

Definition 3.4 [Strict and defeasible rules] Let ϕ1, . . ., ϕn, ϕ be elements of L.

• A strict rule is of the form ϕ1, . . . , ϕn → ϕ, informally meaning that if ϕ1, . . . , ϕn hold, then without
exception it holds that ϕ.

• A defeasible rule is of the form ϕ1, . . . , ϕn ⇒ ϕ, informally meaning that if ϕ1, . . . , ϕn hold, then
it presumably holds that ϕ.

ϕ1, . . . , ϕn are called the antecedents of the rule and ϕ its consequent.

As usual in logic, inference rules will often be specified by schemes in which a rule’s antecedents and
consequent are metavariables ranging over L.

Arguments are constructed from a knowledge base which, inspired by Gordon et al. (2007), is assumed
to contain four kinds of formulas.

Definition 3.5 [Knowledge bases] A knowledge base in an argumentation system (L,−,R,≤) is a pair
(K,≤′) where K ⊆ L and ≤′ is a partial preorder on K \Kn. Here K = Kn ∪ Kp ∪ Ka ∪ Ki where these
subsets of K are disjoint and

• Kn is a set of (necessary) axioms. Intuitively, arguments cannot be attacked on their axiom premises.

• Kp is a set of ordinary premises. Intuitively, arguments can be attacked on their ordinary premises,
and whether this results in defeat must be determined by comparing the attacker and the attacked
premise (in a way specified below).

• Ka is a set of assumptions. Intuitively, arguments can be attacked on their assumptions, where these
attacks always succeed.

• Ki is a set of issues. Intuitively, arguments of which the premises include an issue are never accept-
able: an issue must always be backed with a further argument.

(Gordon et al. 2007 call ordinary premises “assumptions”, they regard assumptions as the contradictories
of “exceptions” and they call issues “ordinary premises”. Their counterpart to axioms is “accepted” and
“rejected” statements.) As explained by Gordon et al. (2007), the category of issue premises is useful if an
argumentation system is embedded in a dialogical context, defining the acceptability status of arguments
relative to a stage in a dialogue. For example, in legal proceedings legal claims that are not backed by
factual evidence usually do not stand: for instance, an argument ‘we have a contract by Section X of the
Civil Code since I made an offer and you accepted’ will be unacceptable as long as no factual evidence
for the offer and acceptance is provided. In the present framework this can be captured by giving the
non-supported premises issue status.
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3.2 Arguments
Next the arguments that can be constructed from a knowledge base in an argumentation system are defined.
Arguments can be constructed step-by-step by chaining inference rules into trees. Arguments thus contain
subarguments, which are the structures that support intermediate conclusions (plus the argument itself and
its premises as limiting cases). In what follows, for a given argument, the function Prem returns all the
formulas of K (called premises) used to build the argument, Conc returns its conclusion, Sub returns all its
sub-arguments, DefRules returns all the defeasible rules of the argument and, finally, TopRule returns the
last inference rule used in the argument.

Definition 3.6 [Argument] An argument A on the basis of a knowledge base (K,≤′) in an argumentation
system (L,−,R,≤) is:

1. ϕ if ϕ ∈ K with:
Prem(A) = {ϕ},
Conc(A) = ϕ,
Sub(A) = ϕ,
DefRules(A) = ∅,
TopRule(A) = undefined.

2. A1, . . . An → ψ if A1, . . . , An are arguments such that there exists a strict rule
Conc(A1), . . . , Conc(An) → ψ in Rs.
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An),
Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A}.
DefRules(A) = DefRules(A1) ∪ . . . ∪ DefRules(An),
TopRule(A) = Conc(A1), . . . Conc(An) → ψ

3. A1, . . . An ⇒ ψ ifA1, . . . , An are arguments such that there exists a defeasible rule Conc(A1), . . . , Conc(An) ⇒
ψ in Rd.
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An),
Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A},
DefRules(A) = DefRules(A1) ∪ . . . ∪ DefRules(An) ∪ {Conc(A1), . . . Conc(An) ⇒ ψ},
TopRule(A) = Conc(A1), . . . Conc(An) ⇒ ψ.

Example 3.7 Consider a knowledge base in an argumentation system with

Rs = {p, q → s; u, v → w}
Rd = {p⇒ t; s, r, t⇒ v}
Kn = {q}
Kp = {p, u}
Ka = {r}

An argument for w is displayed in traditional proof-tree format in Figure 1, where a single line stands for
a strict inference and a double line for a defeasible inference. The type of a premise is indicated with a
superscript. Formally the argument and its subarguments are written as follows:

A1: p A5: A1 ⇒ t
A2: q A6: A1, A2 → s
A3: r A7: A5, A3, A6 ⇒ v
A4: u A8: A7, A4 → w

We have that
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Figure 1: An argument

Prem(A8) = {p, q, r, u}
Conc(A8) = w
Sub(A8) = {A1, A2, A3, A4, A5, A6, A7, A8}
DefRules(A8) = {p⇒ t; s, r, t⇒ v}
TopRule(A8) = v, u→ w

Definition 3.8 [Argument properties] An argument A is

• strict if DefRules(A) = ∅;

• defeasible if DefRules(A) 6= ∅;

• firm if Prem(A) ⊆ Kn;

• plausible if Prem(A) 6⊆ Kn.

We write S ` ϕ if there exists a strict argument for ϕ with all premises taken from S, and S |∼ ϕ if there
exists a defeasible argument for ϕ with all premises taken from S.

Example 3.9 In Example 3.7 the argument A2 is strict and firm, while A1, A3, A4 and A6 are strict and
plausible and A5, A7 and A8 are defeasible and plausible. Furthermore, we have thatK ` p, K ` q, K ` r,
K ` u, K ` s and K |∼ t, K |∼ v, K |∼ w.

(From hereon the theory will be left implicit if there is no danger for confusion.)
Now that the notion of an argument has been defined, orderings on arguments can be considered. Below

� is a partial preorder such that A � B means that B is at least as ‘good’ as A. As usual A ≺ B means A
� B and B 6� A.

In Section 6 two ways will be discussed to define � as a function from the orderings ≤ on Rd and ≤′
onK. However, the present framework allows for any partial preorder on arguments that satisfies two basic
assumptions (taken from Vreeswijk 1993).

Definition 3.10 [Admissible argument orderings] Let A be a set of arguments. Then a partial preorder �
on A is an argument ordering iff

1. if A is firm and strict and B is defeasible or plausible, then B ≺ A;

2. if A = A1, . . . An → ψ then for all 1 ≤ i ≤ n,A � Ai and for some 1 ≤ i ≤ n,Ai � A.

(Vreeswijk also assumes that an argument cannot be stronger than its weakest subargument but in Section 6
the so-called ‘last-link’ principle will be discussed, which violates this assumption.) The first condition says
that strict-and-firm arguments are stronger than all other arguments, while the second condition says that a
strict inference cannot make an argument weaker or stronger.

Definition 3.11 [Argumentation theories] An argumentation theory is a triple AT = (AS ,KB ,�) where
AS is an argumentation system, KB is a knowledge base in AS and � is an argument ordering on the set
of all arguments that can be constructed from KB in AS (below called the set of arguments on the basis of
AT ).
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3.3 Attack and defeat
Dung’s use of the term “attack” might at first sight lead to the belief that Dung’s framework has no place for
preferences. However, Dung’s attack relation can also be seen as abstracting from the use of preferences:
in this view an attack relation in his framework may be the result of applying preferences to a syntactic
conflict. This view on Dung’s attack relation was, to my knowledge, first used by Prakken and Sartor
(1997), it was also employed by Amgoud and Cayrol (2002) and it was the basis of Bench-Capon’s (2003)
value-based argumentation frameworks. It was also the reason why Prakken and Sartor (1997) and Prakken
and Vreeswijk (2002) replaced Dung’s term ‘attack’ with ‘defeat’, to reflect that it may incorporate evalu-
ative considerations. This convention will also be adopted in the present paper, while the term ‘attack’ will
be reserved for non-evaluative syntactic notions of conflict. The idea then is that defeat is determined by
attack plus preference (except in some cases, where attack automatically leads to defeat).

The notion of a defeasible inference rule naturally leads to two notions of rebutting and undercutting
attack, introduced by Pollock (1974) and first formalised by Pollock (1987). The third kind of attack,
premise attack (in this paper called undermining) is a natural addition (and for deductive inferences it is the
only kind of attack) but highlights the philosophical distinction between plausible and defeasible reasoning
discussed above. It was independently introduced by Vreeswijk (1993, Ch. 8) and Elvang-Göransson et al.
(1993). In line with Prakken and Sartor (1997), rebutting and undercutting attacks can also be launched on
subarguments. This is essential in making the system an instantiation of Dung’s abstract framework.

3.3.1 Attack

First the ways in which arguments can be attacked are defined. Recall that these are just syntactic categories
and do not reflect any preference between arguments. The first way of attack corresponds to the case where
one argument uses a defeasible rule of which another argument says that it does not apply to the case at
hand. Its definition assumes that inference rules can be named in the object language; the precise nature of
this naming convention will be left implicit.

Definition 3.12 [Undercutting attack] Argument A undercuts argument B (on B′) iff Conc(A) ∈ B′ for
some B′ ∈ Sub(B) of the form B′′1 , . . . , B

′′
n ⇒ ψ.

Example 3.13 In Example 3.7 argumentA8 can be undercut in two ways: by an argument with conclusion
A5, which undercuts A8 on A5, and by an argument with conclusion A7, which undercuts A8 on A7.

Undercutting attackers only say that there is some exceptional situation in which a defeasible inference
rule cannot be applied, without drawing the opposite conclusion. Rebutting attacks do the latter: they
provide a contrary or contradictory conclusion for a defeasible (sub-)conclusion of the attacked argument.

Definition 3.14 [rebutting attack] Argument A rebuts argument B on (B′) iff Conc(A) ∈ ϕ for some B′

∈ Sub(B) of the form B′′1 , . . . , B
′′
n ⇒ ϕ. In such a case A contrary-rebuts B iff Conc(A) is a contrary of

ϕ.

Example 3.15 In Example 3.7 argument A8 can be rebutted on A5 with an argument for t and on A7 with
an argument for v. Moreover, if t = −t then A5 in turn rebuts any argument for t with a defeasible top
rule. However, A8 itself does not rebut that argument, except in the special case where w ∈ t. This shows
that for three reasons rebutting attack is not symmetric: the rebuttal can have a strict top rule, rebutting
can be contrary-rebutting and rebutting can be launched on a subargument. However, the present example
also shows that in the latter case, if the rebutting attack has a defeasible top rule and is not of the contrary-
rebutting kind, the directly rebutted subargument in turn rebuts its attacker.

The final way of attack is an attack on a (non-axiom) premise.

Definition 3.16 [undermining attack] Argument A undermines B (on ϕ) iff Conc(A) ∈ ϕ for some ϕ ∈
Prem(B) \ Kn. In such a case argument A contrary-undermines B iff Conc(A) is a contrary of ϕ or if
ϕ ∈ Ka.
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Example 3.17 In Example 3.7 argument A8 can be undermined with an argument that has conclusion p,
r or u. If that attacker has a defeasible top rule and, say, a conclusion p and does not contrary-undermine
A8, then p as an argument in turn rebuts the attacker.

The following example (based on Example 4 of Caminada and Amgoud 2007) illustrates the interplay
between strict and defeasible rules in rebutting attack.

Example 3.18

A1: WearsRing A2: A1 ⇒ Married A3: A2 → ¬Bachelor
B1: Partyanimal B2: B1 ⇒ Bachelor B3: B2 → ¬Married

A3 rebuts B3 on its subargument B2 while B3 rebuts A3 on its subargument A2. Note that A2 does not
rebut B3, since B3 applies a strict rule; likewise for B2 and A3.

3.3.2 Defeat

Now that we know how arguments can be attacked, the argument ordering can be used to define which
attacks result in defeat. For undercutting attack no preferences will be needed to make it result in defeat,
since otherwise a weaker undercutter and its stronger target might be in the same extension. This would
be strange since then the extension contains an argument that applies an inference rule of which another
argument in the same extension says that it should not be applied.4. The same holds for the other two ways
of attack as far as they involve contraries (i.e., non-symmetric conflict relations between formulas). The
reason for this is that otherwise if a rebutting or undermining attacker is weaker than its target, both may be
in the same extension. For the remaining forms of attack the argument ordering will be used to determine
whether they result in defeat.

Definition 3.19 [Successful rebuttal] ArgumentA successfully rebuts argumentB ifA rebutsB onB′ and
either A contrary-rebuts B′ or A 6≺ B′.

This definition determines whether rebutting attack is successful by comparing the conflicting arguments
at the points where they conflict. Thus in Example 3.18 the conflict between A3 and B3 is resolved by
comparing A3 with B2 and comparing B3 with A2. Now if B2 ≺ A3 (for example, since the married-
rule is given priority over the bachelor-rule) then A3 successfully rebuts B2 and B3 while B3 does not
successfully rebut A2 or A3. If, by contrast, A2 6≺ B3 and B2 6≺ A3 then both A3 and B3 successfully
rebut each other (while A3 still successfully rebuts B2 and not vice versa, and likewise for B3 and A2).
Note also that if A3 is deleted from the example, then if B3 ≺ A2, no argument in the example is defeated.
This may at first sight seem counterintuitive but this is due to the fact that the example violates closure of
Rs under transposition (cf. Section 5 below).

As noted by Caminada and Amgoud (2007), Example 3.18 also illustrates why Definitions 3.14 and 3.19
should not allow that a defeasible argument with a strict top rule can be (successfully) rebutted on its final
conclusion. The reason is that otherwise if all defeasible rules in the example are of equal preference,
the set {A1, A2, B1, B2} is admissible, which violates the rationality postulate of indirect consistency (see
Section 6 below).

Definition 3.20 [Successful undermining] Argument A successfully undermines B if A undermines B on
ϕ and either A contrary-undermines B or A 6≺ ϕ.

This definition exploits that an argument premise is also defined to be a subargument.
In Example 3.7 any argument for r successfully undermines A8 since it contrary-undermines it since

r ∈ Ka. The same holds for any argument for a contrary of p or u while for arguments for contradictories
of p or u this depends on the argument ordering (which may in turn depend on the ordering ≤′ on K; see
Definitions 6.14 and 6.17 below).

4Modgil (2009) argues that in some contexts such extensions make sense. It seems that the formal results in Section 6 below on
rationality postulates also hold for undercutting defeat with preferences, but this should be formally verified.
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It remains to be discussed how the framework should deal with arguments that have issue premises. As
explained above, the idea is that arguments with issue premises are always unacceptable. There are various
ways to formalise this idea. One would be to let a special designated argument, or perhaps all strict-and-
firm arguments, defeat any argument with an issue premise (as in Prakken and Sartor 1997; Modgil 2009).
Here another solution is adopted: an argument can defeat another only if it has no issue premises. Then
in Definition 2.1 only sets B with no issue premises will be considered, so that no argument with issue
premises is in any extension.

The three defeat relations can now be combined in an overall definition of ‘defeat’:

Definition 3.21 [Defeat] Argument A defeats argument B iff no premise of A is an issue and A undercuts
or successfully rebuts or successfully undermines B. Argument A strictly defeats argument B if A defeats
B and B does not defeat A.

In the literature other combinations of these kinds of attack have been considered. For example, Prakken
and Sartor (1997) (who have no undermining) give precedence to undercutting defeat over rebutting defeat,
so that if A successfully undercuts B while B successfully rebuts A, nevertheless A strictly defeats B. It
remains to be investigated how crucial the present definition is for the results below.

Finally, argumentation theories can be linked to Dung-style argumentation frameworks.

Definition 3.22 [Argumentation framework] An abstract argumentation framework (AF ) corresponding
to an argumentation theory AT is a pair <A, Def> such that:

• A is the set of arguments on the basis of AT as defined by Definition 3.6,

• Def is the relation on A given by Definition 3.21.

To leave arguments with issue premises out of any extension, Definition 2.1 should now start with “Let B
be a conflict-free set of arguments that have no issue premises ...”.

It is now also possible to define a consequence notion for well-formed formulas. Several definitions are
possible. One is:

Definition 3.23 [Acceptability of conclusions] For any semantics S and for any argumentation theory AT
and formula ϕ ∈ LAT :

1. ϕ is skeptically S-acceptable in AT if and only if all S-extensions of AT contain an argument with
conclusion ϕ;

2. ϕ is credulously S-acceptable in AT if and only if there exists an S-extension of AT that contains
an argument with conclusion ϕ.

An alternative definition of skeptical acceptability is

1. ϕ is skeptically S-acceptable in AT if and only if there exists an argument with conclusion ϕ that is
contained in all S-extensions of AT .

While the original definition allows that different extensions contain different arguments for a skeptical
conclusion, the alternative definition requires that there is one argument for it that is in all extensions.

4 Using the framework: domain-specific vs. general inference rules
The framework defined in the previous section can be used in two ways, depending on whether the in-
ference rules are domain-specific or not. The inference rules of argumentation systems are not part of
the logical language L but are metalevel constructs. The usual practice in standard logic is that inference
rules express general patterns of reasoning, such as modus ponens, universal instantiation and so on. Yet
Caminada and Amgoud (2007) use the inference rules to represent domain knowledge, in line with a long
tradition in nonmonotonic logic of using domain-specific inference rules (e.g. Loui 1987; Reiter 1980; Nute
1994; Garcia and Simari 2004). The difference between both approaches is illustrated with the following
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example. Consider the information that all Frisians are Dutch, that the Dutch are usually tall and that
Wiebe is Frisian. With domain-specific inference rules this can in a propositional language be represented
as follows:

Rs = {Frisian → Dutch}
Rd = {Dutch ⇒ Tall}
Kp = {Frisian}

The argument that Wiebe is tall then has the form as displayed on the left in Figure 2.
With general inference rules the two rules must instead be represented in the object language L. The

first one can be represented with the material implication but for the second one a connective for defeasible
conditionals must be added to L and a defeasible modus-ponens inference rule must be added for this
connective. For example:

Rs = {ϕ,ϕ ⊃ ψ → ψ (for all ϕ,ψ ∈ L), . . .}
Rd = {ϕ,ϕ ; ψ ⇒ ψ (for all ϕ,ψ ∈ L), . . .}
Kp = {Frisian ⊃ Dutch,Dutch ; Tall ,Frisian}

Then the argument that Wiebe is tall has the form as displayed on the right in Figure 2.

Figure 2: Domain-specific vs. general inference rules

Although the present system can be used both ways, both Vreeswijk and Pollock intended their infer-
ence rules to express general patterns of reasoning, which is much more in line with the role of inference
rules in standard logic. Indeed, an important part of John Pollock’s work was the study of general patterns
of (epistemic) defeasible reasoning, which he called prima facie reasons. He formalised prima facie reasons
for reasoning patterns involving perception, memory, induction, temporal persistence and the statistical syl-
logism, as well as undercutters for these reasons. The ASPIC framework allows for such general use of
inference rules, by expressing the rules through schemes (in the logical sense, with metavariables ranging
over L). When used thus, the framework becomes a general framework for argumentation with structured
arguments. It thus is also suitable for modelling reasoning with argument schemes, which currently is an
important topic in the computational study of argument (cf. Walton et al. 2008). Argument schemes are
stereotypical non-deductive patterns of reasoning, consisting of a set of premises and a conclusion that
is presumed to follow from them. Uses of argument schemes are evaluated in terms of critical questions
specific to the scheme. An example of an epistemic argument scheme is the scheme from expert opinion
(Walton et al., 2008, p. 310):

E is an expert in domain D
E asserts that P is true
P is within D
P is true

This scheme has six critical questions:

1. How credible is E as an expert source?
2. Is E an expert in domain D?
3. What did E assert that implies P ?
4. Is E personally reliable as a source?
5. Is P consistent with what other experts assert?
6. Is E’s assertion of P based on evidence?
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A natural way to formalise reasoning with argument schemes is to regard them as defeasible inference
rules and to regard critical questions as pointers to counterarguments (this approach was earlier defended
by Bex et al. 2003 and Verheij 2003). More precisely, the three kinds of attack on arguments correspond
to three kinds of critical questions of argument schemes. Some critical questions challenge an argument’s
premise and therefore point to undermining attacks, others point to undercutting attacks, while again other
questions point to rebutting attacks. In the scheme from expert opinion questions (2) and (3) point to
underminers (of, respectively, the first and second premise), questions (4), (1) and (6) point to undercutters
(the exceptions that the expert is biased or incredible for other reasons and that he makes scientifically
unfounded statements) while question (5) points to rebutting applications of the expert opinion scheme.
Thus we also see that Pollock’s prima facie reasons are examples of epistemic argument schemes and that
his undercutters are negative answers to one kind of critical question.

Now one benefit of having undermining attack in addition to rebutting and undercutting attack can be
discussed in more detail: if the inference rules are supposed to be domain-independent, then representing
facts with non-conditional inference rules (as done by Caminada and Amgoud 2007) does not make sense.

5 Transposition and contraposition
Before it can be studied to what extent the present framework satisfies the rationality postulates of Cami-
nada and Amgoud (2007), first some technicalities concerning strict inference rules must be discussed. To
start with, Caminada and Amgoud define the notions of a transposition of a strict rule and closure of sets
of strict rules under transposition.

Definition 5.1 [Transposition] A strict rule s is a transposition of ϕ1, . . ., ϕn → ψ iff s = ϕ1, . . ., ϕi−1,
−ψ, ϕi+1, . . ., ϕn →−ϕi for some 1 ≤ i ≤ n.

Definition 5.2 [Transposition operator] Let Rs be a set of strict rules. Cltp(Rs) is the smallest set such
that:

• Rs ⊆ Cltp(Rs), and

• If s ∈ Cltp(Rs) and t is a transposition of s then t ∈ Cltp(Rs).

We say that Rs is closed under transposition iff Cltp(Rs) = Rs.

Now the subclass of argumentation systems closed under transposition can be defined.

Definition 5.3 [Closure under transposition] An argumentation system (L,−,R,≤) is closed under trans-
position if Rs = Cltp(Rs). An argumentation theory is closed under transposition if its argumentation
system is.

Caminada and Amgoud (2007) also define the closure of a set of formulas under application of strict
rules.

Definition 5.4 [Closure of a set of formulas] Let P ⊆ L. The closure of P under the set Rs of strict rules,
denoted ClRs(P), is the smallest set such that:

• P ⊆ ClRs(P).

• if ϕ1, . . . , ϕn → ψ ∈ Rs and ϕ1, . . . , ϕn ∈ ClRs(P) then ψ ∈ ClRs(P).

If P = ClRs(P), then P is said to be closed.

It is also relevant whether strict inference satisfies contraposition.

Definition 5.5 [Closure under contraposition] An argumentation system is closed under contraposition if
for all S ⊆ L, all s ∈ S and all ϕ it holds that if S ` ϕ then S \ {s} ∪ {−ϕ} ` −s. An argumentation
theory is closed under contraposition if its argumentation system is.

12



Closure under transposition does not imply closure under contraposition, as shown by the following coun-
terexample (in all examples below sets which are empty are not listed).

Example 5.6 Let Rs = Cltp({p→ q; p→ r; p, r → s}). Then {p} ` s but {−s} 6` −p.

In general it neither holds that closure under contraposition implies closure under transposition, as shown
by the following counterexample.

Example 5.7 Let Rs = {p → q; ¬q → r; r → ¬p; ¬r → q; p → ¬r}. Then Rs is not closed under
transposition, since it does not include ¬q → ¬p. Still we have

{p} ` q and {¬q} ` ¬p {p} ` ¬r and {r} ` ¬p
{¬r} ` q and {¬q} ` r {¬q} ` r and {¬r} ` q

So Rs satisfies contraposition.

However, contraposition does imply transposition in the following special case.

Proposition 5.8 Consider any argumentation theory with L closed under classical negation and − defined
correspondingly. Then if Rs consists of all valid propositional inferences then Rs is closed under contra-
position and transposition.

Note that the proposition does not hold if the condition ‘Rs consists of all valid propositional inferences’
is changed to ‘` corresponds to propositional logic’. A counterexample is any argumentation theory with
a sound and complete axiomatisation of propositional logic with modus ponens as the only inference rule.

6 Rationality postulates
Dung’s semantics can be seen as rationality constraints on evaluating arguments in abstract argumentation
frameworks. The refinement of his abstract approach with structured arguments naturally leads to the
question whether this additional structure gives rise to additional rationality constraints. Caminada and
Amgoud (2007) gave a positive answer to this question by proposing a number of ‘rationality postulates’
for what they called ‘rule-based argumentation’. Four of their postulates formulate constraints on any
extension of an argumentation framework corresponding to an argumentation theory:5

• Closure under subarguments: for every argument in an extension also all its subarguments are in
the extension.

• Closure under strict rules: the set of conclusions of all arguments in an extension is closed under
strict-rule application.

• Direct consistency: the set of conclusions of all arguments in an extension is consistent.

• Indirect consistency: the closure of the set of conclusions of all arguments in an extension under
strict-rule application is consistent.

Caminada and Amgoud (2007) proved for their version of the ASPIC framework that the first two postulates
are always satisfied while the two consistency postulates are satisfied if the set of strict rules is consistent
and closed under transposition. However, their version of the ASPIC framework is considerably simpler
than the present one. Firstly, it has no knowledge base and facts must be represented as inference rules
with empty antecedents; because of this, arguments cannot be undermined. Furthermore, it assumes just
a basic ordering on arguments, according to which strict arguments are strictly preferred over defeasible
ones and nothing else. Finally, it has a special case of the present − function from L to 2L, corresponding
to classical negation. The task now is to investigate to which extent the results of Caminada and Amgoud
(2007) can be generalised to the present case.

5Caminada and Amgoud (2007) propose similar postulates for the intersection of extensions but since their results on these
postulates directly follow from the ones for individual extensions, they will below be ignored.
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The postulates of closure under subarguments and strict-rule application still hold unconditionally for
the present framework. (Here that a given semantics is subsumed by complete semantics means that any of
its extensions also is a complete extension).

Proposition 6.1 Let <A, defeat> be an argumentation framework as defined in Definition 3.22 and E
any of its extensions under a given semantics subsumed by complete semantics. Then for all A ∈ E: if
A′ ∈ Sub(A) then A′ ∈ E.

Proposition 6.2 Let <A, defeat> be an argumentation framework corresponding to an argumentation
theory, and E any of its extensions under a given semantics subsumed by complete semantics. Then
{Conc(A)|A ∈ E} = ClRs({Conc(A)|A ∈ E}).

As for the two consistency postulates, Caminada and Amgoud’s results do not generalise unconditionally.
Consider the following example.

Example 6.3 Let Rd = {⇒ p; ⇒ q} and Rs = {q → ¬p; p→ ¬q}. Then we have

A: ⇒ p
B′: ⇒ q B: B′ → ¬p

Now assume that A � B, so B does not defeat A. However, A neither defeats B, since B’s last inference
is strict. At first sight, it would seem that A can be extended with the transposition of q → ¬p (i.e. with
p→ ¬q) to an argument

A+: A→ ¬q

that rebuts B’s subargument B′ for q. Then since by condition (2) of Definition 3.10 a strict continuation
of an argument cannot make it weaker, B′ ≺ A+ so A+ defeats B′. Moreover, by the same conditions any
argument defeats A if and only if it defeats A+ so if A is in an extension E then by Proposition 6.2 A+

will be in E and therefore B will not be in E since extensions are conflict-free.

However, this line of reasoning does not hold without a further assumption on the argument ordering.
Consider a more complex variant of Example 6.3.

Example 6.4 Let Rd = {⇒ p; ⇒ q; ⇒ r} and Rs = {q, r → ¬p; q, p → ¬r; p, r → ¬q}. Then we
have

A: ⇒ p
B′: ⇒ q B′′: ⇒ r B: B′, B′′ → ¬p

The problem is that A cannot be extended with any transposition of q, r → ¬p to obtain A+ unless it is
combined with either B′ or B′′ but then A is extended with a defeasible rule, so A+ might be weaker than
A. This problem holds whenever B has more than one maximal defeasible or plausible subargument.

However, assuming contraposition or transposition, direct consistency can still be proven if it can also be
assumed that there is a way to extend A with all but one of B’s maximal defeasible subarguments that is
not weaker than the remaining one. In our example this means that eitherA extended withB′ is not weaker
than B′′ or A extended with B′′ is not weaker than B′. Intuitively this assumption seems acceptable given
that A is stronger than both B′ and B′′. It is therefore to be expected that it will be satisfied by many
reasonable argument orderings. Since similar situations can arise with undermining attack, the notion of a
maximal fallible subargument is needed.

Definition 6.5 [Maximal fallible subarguments] For any argument A, an argument A′ ∈ Sub(A) is a
Maximal fallible subargument of A if

1. A′’s final inference is defeasible or A′ is a non-axiom premise; and
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2. there is no A′′ ∈ Sub(A) such that A′′ 6= A and A′ ∈ Sub(A′′) and A′′ satisfies condition (1).

The set of maximal fallible subarguments of an argument A will be denoted by M(A).

Corollary 6.6 For any argument A it holds that Conc(M(A)) ` Conc(A).

Definition 6.7 [Reasonable argument orderings] Argument ordering � is reasonable if it satisfies the fol-
lowing condition. Let A and B be arguments with contradictory conclusions such that B ≺ A. Then there
exists a Bi ∈M(B) and an A+ with A ∈ Sub(A+) such that Conc(A+) = −Conc(Bi) and A+ 6≺ Bi.

A final problem to deal with is that in Example 6.3, Conc(A) could be a contrary of Conc(B); the
problem is that the solution with closure under contraposition and transposition does not apply to this
case. Therefore the focus must be restricted to argumentation theories that respect the intended use of
assumptions and contraries.

Definition 6.8 An argumentation theory is well-formed if:

1. no consequent of a defeasible rule is a contrary of the consequent of a strict rule;

2. if ϕ ∈ Ka and ϕ is a contrary of ψ, then ψ 6∈ Kn ∪Kp and ψ is not the conclusion of a rule in R.

Condition (2) in effect says that assumptions can only be contraries of other assumptions. An example of a
AT that is not well-formed is

Rs = {p→ q}, Rd = {r ⇒ s, t⇒ u}, Kp = {p, r}, Ka = {v}

and such that s is a contrary of q and v is a contrary of u. Then condition (1) of Definition 6.8 is violated
since we have arguments A: p → q and B: r ⇒ s. Moreover, condition (2) is violated since v ∈ Ka and
t⇒ u ∈ Rd.

Now it can be proven that under certain conditions an argumentation theory satisfies the postulate of
direct consistency.

Theorem 6.9 Let <A, defeat> be an argumentation framework corresponding to a well-formed argumen-
tation theory that is closed under contraposition or transposition and has a reasonable argument ordering
and a consistent ClRs(Kn), and let E be any of its extensions under a given semantics subsumed by
complete semantics. Then the set {Conc(A) | A ∈ E} is consistent.

Caminada and Amgoud (2007) also prove that their system satisfies the postulate of indirect consistency.
This follows from their Proposition 7, which says that if an argumentation theory satisfies closure and
direct consistency, it also satisfies indirect consistency. Since in the present case the conditions of the proof
of direct consistency had to be strengthened, the same holds for indirect consistency.

Theorem 6.10 Let <A, defeat> be an argumentation framework corresponding to a well-formed argu-
mentation theory that is closed under contraposition or transposition and has a reasonable argument order-
ing and a consistent ClRs(Kn), and let E be any of its extensions under a given semantics subsumed by
complete semantics. Then the set ClRs({Conc(A) | A ∈ E}) is consistent.

Corollary 6.11 If the conditions of Theorem 6.10 are satisfied, then for any extension E under a given
semantics subsumed by complete semantics the set {ϕ | ϕ is a premise of an argument in E} is consistent.

Concluding this section, two intuitively plausible argument orderings will be shown to be reasonable,
namely, the weakest-link and last-link orderings from Amgoud et al. (2006). The versions below are
slightly revised to make the principles arguably more intuitive. Both orderings define a strict partial or-
der ≺s on sets in terms of a partial preorder ≤e on their elements, as follows: S1 ≺s S2 iff there exists an
e1 ∈ S1 such that for all e2 ∈ S2 it holds that e1 <e e2.

The last-link principle prefers an argument A over another argument B if the last defeasible rules
used in B are less preferred than the last defeasible rules in A or, in case both arguments are strict, if the
premises of B are less preferred than the premises of A. The concept of ‘last defeasible rules’ is defined as
follows and is essentially the same as Prakken and Sartor’s (1997) notion of a ‘relevant set’.
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Definition 6.12 [Last defeasible rules] Let A be an argument.

• LastDefRules(A) = ∅ iff DefRules(A) = ∅.

• If A = A1, . . ., An ⇒ φ, then LastDefRules(A) = {Conc(A1), . . ., Conc(An) ⇒ φ}, otherwise
LastDefRules(A) = LastDefRules(A1) ∪ . . . ∪ LastDefRules(An).

Corollary 6.13 LastDefRules(A) = {TopRule(A′) | A′ ∈M(A)}.

An example with more than one last defeasible rule is with K = {p; q} and Rd = {p⇒ r; q ⇒ s}. Then
for argument A for r ∧ s we have LastDefRules(A) = {p⇒ r; q ⇒ s}.

The above definition is now used to compare pairs of arguments as follows:

Definition 6.14 [Last link principle] Let A and B be two arguments. Then A ≺ B iff either

1. condition (1) of Definition 3.10 holds; or

2. LastDefRules(A) ≺s LastDefRules(B); or

3. LastDefRules(A) and LastDefRules(B) are empty and Prem(A) ≺s Prem(B).

(Amgoud et al. 2006 do not include the second condition so if both arguments are strict the ordering on the
knowledge base is ignored.) This definition in effect compares sets on their weakest elements.

Proposition 6.15 The last-link argument ordering is reasonable.

Consider the following example (taken from Prakken 1997) on whether people misbehaving in a university
library may be denied access to the library.

Example 6.16 Let Kp = {Snores; Professor}, Rd =

{Snores ⇒r1 Misbehaves;
Misbehaves ⇒r2 AccessDenied ;
Professor ⇒r3 ¬AccessDenied}.

Assume that Snores <′ Professor and r1 < r2, r1 < r3, r3 < r2, and consider the following arguments.

A1: Snores A2: A1 ⇒ Misbehaves A3: A2 ⇒ AccessDenied
B1: Professor B2: B1 ⇒ ¬AccessDenied

To resolve the conflict between A3 and B2, the rule sets to be compared are LastDefRules(A3) = {r2}
and LastDefRules(B2) = {r3}. Since r3 < r2 we have that B2 ≺s A3 so A3 strictly defeats B2.

The weakest-link principle considers not the last but all uncertain elements in an argument. It prefers an
argument A over an argument B if A is preferred to B on both their premises and their defeasible rules.

Definition 6.17 [Weakest link principle] Let A and B be two arguments. Then A ≺ B iff either condition
(1) of Definition 3.10 holds; or

1. Prem(A) ≺s Prem(B); and

2. If DefRules(B) 6= ∅ then DefRules(A) ≺s DefRules(B).

(Amgoud et al. 2006 do not have the condition of (2), so that with two strict arguments neither of them can
be preferred.)

Proposition 6.18 The weakest-link argument ordering is reasonable.

Example 6.19 Consider again Example 6.16. With the weakest-link principle the outcome is different. To
resolve the conflict between A3 and B2, the rule sets to be compared are now DefRules(A3) = {r1, r2}
and DefRules(B2) = {r3}. Since r1 < r3 we have that DefRules(A3) ≺s DefRules(B2). Moreover,
since Snores <′ Professor we also have that Prem(A3) ≺s Prem(B2). Hence B2 now strictly defeats A3.
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Example 6.20 We finally return to Example 3.18. Let

r1 = WearsRing ⇒ Married
r2 = PartyAnimal ⇒ Bachelor

Note that since both arguments apply just one defeasible rule and no premise is attacked, the weakest-
and last-link ordering produce the same result. Now if r1 < r2 we have that A3 strictly defeats B3 by
successfully rebutting it on B2, while if both r1 6< r2 and r2 6< r1 then A3 and B3 defeat each other since
A3 successfully rebuts B3 on B2 while B3 successfully rebuts A3 on A2.

7 Self-defeat
As discussed by Pollock (1994) and Caminada and Amgoud (2007), self-defeating arguments can cause
problems if argumentation systems are not carefully defined, particularly if they include standard proposi-
tional logic. In the present framework two types of self-defeating arguments are possible: serial self-defeat
occurs when an argument defeats one if its earlier steps, while parallel self-defeat occurs when the contra-
dictory conclusions of two or more arguments are taken as the premises for ⊥. Pollock (1994) gives an
example of serial self-defeat of the following form:

Example 7.1 Let Rd = {p⇒ q}, Rs = { q → ¬A2} and K = {p, q}. Then we have

A1: p A2: A1 ⇒ q A3: A2 → ¬A2

(Read p as “witness John says that he is unreliable” and q as “witness John is unreliable”). Argument A3 is
self-defeating since it undercuts itself on A2. This example is arguably handled properly by preferred and
grounded semantics, who both have E = {A1} as the only extension.

One of Pollock’ (1994) examples of parallel self-defeat has the following form.

Example 7.2 LetRd = {p⇒ q; r ⇒ ¬q; t⇒ s} andK = {p, r, t}whileRs contains all propositionally
valid inferences. Then:

A1: p A2: A1 ⇒ q
B1: r B2: B1 ⇒ ¬q
C1: A2, B2 → ⊥ C2: C1 → ¬s
D1: t D2: D1 ⇒ s

Here a problem arises since s can be any formula, so any defeasible argument unrelated to A2 or B2, such
as D2, can, depending on the rule priorities, be rebutted by C2. Clearly, this is extremely harmful, since
the existence of just a single case of mutual rebutting defeat, which is very common, could trivialise the
system. In fact, of the semantics defined by Dung (1995) this is only a problem for grounded semantics.
Since all preferred/stable extensions contain either A2 or B2, argument C2 is not in any of these extensions
soD2 is. However, if neither ofA2 andB2 strictly defeats the other, then neither of them is in the grounded
extension so that extension does not defend D2 against C2 and therefore does not contain D2.

Pollock (1994) also discusses the following variant of this example (with the same argumentation the-
ory):

A1: p A2: A1 ⇒ q A3: A2 → q ∨ ¬s
B1: r B2: B1 ⇒ ¬q
C1: A2, B2 → ¬s
D1: t D2: D1 ⇒ s

Again with grounded semantics the problem is that s can be any formula, so any defeasible argument
unrelated to A2 or B2 can be rebutted by C1.
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According to Caminada (personal communication) the only way to solve this problem is to make parallel
self-defeat impossible. One way to implement this solution is to disallow arguments with a contradictory
set of sub-conclusions. However, this affects the proof of Theorems 6.9 and 6.10. The reason is that for
such systems the argument A+ that according to Lemma 10.1 can be constructed sometimes has to have
contradictory subconclusions, as the following example (with a system closed under transposition) shows.

Example 7.3 Let p ∈ Kn, q ∈ Ka and Rs = Cltp({p→ t; q → r; q → s; r, s→ ¬t}).

A1: p A2: A1 → t
B1: q B2: B1 → r B3: B1 → s B4: B2, B3 → ¬t

Now if A2 is to be extended to an argument A+ that undermines B4, then B1 must be included in A+.

An similar example for systems closed under contraposition is:

Example 7.4 Let Kp = {p, q,¬p,¬q} and let Rs consist of all valid propositional inferences. Then

A1: p A1: q A3: A1, A2 → p ∧ q
B1: ¬p B2: ¬q B3: B1, B2 → ¬(p ∧ q)

Note that M(B3) = Prem(B3). Now any addition of a premise of B3 to Prem(A3) makes Prem(A3)
inconsistent.

Since these problems only arise in particular argumentation systems and with particular semantics, no
general solution will be pursued here; instead such solutions are left for future research on instantiations of
the framework. Note also that Examples 7.3 and 7.4 only contain strict rules, so that the problem may also
arise in assumption-based frameworks, which will in the next section be proven to be a special case of the
ASPIC framework.

8 The relation with assumption-based argumentation
After having presented his fully abstract approach to argumentation, Dung joined Kowalski, Toni and
others in their development of a more concrete version of his approach (e.g. Bondarenko et al. 1997; Dung
et al. 2006, 2007). In this approach arguments essentially are sets of formulas called “assumptions”, from
which conclusions can be drawn with strict inference rules. Arguments can be attacked with arguments
that conclude to the “contrary” of one of their assumptions. In fact, the extensions defined by the various
semantics of Bondarenko et al. (1997) are not sets of arguments but sets of assumptions. However, Dung
et al. (2007) showed that an equivalent fully argument-based formulation can be given.

In this section it will be shown that assumption-based argumentation (ABA) is a special case of the
present framework with only strict inference rules, only assumption-type premises and no preferences. The
proof will be given for the argument-based version of Dung et al. (2007) and carries over to Bondarenko
et al. (1997) by the equivalence result of Dung et al. (2007).

First the main definitions of ABA are recalled (in the formulation of Dung et al. 2007).

Definition 8.1 (Def. 2.3 of Dung et al. 2007.) A deductive system is a pair (L,R) where

• L is a formal language consisting of countably many sentences, and

• R is a countable set of inference rules of the form α1, . . . , αn → α.6 α ∈ L is called the conclusion
of the inference rule, α1, . . . , αn ∈ L are called the premises of the inference rule and n ≥ 0.

Definition 8.2 (Def. 2.5 of Dung et al. 2007.) An assumption-based argumentation framework (ABF ) is
a tuple (L,R,A,−) where

• (L,R) is a deductive system.

6In (Dung et al., 2007) the arrows are from right to left.
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• A ∈ L,A 6= ∅. A is the set of candidate assumptions .

• If α ∈ A, then there is no inference rule of the form α1, . . . , αn → α ∈ R.

• − is a total mapping from A into L. α is the contrary of α.

The third condition amounts to a restriction to so-called flat ABF s. This restriction is not entirely innocent,
since in debates it may occur that someone first assumes a premise and, after it is defeated, constructs an
argument for it, in an attempt to rebut the defeater. To make Dung et al.’s analysis apply to all stages of
such a debate, assumptions should be deleted from A as soon as they are supported with an argument.

Since the notion of an argument is central to the present concerns, the informal explanation of Dung
et al. (2007, p. 646) will be quoted in (almost) full.

Deductions can be understood as proof trees: the root of the tree is labelled by the conclusion
of the deduction and the leaves are labelled by the premises supporting the deduction. For
every non-terminal node in the tree, there is an inference rule whose conclusion matches the
sentence labelling the node, and the children of the node are labelled by the premises of the
inference rule. (..) we define deductions as sequences of frontiers S1, . . . , Sm of the proof
trees. Each frontier is represented by a multi-set, in which the same sentence can have several
occurrences, if it is generated more than once as a premise of different inference steps. In order
to generate proof trees, a selection strategy is needed to identify which node to expand next.
We formalise this selection strategy by means of a selection function, as in the formalisation
of SLD resolution. A selection function, in this context, takes as input a sequence of multi-sets
Si and returns as output a sentence occurrence in Si. We restrict the selection function so that
if a sentence occurrence is selected in a multi-set in a sequence then it will not be selected
again in any later multi-set in that sequence.

Essentially, a backward deduction thus presents one particular order in which an argument in the sense of
Definition 3.6 can be constructed by reasoning backwards from the conclusion to the premises.

Definition 8.3 (Def. 2.4 of Dung et al. 2007.) Given a selection function f , a (backward) deduction of a
conclusion α based on (or supported by) a set of premises P is a sequence of multi-sets S1, . . . , Sm, where
S1 = {α}, Sm = P , and for every 1 ≤ i < m, where σ is the sentence occurrence in Si selected by f :

1. If σ is not in P then Si+1 = Si − {σ} ∪ S for some inference rule of the form S → σ ∈ R.

2. If σ is in P then Si+1 = Si.

Each Si is a step in the deduction.

Now an assumption-based argument is defined as follows.

Definition 8.4 (Def. 2.6 of Dung et al. 2007.) An argument for a conclusion on the basis of an ABF is a
deduction of that conclusion whose premises are all assumptions (in A).

As for notation, the existence of an argument for a conclusion α supported by a set of assumptions A is
denoted by A ` α, or by A `ABF α if it has to be distinguished from the existence of a strict argument
according to Definition 3.6 with the same premises and conclusion; the latter will below be denoted by
A `AT α.

Finally, Dung et al.’s notion of argument attack is defined as follows.

Definition 8.5 (Def. 2.7 of Dung et al. 2007.)

• An argument A ` α attacks an argument B ` β if and only if A ` α attacks an assumption in B;

• an argument A ` α attacks an assumption β if and only if α is the contrary β of β.

The argumentation theory corresponding to an assumption-based framework is now defined as follows.
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Definition 8.6 Given an assumption-based framework ABF = (LABF ,RABF ,A,−ABF ), the correspond-
ing argumentation theory ATABF = (AS ,KB), where AS = (LAT ,

−
AT ,RAT ,≤) and KB = (K,≤′), is

defined as follows:

• LAT = LABF

• ϕ ∈ ψAT iff ϕ = ψABF

• RAT = Rs = RABF

• Kn = Kp = Ki = ∅

• Ka = A

• ≤=≤′=�= ∅

Note that ATABF is well-formed and all ATABF arguments are strict and plausible.
The main task now is to prove that there is an ABF -argument for α from P if and only if there is an

ATABF -argument for α with premises P . In fact, this can only be proven for the special case of argu-
mentation theories that do not allow for arguments with an infinite number of subarguments. Technically
the present framework allows for such arguments even if they are noncircular. For example, an AT with
Rs = {pi+1 → pi | i ≥ 1} allows for an argument for p1 with an infinite number of subarguments (and
an empty set of premises). So far no proof has depended on finiteness of arguments. In an ABF , how-
ever, arguments are by definition finite even if the set of inference rules allows for infinite ones, as in the
just-given example.

Proposition 8.7 For all ABF such that AT = ATABF does not allow arguments with an infinite number
of subarguments, there exists an argument A `ABF α if and only if there exists an argument A `AT α.

From this it follows that

Proposition 8.8 For all ABF such that AT = ATABF does not allow arguments with an infinite number
of subarguments it holds for every argument A `ABF α and every argument A `AT α that A `ABF α is
defeated by an argument B `ABF β if and only if A `AT α is defeated by an argument B `AT β.

Now the main correspondence result can be proven.

Theorem 8.9 For all ABF , any semantics S subsumed by complete semantics and any set E:

1. if E is an S-extension of ABF then EAT is an S-extension of AT , where EAT = {A `AT α |
A `ABF α ∈ E};

2. if E is an S-extension of AT then EABF is an S-extension of ABF , where EABF = {A `ABF α |
A `AT α ∈ E}.

Theorem 8.9 in fact says that there is a one-to-one correspondence between the extensions of an ABF and
those of its corresponding AT . From this it follows that:

Corollary 8.10 For any ABF , any semantics S subsumed by complete semantics, and for any formula ϕ it
holds that ϕ is skeptically (credulously) S-acceptable in ABF if and only if ϕ is skeptically (credulously)
S-acceptable in ATABF .

9 Other related research
As was said above, the present framework is inspired by the work of Pollock (1987, 1994) and Vreeswijk
(1993, 1997). Essentially, it takes from both the idea that defeasible reasoning proceeds by chaining two
kinds of inference rules into inference trees. The present mathematical formulation of this idea is directly
adopted from Vreeswijk (1993, 1997). The present notions of undercutting and rebutting defeat are taken
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from Pollock’s work and then generalised to arbitrary preference relations on arguments (Pollock only has
a notion of probabilistic strength), and to logical languages with arbitrary contrary mappings. They are
then combined with a notion of undermining defeat.

In fact, the system of Pollock (1994) is not formalised in terms of arguments but in terms of so-called
‘inference graphs’, in which nodes are connected either by inference links (applications of inference rules)
or by defeat links. The nodes are ‘lines of argument’, which are propositions plus an encoding of the
argument lines from which they are derived. So if a proposition is derived in more than one way, it occurs
in more than one line of argument. Such duplications cannot be avoided, since defeat relations depend on
the strength of a proposition, which in turn depends on the way in which it is derived. Nodes are evaluated
in terms of the recursive structure of the graph. Jakobovits and Vermeir (1999) proved that Pollock’s system
can be given an equivalent formulation as an instance of Dung’s abstract argumentation frameworks with
preferred semantics.

With Vreeswijk’s framework the relation with Dung-style semantics is still an open issue, since it
models conflict not as a relation between two individual arguments but as a property of sets of arguments:
a set of arguments is said to be in conflict if there exists a strict argument from their conclusions for ⊥.
Vreeswijk then defines a notion of warrant for arguments which resembles stable semantics.

Gordon et al. (2007) propose the Carneades framework ‘of argument and burden of proof’. Carneades’
main structure is that of an argument graph, which, despite its name, is similar to Pollock’s inference
graphs. Statement nodes are linked to each other via argument nodes, which record the inferences from
one or more nodes to another. This notion of an argument does not have the recursive structure of Def-
inition 3.6 but instead stands for a single inference step. As explained in Section 3.1, the premises of
an argument can be of three types: presumptions (similar to the present issues), assumptions (similar
to the present ordinary premises) and exceptions (similar to contradictories of the present assumptions).
Carneades has no distinction between strict and defeasible inference rules and, unlike Pollock, does not
express conflicts as a special type of link between statement nodes. Instead, inferences (i.e., arguments)
can be either pro or con a statement. Because of this, statements occur only once in the graph. Also, attack
relations are thus expressed either as arguments pro and con the same statement or as an argument pro
an exception-type premise of another argument. Carneades thus allows for rebutting and undermining but
not for undercutting; instead, undercutters are simulated by arguments pro exceptions. Carneades’ infer-
ence graphs are assumed to contain no cycles, which excludes the representation of mutual attack relations
through exceptions.

In Carneades the evaluation of statements in an argument graph is, as with Pollock’s inference graphs,
defined in terms of the recursive structure of the graph. Statements are acceptable if they satisfy their
‘proof standard’. The general framework abstracts from their nature but Gordon et al. (2007) give several
examples of proof standards. The proof standards are at the heart of Carneades’ acceptability notion, just
like the notions of defence and admissibility are at the heart of Dung-style semantics. None of the examples
given by Gordon et al. (2007) have a known relation with any existing Dung-style semantics or the present
framework, which thus is an issue for future research. Here it is also relevant that Carneades incorporates
dialogical elements since it matters whether a statement is ‘stated’, ‘questioned’, ‘accepted’ or ‘rejected’.
These statuses of a statement are assumed to be provided by a dialogical context in which Carneades is
embedded.

Verheij (2003) presents a “sentence-based” (as opposed to “argument-based”) logic for defeasible rea-
soning, called DefLog. Verheij assumes a logical language with just two connectives, a unary connective
× which informally stands for ‘it is defeated that’ and a binary connective ; for expressing defeasible
conditionals. He then assumes a single inference scheme for this language, namely, modus ponens for ;.
A set of sentences T is said to support a sentence ϕ if “ϕ is in T or follows from T by repeated application
of ;-modus ponens” (Verheij, 2003, p. 327). It seems reasonable to formalise this as the backward deduc-
tions of assumption-based argumentation or the strict arguments of the present framework. Moreover, T is
said to attack ϕ if T supports ×ϕ. Verheij then considers partitions (J,D) of sets of sentences ∆ which
he calls dialectical interpretations and which are such that J (the “justified” sentences) is conflict-free and
attacks every sentence in D (the “defeated” sentences).

As already suggested by Verheij, there is a close formal relation between DefLog and assumption-based
argumentation. Firstly, dialectical interpretations are easily proven to be equivalent to stable labellings,
which are known to be equivalent to stable semantics (first proven by Verheij 1996; see also Jakobovits
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and Vermeir 1999; Caminada 2006). Furthermore, DefLog theories can be mapped onto assumption-
based frameworks by letting an ABF contrary mapping be ×ϕ = ϕ for any ϕ, by regarding any set of
dialectically interpreted sentences as the assumptionsA of an ABF and by having ϕ,ϕ ; ψ → ψ, for any
ϕ and ψ in DefLog’s language, as the set R of inference rules of the ABF . The result is an assumption-
based framework in the sense of Definition 8.2 with stable semantics. The correspondence results of Dung
et al. (2007) with Bondarenko et al. (1997) then also apply to the special case of a DefLog-style ABF so
that by the above Theorem 8.9 DefLog is a special case of the present framework with only strict arguments
and only undermining defeat.

Several argumentation systems model deductive argumentation. Here arguments are proofs according
to some deductive logic with consistent premises taken from a possibly inconsistent knowledge base ex-
pressed in the language of the logic (usually taken to be standard propositional or first-order logic). In
Amgoud and Cayrol (2002), which is based on propositional logic, the structure of arguments is left un-
defined, except that the premises imply the conclusion according to propositional logic. Several notions
of defeat are then considered. One of them corresponds to the present undermining defeat, where argu-
ments are compared in terms of a partial preorder on the belief base from which their premises are taken.
Argument acceptability is defined according to grounded semantics.

This variant of Amgoud and Cayrol (2002) can be reconstructed as a special case of the present frame-
work as follows. Firstly, L is any propositional language closed under classical negation, where ϕ = ψ
if ϕ = ¬ψ or ψ = ¬ϕ. Then Rs consists of all valid propositional inferences while Rd is empty. The
knowledge base equals Kp. Finally, as with Deflog, it seems reasonable to formalise arguments as the
strict arguments of the present framework, although the extra constraint must be added that such arguments
have classically consistent premises. This consistency constraint makes that not all results of this paper
hold without further qualification. It is easy to verify that Propositions 5.8, 6.1 and 6.2 still hold with this
constraint (for Proposition 5.8 note that in this case S ` ϕ by definition implies that the strict argument that
exists for ϕ has consistent premises). However, the proofs of Theorems 6.9 and 6.10 do not apply to this
case, for similar reasons as explained above in Section 7 with Example 7.4. It remains to be investigated
whether these theorems can be proven for this case under alternative conditions.

Besnard and Hunter’s (2008) version of deductive argumentation is similar to that of Amgoud and Cay-
rol (2002), except for a generalised notion of undermining: an argument is undermined by any argument
of which the conclusion negates the conjunction if its premises. It remains to be seen whether this version
of undermining can be reduced to the present version.

Two other logics for defeasible reasoning with both (domain-specific) strict and defeasible inference
rules are Defeasible Logic (DL), first proposed by Nute (1994), and Defeasible Logic Programming (DeLP;
e.g. Garcia and Simari 2004). In both systems the logical language is restricted in logic-programming
style. DL is not explicitly argument-based but defines the notion of a proof tree, which interleaves support
and attack. Governatori et al. (2004) investigate the relation with Dung-style semantics. One variant of
DL is proven to instantiate grounded semantics. In DeLP the only way to attack an argument is on a
(sub-)conclusion. DeLP’s notion of argument acceptability has no known relation to any of the current
argumentation semantics.

Prakken and Sartor (1997) presented an argument-based version of extended logic programming, de-
signed as an instance of Dung’s abstract argumentation frameworks with grounded semantics. Their system
comes close to being a special case of the present framework. It has (domain-specific) strict and defeasible
inference rules and allows for rebutting and undercutting defeat. Furthermore, its notion of an argument
comes close to a ‘deduction’ version of Definition 3.6, i.e., it represents a particular order in which an
argument can be constructed. A difference is that in Prakken and Sartor (1997) two parallel subarguments
do not need to be completed with an inference from their conclusion, so that, for example (in the present
notation) p, p ⇒ q, r, r ⇒ s is an argument with conclusions q and s. In Prakken and Sartor (1997) this
was convenient for modelling reasoning about defeasible priorities in the system. A more substantial dif-
ference is that while the present framework considers rebutting and undercutting attack on equal footing,
Prakken and Sartor (1997) give priority to undercutting attack, so that if A undercuts B while B rebuts A,
A strictly defeatsB. It seems that the present results do not crucially rely on this difference, but this should
be further investigated.

A final difference with the present framework is that in Prakken and Sartor (1997) the role of strict
rules in defeat is different. As in the present framework, only defeasible inferences can be attacked, but
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an argument A with conclusion ϕ rebuts an argument B with conclusion ϕ′ if there exists sets of strict
rules Sa and Sb and a formula ψ such that (with present notation) Sa ∪ {ϕ} ` ψ and Sb ∪ {ϕ′} ` ψ.
The difference can be best explained with Examples 3.18 and 6.20. The motivation behind the definition
of Prakken and Sartor (1997) was that intuitively the ‘real’ conflict is between the two defaults on whether
someone is a bachelor or married. This is captured by their definition of rebutting attack, since A2 can be
extended with A3 to contradict B2’s conclusion and vice versa. Hence the rule priorities are applied to A2

and B2. By contrast, in the present framework these arguments do not rebut each other since their top rules
are strict. Instead, we saw that their conflict is decided indirectly, by comparing A3 with B2 and B3 with
A2. The present treatment of such examples can be defended by saying that conflicts are recognised only
when they are made explicit in an argument’s conclusion, which seems to better respect the general nature
of argumentation as providing explicit grounds for conclusions. It remains to be investigated whether this
difference affects the present results on the rationality postulates (note that, although Prakken and Sartor
1997 do not assume that the strict rules are closed under transposition, this assumption can be easily added).

In one respect Prakken and Sartor (1997) go beyond the present framework, namely, in making the
preference relation on the set of defeasible inference rules defeasible and derivable within the framework.
In this respect the system is a forerunner of Modgil’s (2009) extended argumentation frameworks.

10 Conclusion
The main rhetorical aim of this paper has been to present the ASPIC framework as a general abstract
framework for rule-based argumentation. In previous publications on the ASPIC framework its unifying
potential was underexposed because of a focus on domain-specific inference rules instead of on general
inference patterns. Here it has been argued that ASPIC, although it can be used as a specific logic at the
same level of abstraction as systems like DeLP, DL and Prakken and Sartor (1997), can also be used as
an abstract framework for reasoning with general inference rules, including argument schemes. Moreover,
it has been shown that by including undermining attack and generalising negation to arbitrary contrary
mappings, the ASPIC framework unifies rule- and assumption-based approaches to argumentation. The
latter claim has been backed by a formal proof that assumption-based argumentation (Bondarenko et al.,
1997; Dung et al., 2007) is a special case of the framework and by semi-formal explanations that the same
holds for Verheij’s (2003) DefLog and (to a large extent) Amgoud and Cayrol’s (2002) version of deductive
argumentation.

In addition, the following technical contributions have been made:

• a generalisation of the ASPIC framework to arbitrary relations of contrariness between well-formed
formulas;

• an extension of the ASPIC framework with preference information for resolving conflicts between
arguments;

• an extension of the ASPIC framework with four types of premises and with undermining attack;

• proof that Caminada and Amgoud’s (2007) rationality postulates still hold for the thus generalised
and extended framework, and that they hold not only for systems closed under transposition but also
for systems closed under contraposition.

The framework can be further extended and investigated in several ways. Firstly, as indicated above in
Section 3.3.2, several alternative ways to define the relation between the three kinds of defeat are possible.
It could be investigated to what extent such alternatives affect the present results. The same holds for the
use of preferences to resolve undercutting attack (also discussed in Section 3.3.2), for the constraint that
arguments have consistent premises (cf. the discussion of deductive argumentation in Section 9) and for
alternative ways to define argument conflicts involving strict rules (cf. the discussion of Prakken and Sartor
1997 in Section 9).

Finally, as touched upon at the end of Section 9, an important extension of the present framework is
making the preference relations that are used for resolving conflicts defeasible and derivable within the
framework. This could be done along the lines of Prakken and Sartor (1997), after which it should be
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investigated whether Modgil’s (2009) reconstruction of Prakken and Sartor (1997) as an instance of his
extended argumentation frameworks can be adapted to the extended ASPIC framework.

Appendix: proofs
Proposition 5.8 Consider any argumentation theory with L closed under classical negation and − defined
accordingly. Then ifRs consists of all valid propositional inferences thenRs is closed under contraposition
and transposition.

Proof: Note first that if Rs consists of all valid propositional inferences, then ` satisfies the deduction
theorem, i.e., it satisfies

{p1, . . . , pn} ` q ⇔ ` (p1 ∧ . . . pn) ⊃ q

Now consider any rule p1, . . . , pn → q. Then {p1, . . . , pn} ` q so by the deduction theorem ` (p1 ∧
. . . pn) ⊃ q. Then also (by propositional reasoning) ` (¬q∧p2∧ . . . pn) ⊃ ¬p1. But then by the deduction
theorem {¬q, p2, . . . , pn} ` ¬p1 so since Rs contains all valid propositional inferences, Rs contains
¬q, p2, . . . , pn → ¬p1.

Proposition 6.1 Let <A, defeat> be an argumentation framework as defined in Definition 3.22 and E
any of its extensions under a given semantics subsumed by complete semantics. Then for all A ∈ E: if
A′ ∈ Sub(A) then A′ ∈ E.

Proof: The proof is a trivial adaptation of the proof of Proposition 1 of Caminada and Amgoud (2007),
taking the possibility of undermining defeat into account.

Proposition 6.2. Let <A, defeat> be an argumentation framework corresponding to an argumentation
theory, and E any of its extensions under a given semantics subsumed by complete semantics. Then
{Conc(A)|A ∈ E} = ClRs({Conc(A)|A ∈ E}).

Proof: Caminada and Amgoud’s proof of their Proposition 8 depends on Proposition 6.1, which also holds
for the present framework, and makes no assumptions on the use of priorities. Therefore the proof also
holds for the present version.

Theorem 6.9. Let<A, defeat> be an argumentation framework corresponding to a well-formed argumen-
tation theory that is closed under contraposition or transposition and has a reasonable argument ordering
and a consistent ClRs(Kn), and let E be any of its extensions under a given semantics subsumed by
complete semantics. Then the set {Conc(A) | A ∈ E} is consistent.

Proof: Let E be a complete extension. Suppose that {Conc(A) | A ∈ E} is inconsistent. This means that
∃A,B ∈ E, Conc(A) = Conc(B). Since E is a complete extension, E is conflict-free. This means that A
does not defeat B and B does not defeat A. It will be shown that this leads to a contradiction.

First the following lemmas are proven.

Lemma 10.1 Let A be an argument and B a plausible or defeasible argument in an argumentation theory
that is closed under contraposition or transposition such that Conc(A) and Conc(B) are contradictories.
Then A can be extended to an argument A+ that rebuts or undermines B.

Proof: Consider first systems closed under contraposition. By Corollary 6.6 it holds that Conc(M(B)) `
Conc(B) so with contraposition (which is assumed to hold) and since Conc(A) and Conc(B) contradict
each other we have for any Bi ∈M(B) that Conc(M(B) \ {Bi})∪ Conc(A) ` −Conc(Bi). Then clearly
M(B)\{Bi} and M(A) are the maximal fallible subarguments of an argument A+ for−Conc(Bi). Since
by construction of M(B) either Bi is a non-axiom premise or ends with a defeasible inference, A+ either
undermines or rebuts Bi. But then A also undermines or rebuts B.

For systems closed under transposition the existence of arguments A+ and Bi is proven by straightfor-
ward generalisation of Lemma 6 of Caminada and Amgoud (2007). Then the proof can be completed as
above.
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Corollary 10.2 If the argumentation theory has a reasonable argument ordering then if B ≺ A, then A+

defeats B.

Proof: (Continuing the proof of Lemma 10.1) Since � is reasonable, there exist such a Bi and A+ such
that A+ 6≺ Bi. Then A+ defeats Bi so A+ defeats B.

Now for proving Theorem 6.9 the following cases must be distinguished.

1. A ∈ Ki. Then A is not in any extension.

2. A is an assumption. Then since the argumentation theory is well-formed, B is also an assumption so
A and B defeat each other. Contradiction.

3. A is firm and strict. If B is also firm and strict, then ClRs(Kn) is inconsistent, which contradicts the
assumption that it is consistent. If B is plausible or defeasible, then A defeats B by condition (1) of
Definition 3.10. Contradiction.

4. A is plausible or defeasible. If B is firm and strict then this is case (3). If B’s top rule is defeasible
and Conc(A) is a contrary of Conc(B) then A defeats B, while if Conc(A) and Conc(B) contradict
each other, either A defeats B or B defeats A. If B’s top rule is strict then by the assumption that the
argumentation theory is well-formed, Conc(A) and Conc(B) contradict each other. If A ≺ B then
B defeats A while otherwise A can by Lemma 10.1 and Corollary 10.2 be extended to an argument
A+ that defeats B. It is then left to prove that A+ ∈ E. Any defeater C of A+ will by construction
of A+ do so by defeating an element of M(A) or M(B) (since all inferences that are not in M(A)
or M(B) are strict and there are no new premises). However, this defeated element is in E by
Proposition 6.1, so since E is conflict-free, C 6∈ E. But then A+ ∈ E, which contradicts the fact
that E is conflict-free.

Theorem 6.10 Let<A, defeat> be an argumentation framework corresponding to a well-formed argumen-
tation theory that is closed under contraposition or transposition and has a reasonable argument ordering
and a consistent ClRs(Kn), and let E be any of its extensions under a given semantics subsumed by
complete semantics. Then the set ClRs({Conc(A) | A ∈ E}) is consistent.

Proof: As in Caminada and Amgoud (2007).

Corollary 6.11 If the conditions of Theorem 6.10 are satisfied, then for any extension E under a given
semantics subsumed by complete semantics the set {ϕ | ϕ is a premise of an argument in E} is consistent.

Proof: let A be any argument in E and ϕ any premise of A. By definition of an argument, ϕ is a subargu-
ment of A so by Proposition 6.1 we have that ϕ ∈ E. Then the corollary follows from Theorem 6.10 and
the fact that subsets of consistent sets are consistent.

Proposition 6.15 The last-link argument ordering is reasonable.

Proof:

Lemma 10.3 Consider any ordering �s on sets ordered by a partial preorder ≤e such that S1 ≺s S2 iff
there exists an e1 ∈ S1 such that for all e2 ∈ S2 it holds that e1 <e e2. Then if S1 ≺s S2 and e1 is a
non-smallest element of S1 (w.r.t. ≤e), then S2 ∪ {e1} 6≺s S1.

Proof: Straightforward.

Now by Corollary 6.13 that B ≺ A means that there exists a Bi ∈ M(B) with top rule b such that for all
A′ ∈M(A) with top rule a it holds that b < a. Choose such a Bi with minimal b (w.r.t. ≤e) to form A+ as
in the proof of Corollary 10.2. Then by Lemma 10.3 LastDefRules(A+) 6≺s LastDefRules(Bi). But
then A+ 6≺ Bi.

Proposition 6.18 The weakest-link argument ordering is reasonable.
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Proof:
That B ≺ A now means that Prem(B) ≺s Prem(A) and DefRules(B) ≺s DefRules(A).
If DefRules(B) 6= ∅ then there exists a Bi ∈ DefRules(B) with top rule b such that for all A′ ∈

DefRules(A) with top rule a it holds that b < a. Choose such a Bi with minimal b (w.r.t. ≤) in the
construction of A+ and Bi in the proof of Corollary 10.2. Then since all new defeasible rules of the
corresponding A+ are from elements of M(B), by Lemma 10.3 DefRules(A+) 6≺s DefRules(B). But
then A+ 6≺ Bi.

If DefRules(B) = ∅ then DefRules(A) = ∅. Since Prem(B) ≺s Prem(A) there exists a premise p in
Prem(B) such that for all premises p′ in Prem(A) it holds that p′ < p . Then in the construction of A+ and
Bi in the proof of Corollary 10.2, choose Bi to be an argument containing a minimal such p. Then since
all new premises of the corresponding A+ are from Prem(B), by Lemma 10.3 Prem(A+) 6≺s Prem(B).
But then A+ 6≺ Bi.

Proposition 8.7 For all ABF such that AT = ATABF does not allow arguments with an infinite number
of subarguments, there exists an argument A `ABF α if and only if there exists an argument A `AT α.

Proof:
⇒ For the only-if part, let S1, . . . , Sn be a backward deduction of α. It will be shown by induction

on the structure of backward deductions that there exists an AT -argument with conclusion α and premises
Sn.

Note first that since all elements of Sn are in A so in Ka, by clause 1 of Definition 3.6 they are all an
AT -argument and their premises are all in Sn.

Consider next any set Si such that all elements of Si+1 are the conclusion of an AT -argument with
premises from Sn. Then for any element αi of Si, if αi is also in Si+1, then trivially αi is the conclusion
of an AT -argument with premises in Sn, otherwise for some set S = {β1, . . . , βm} ⊆ Si+1 there exists a
rule β1, . . . , βm → αi in RABF . But then this rule is also in Rs. Let, furthermore, the AT -arguments for
β1, . . . , βm (which exist by the induction hypothesis) be B1, . . . , Bm: then by clause 2 of Definition 3.6,
B1, . . . , Bm → αi is an AT -argument for αi with all its premises in Sn.

Next it is proven that for any Si the union of all premises of all AT -arguments for elements in Si is
Sn. Note that for any pair Si, Si+1, the set Si+1 is formed by replacing at most one element σ in Si with
a set S in Si+1. As just proven, there exists an AT -argument B1, . . . , Bm → αi, where B1, . . . , Bm are
the AT -arguments for all elements in S. By clause 2 of Definition 3.6 the premises of this argument are
the union of the premises of the arguments B1, . . . , Bn. But then no premises have been added or deleted
by creating Si+1 from Si. Note finally, that the union of the premises of all AT -arguments for any ele-
ment in Sn (which are these elements themselves) trivially equals Sn. But then this set equals Sn for all Si.

⇐ For the if-part, suppose P `AT α. A backward deduction with multisets S1, . . . , Sn such that
S1 = {α} and Sn = P can be created as a maximal sequence such that:

1. S1 = {α},

2. For all Si(i ≥ 1): create Si+1 by selecting one element σ from Si not selected before and:

(a) if σ ∈ P then Si+1 = Si; otherwise

(b) Si+1 = Si − {σ} ∪ S for some S = {Conc(B1), . . . , Conc(Bn)} such that there exists an
argument B ∈ Sub(A) of the form B1, . . . , Bn → σ.

It is now proven that for any Si and any σ ∈ Si one of these two conditions is satisfied, i.e., either σ ∈ P or
σ is the conclusion of an argument in Sub(A). The proof is with induction on the structure of S1, . . . , Sn.
Consider first S1 = {α}. Then if A = α ∈ Ka, then trivially α ∈ P , otherwise A = A1, . . . , An → α so
trivially A ∈ sub(A). Consider next any Si such that all its elements satisfy conditions 2a and 2b. Then
if Si+1 = Si this trivially also holds for Si+1, otherwise if S replaces σ in Si+1 then by the induction
hypothesis this is since there exists a subargument B ∈ Sub(A) of the form B1, . . . , Bn → σ such
that S = {Conc(B1), . . . , Conc(Bn)}. Then clearly for any new element Conc(Bi) ∈ S there exists a
subargument for it in Sub(A), namely, Bi.
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Next, since all steps in the sequence apply an inference rule from Rs, which by Definition 8.6 is also
in RABF , the sequence clearly is a backward deduction.

Finally it is proven that the sequence ends with Sn = P . Let Sub∗(A) be the multiset consisting of,
for all A′ ∈ Sub(A) , as many occurrences as there are inferences in A that use (A’). Note that by the
assumption that Sub(A) is finite, Sub∗(A) is also finite. Then let for any Si the set UnusedSub(Si) be
the subset of all arguments in Sub∗(A) that were not used to create Si from S1. (So UnusedSub(S1) =
Sub∗(A) and e.g. UnusedSub(S2) = Sub∗(A)− {A}). Then note that by any application of condition 2b
this multiset loses one element. Then since S1, . . . , Sn is a maximal sequence of elements satisfying
conditions 1 and 2, we have that UnusedSub(Sn) = ∅. Then since P ⊆ Sub∗(A), we have that P ⊆
Sn. Assume next for contradiction that there is an element σ ∈ Sn which is not in P : then, as proven
above, σ can be replaced by a set S such that S → σ is an inference in A, so S1, . . . , Sn is not maximal.
Contradiction, so Sn = P .

Proposition 8.8 For all ABF such that AT = ATABF does not allow arguments with an infinite number
of subarguments it holds for every argument A `ABF α and every argument A `AT α that A `ABF α is
defeated by an argument B `ABF β if and only if A `AT α is defeated by an argument B `AT β.

Proof: ⇒ Assume A `ABF α and B `ABF β defeats A `ABF α. Then according to the contrariness
mapping in ABF we have that β = p for some p ∈ A. Furthermore, by Proposition 8.7 there exists an
A `AT α and an argument B `AT β. Then by identity of the contrariness mappings we also have that
β = p for some p ∈ A according to AT . Then since p ∈ Ka, clearly B `AT β defeats A `AT α.

⇐ Assume A `AT α and B `AT β defeats A `AT α. Then since all arguments in AT are strict, B
undermines A and according to the contrariness mapping in AT we have that β = p for some p ∈ A.
Furthermore, by Proposition 8.7 there exists an A `ABF α and an argument B `ABF β. Then by identity
of the contrariness mappings we also have that β = p for some p ∈ A according to ABF . Then since
p ∈ A, clearly B `ABF β defeats A `ABF α.

Theorem 8.9 For all ABF , any semantics S subsumed by complete semantics and any set E:

1. if E is an S-extension of ABF then EAT is an S-extension of AT , where EAT = {A `AT α |
A `ABF α ∈ E};

2. if E is an S-extension of AT then EABF is an S-extension of ABF , where EABF = {A `ABF α |
A `AT α ∈ E}.

Proof: As before, the proof for complete semantics suffices.

1. Consider any complete extension E of ABF . It is first proven that any member of EAT is defended
by EAT . Since E is conflict-free, by construction of EAT and Proposition 8.8 also EAT is conflict-
free. Consider next any A `AT α ∈ EAT defeated by some B `AT β. By construction of EAT ,
there exists an A `ABF α ∈ E. Then by Propositions 8.7 and 8.8 there exists a B `ABF β
defeating A `ABF α. But since E is a complete extension, B `ABF β is in turn defeated by some
C `ABF γ ∈ E. Then by construction of EAT and Proposition 8.7, also C `AT γ ∈ EAT and by
Proposition 8.8, C `AT γ defeats B `AT β. So A `AT α is defended by EAT .

Next, to prove that any argument defended by EAT is a member of EAT , assume A `AT α is
defended by EAT . Then any of its defeaters B `AT β is in turn defeated by an element C `AT γ ∈
EAT . But then by Proposition 8.8 the same holds for their corresponding ABF -arguments, which
exist by Proposition 8.7. Moreover, by construction of EAT we have that C `ABF γ ∈ E so, since
E is a complete extension, also A `ABF α ∈ E. But then A `AT α ∈ EAT by construction of EAT

and Proposition 8.7.

2. The proof of (2) is entirely similar and therefore omitted.

Corollary 8.10 For any ABF , any semantics S subsumed by complete semantics, and for any formula ϕ it
holds that ϕ is skeptically (credulously) S-acceptable in ABF if and only if ϕ is skeptically (credulously)
S-acceptable in ATABF .

Proof: Straightforward.
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