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Abstract. We propose a formal operational semantics for service discovery and binding. This semantics is
based on a graph-based representation of the configuration of global computers typed by business activities.
Business activities execute distributed workflows that can trigger, at run time, the discovery, ranking and
selection of services to which they bind, thus reconfiguring the workflows that they execute. Discovery, rank-
ing and selection are based on compliance with required business and interaction protocols and optimisation
of quality-of-service constraints. Binding and reconfiguration are captured as algebraic operations on config-
uration graphs. We also discuss the methodological implications that this model framework has on software
engineering using a typical travel-booking scenario. To the best of our knowledge, our approach is the first
to provide a clear separation between service computation and discovery/instantiation/binding, and to offer
a formal framework that is independent of the SOA middleware components that act as service registries or
brokers, and the protocols through which bindings and invocations are performed.

Keywords: Business-reflective run-time configurations; Dynamic reconfiguration; Quality-of-service con-
straints; Service binding, discovery, ranking; Service level agreement; Service-oriented computing

1. Introduction

Service-Oriented Computing (SOC) is a new paradigm in which interactions are no longer based on the
exchange of products with specific parties — what is known as clientship in object-oriented programming
— but on the provisioning of services by external providers that can be procured on the fly subject to a
negotiation of service level agreements (SLAs). A number of research initiatives (among them the FET-
GC2 integrated project Sensoria [WHar]) have been proposing formal approaches that address different
aspects of the paradigm independently of the specific languages that are available today for Web Services
(e.g., [BMR97, Pel03]) or Grid Computing (e.g., [FK04]). For example, recent proposals for service calculi
(e.g., [BBC+06, CHY07, LPT07, KQCM09]) address operational foundations of SOC (in the sense of how
services compute) by providing a mathematical semantics for the mechanisms that support choreography
or orchestration — sessions, message/event correlation, compensation, inter alia. This line of work has

Correspondence and offprint requests to: J. Fiadeiro, Department of Computer Science, University of Leicester, University
Road, Leicester LE1 7RH, UK, e-mail: jose@mcs.le.ac.uk



2 J. Fiadeiro, A. Lopes and L. Bocchi

contributed to languages and standards developed by organisations such as OASIS (www.oasis-open.org)
and W3C (www.w3.org) for Web Services.

Whereas such calculi address the need for specialised language primitives for programming in this new
paradigm, we are still lacking models that are abstract enough to understand the engineering foundations
of SOC, i.e., those aspects (both technical and methodological) that concern the way applications can be
developed to provide business solutions, independently of the languages in which services are programmed.
The Open Service Oriented Architecture collaboration (www.osoa.org) has been proposing a number of
specifications, namely the Service Component Architecture (SCA), that address this challenge: “SCA aims to
provide a model for the creation of service components in a wide range of languages and a model for assembling
service components into a business solution — activities which are at the heart of building applications using
a service-oriented architecture” [OSO05].

However, SCA addresses low-level design in the sense that it provides an assembly model and binding
mechanisms for service components and clients programmed in specific languages, e.g., Java, C++, BPEL, or
PHP. The goal of the work that we discuss in this paper is to address high-level design. More specifically, we
aim for models and mechanisms that support the design of complex services from business requirements in
ways that are independent of the languages in which the service components are programmed, and for analysis
techniques through which designers can verify or validate properties of composite services. So far, SOC has
been short of support for high-level modelling. Indeed, languages and models that have been proposed for
service modelling and design (e.g., [BKM07, DD04, Rei05]) do not address the higher level of abstraction
that is associated with business solutions, in particular the key characteristic aspects of SOC that relate
to the way those solutions are put together dynamically in reaction to the execution of business processes
— run-time discovery, instantiation and binding of services. Yet, these dynamic aspects are among those
that truly distinguish SOC from component-based development and other forms of distributed computing
[Elf07, GL07]. They are also the aspects that are particularly relevant for the engineering foundations of
SOC.

This is why, within Sensoria, we have defined the modelling language Srml [FLBAar]. Its ‘static’
aspects — the design-time definition of complex services in terms of orchestrations of simpler services —
are formalised over state transition systems and temporal logic [AF08, FLA10]. Its ‘dynamic’ aspects are
formalised over the mathematical model put forward in this paper. More specifically, the model that we
propose herein is, essentially, parametric in the formalisms adopted for modelling the static aspects and,
therefore, can be instantiated for those used in Srml. To the best of our knowledge, our approach is the first
to provide a clear separation between service computation and discovery/instantiation/binding, and to offer
a formal framework that is independent of the SOA middleware components that act as service registries or
brokers (e.g., the UDDI [UDD04]) and the protocols through which bindings and invocations are performed
(e.g., SOAP [W3C07]).

In the rest of this section, we make more precise the nature and the role of the mathematical model
that we define in the paper. We also present the example that will be used to illustrate the way our model
supports SOC. In Section 2, we expand on the notion of service-overlay computer; we discuss the notion of a
service that we address in the paper and the impact of SOC on software engineering methodology; then, we
put forward a layered graph-based model for state configurations of global computers, made to be ‘business
reflective’ by enriching them with an explicit representation of the types of business activities that are active
in the current state. In Section 3, we discuss the typing mechanism that we propose for services and a notion
of correctness that acts as an abstract static semantics of services; we also formalise the notion of quality of
service. In Section 4, we present a formal model for service discovery and binding. In Section 5, we compare
our proposal to other related approaches. We conclude with an overview of the way the proposed formal
model was used within Sensoria in support of a service-based modelling approach to software-intensive
systems.

1.1. Models for service-oriented computing

Mathematical models that capture the essence of a paradigm at the desired level of abstraction play an
essential role as a foundation for methods, languages and support tools for that paradigm. The choice of a
model reflects the level of abstraction at which one wishes to capture a particular aspect of a paradigm. In
this paper, our concern is not the behaviour of software applications viewed in terms of the transformations
that they perform over data or the events that they exchange with their environment. Like in SCA, we
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address the coarser-grain process that SOC induces over the configuration of systems because of the ability
that applications have to bind dynamically to services that are discovered, selected and instantiated at run
time. This is why, drawing an analogy with the semantics of programming languages, we could say that we
put forward mathematical notions of (typed) state and state transition that account for the evolutionary
process that SOC induces over software systems.

Therefore, the proposed model addresses the layer of abstraction that SOAs superpose over any concrete
computer platform in terms of service discovery, instantiation and binding. Just like developers working over
an object-oriented platform do no need to program the dynamic allocation, referencing and de-referencing of
names, designers of complex services working over a SOA should not need to include the discovery, selection
and binding processes among the tasks of the orchestrators of the services.

In this sense, our aim is to provide an abstract virtual machine that captures the essence of SOC as
a ‘business overlay computer’. Our operational model does not include the service broker or the service
providers as components of the system — it relies on them as resources available in the architecture in
the same way as an operational model for sequential programming does not include memory allocation or
access as processes. The availability of abstract models such as the one we propose in this paper is a pre-
condition for defining semantically-enhanced service discovery [PTDL07], a challenge that has already led
to the definition of a run-time infrastructure consisting of a number of brokers that handle quality-of-service
constraints [MDSR07].

More specifically, in the model that we propose in Section 2, the states of the abstract virtual machine are
graphs of components and connectors that capture configurations that execute business activities, and state
transitions are reconfigurations that result from binding to selected services. In order to make the model
reflective (in the sense of [CBG+08], as discussed in Section 2.3), states are typed with so-called activity
modules, which determine the state transitions that are possible, i.e., the services that need to be discovered
and the criteria for selection — matching required functional properties and optimising quality-of-service
constraints. In Section 2.2, we also discuss how these abstract states and transitions of the configuration
process relate to the computational model that captures the way components execute in each configuration.

1.2. The travel-booking scenario

In order to illustrate our approach, we use a travel-booking scenario that goes somewhat beyond what is
typically found in papers on SOA. In this example, we consider the case of a company that wishes to offer as
a service the ability to book a flight and a hotel according to given preferences, and handle the corresponding
payments. For that purpose, the company has a database of clients and an agent that orchestrates a booking
process that relies on three external agents: one that handles the booking of the flights, another the booking
of the hotel, and a third the payments. In order to be able to offer the best possible deal at any moment
and take into account data of the specific customer, these external agents are procured at run time subject
to given service-level agreements.

From the software development point of view, adopting a service-oriented approach means that the
booking agent is not programmed to perform the discovery and selection of these external agents. These
tasks are left to the middleware, which is also responsible for binding the booking agent with the selected
agents. From a modelling point of view, this means that the task of the designer is just to define the criteria
according to which the discovery and selection should be made. Concerning the database of users, although
it is external to the service, it is internal to the service provider and does not need to be discovered —
binding takes place when the service is invoked and the booking agent is instantiated.

The customers of the service offered by this company will be software components that implement business
activities run by other companies, which require the use of a travel agent. This means that, in order to be
discovered by these activities, our travel-booking service provider needs to register with a directory in which
it advertises the properties of the service that it offers. Typically, these business activities will include an
interface to a user that can invoke them directly. In our example, this user could be a person wishing to
go on holiday who uses a web browser to launch an activity on their favourite holiday agent’s site. That
activity would then execute its business process over a SOA, which could include binding dynamically to a
travel agent that, say, offers a best match for the user’s environmental concerns or to a trusted agency that
can provide a nanny to look after the user’s children.
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2. Business-Reflective Configurations of Global Computers

2.1. Service-overlay engineering methodology

The term ‘service’ is being used in Information Technology (IT) in a wide variety of contexts, often with
different meanings. In this paper, we address the notion of ‘service-overlay computer’, by which we mean the
development of highly-distributed loosely-coupled applications over ‘global computers’ — “computational
infrastructures available globally and able to provide uniform services with variable guarantees for com-
munication, co-operation and mobility, resource usage, security policies and mechanisms” (see the Global
Computing Initiative at cordis.europa.eu/ist/fet/gc.htm).

In this context, it is necessary to rethink the way software applications are engineered. It is clear that the
typical ‘static’ scenario in which components are assembled to build a (more or less complex) system that
is delivered to a customer no longer applies. Instead, SOC supports more ‘dynamic’ development scenarios
in which (smaller) applications are developed to run on global computers and respond to business needs
by interacting with services and resources that are globally available. In this latter setting, there is much
more scope for flexibility in the way business is supported: business processes need not be confined to fixed
organisational contexts; they can be viewed in more global contexts as emerging from a varying collection of
loosely coupled applications that can take advantage of the availability of services procured on the fly when
they are needed.

Indeed, an important impact that we see SOC having on software engineering methodology derives
from the fact that the discovery and selection of services required by business applications is performed,
on the fly, by the middleware (not by skilled engineers at design time), and that this selection is not made
from a fixed universe of business components but an open and dynamic market of service provision. Likewise,
developing services that can be discovered is not the same as developing software applications to a costumer’s
set of requirements: it is a separate business that exists independently of the nature of the customers. This
independence requires the definition of shared ontologies of data and services so that providers and requesters
can negotiate and agree on levels of service provision.

This view is summarised (in a somewhat abstract form) in Figure 1, where we elaborate beyond the
basic Service-Oriented Architecture [ACKM04] to make explicit the different stakeholders and the way they
interact, which is important for understanding the formal model that we are proposing. In this model,
we distinguish between ‘business activities’ and ‘services’ as software applications that pertain to different
stakeholders (see [GL07] for a discussion on the stakeholders of service-oriented systems):

• Activities correspond to applications developed by ‘business IT teams’ according to requirements provided
by their organisation, e.g., the applications that, in a tour operator, implement the products that are made
available to its customers. The activity repository provides a means for the computing infrastructure of
the organisation to trigger such applications when the corresponding requests are published, say when a
client requests a quote for a holiday at a counter or through the web. The implementation of activities
may resort to ‘classical’ direct invocation of components (e.g., for exchange rates or medical insurance),
but it can also rely on services that will be procured on the fly (for instance, an agent that can take care
of the travel requirements) to ensure competitiveness and context-based optimisation.

• Services differ from activities in that they are not developed to satisfy specific business requirements
of a given organisation. Instead they are developed by service providers who publish them (in service
repositories) in ways that allow them to be discovered when a request for an external service is published
in the run-time environment. As such, they are classified according to generic service descriptions that
are organised in a hierarchical ontology to facilitate discovery. In the SOA middleware that is currently
available, the UDDI [UDD04] is an example of a (less sophisticated) service registry or broker.

Notice that the ‘business IT teams’ and the ‘service providers’ can be totally independent and unrelated:
the former are interested in supporting the business of their companies or organisations, whereas the latter
run their own businesses. They share the ontology component of the architecture so that they can do business
together. In addition to these two repositories, our engineering infrastructure includes:

• A configuration management unit, which is responsible for the binding of the new components and
connectors that derive from the instantiation of new activities or services. Current SOA middleware uses
mechanisms like SOAP [W3C07] for providing the protocols through which bindings and invocations are
performed.
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Fig. 1. Overall engineering architecture and processes

• An ontology unit, which is responsible for organising both data and service descriptions. This is an area
that is still lacking standards, though there has been substantial progress in the development of Semantic
Web techniques (see the W3C Semantic Web Activity at www.w3.org/2001/sw/).

In the context of this infrastructure, the paper makes the following contributions:

• It proposes a formal (graph-based) model for the ‘current configuration’ (Section 2.2).

• It proposes formal notions of type for business activities and services that are parametric on the formalisms
that are used for describing orchestrations and interactions (Sections 2.3 and 3.1).

• It uses these types to make the current configuration business-reflective, i.e., it adds to the configuration
a level of representation that makes the underlying business model explicit and uses that representation
for rewriting the configuration according to given business rules (Sections 2.3 and 3.1).

• It proposes a formal notion of SLA and negotiation based on constraint optimisation with c-semirings
[BMR97] (Sections 3.2 and 4.1).

• It proposes a formal model of service discovery and binding over such business-reflective configurations
(Section 4.1).

We do not discuss the classification and retrieval mechanisms per se, i.e., the processes through which
the activity and service repositories are managed. See, for instance, [Pah07, RS04] for some of the aspects
involved when addressing such issues.
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Fig. 2. The graph of a state configuration with 12 components and 13 wires decorated with the iconography of Srml (sum-
marised in the Appendix)

2.2. Layered state configurations of global computers

As already mentioned, we take SOC to be about applications that can bind to other applications discovered at
run time in a universe of resources that is not fixed a priori. As a result, there is no structure or configuration
(or what sometimes is called ‘system architecture’) that one can fix at design-time for an application; rather,
there is an underlying notion of configuration of a global computer that keeps being redefined as applications
execute and get bound to other applications that offer required services. As is often the case (e.g., [AG98]),
by ‘configuration’ we mean a graph of components (applications deployed over a given execution platform)
linked through wires (e.g., interconnections between components over a given communication network) in a
given state of execution. Typically, wires deal with the heterogeneity of the partners involved in the provision
of the service, performing data (or, more, generally, semantic) integration.

Figure 2 presents an example of a configuration related to the case study described in Section 1.2 —
the nodes of the configuration graph correspond to the boxes and the edges to the lines (the meaning of
the shadows is explained below). The example consists of two instances of a travel-booking activity sharing
a database DB of users. Each of these activities corresponds to a sub-graph that captures a distributed
orchestration of the activity, as explained in Section 2.3 and illustrated in Figure 3.

We denote by Comp and Wire the set of all components and wires, respectively. Every component
c∈Comp and wire w∈Wire may be in a number of states (e.g., valuations of local state variables), the set
of which is denoted by Statec and Statew, respectively. We denote by State the corresponding indexed
family of sets of states. The precise nature of these local states is of no particular importance for this paper —
in relation to the semantics of discovery and binding, the dependency on states concerns the evaluation of the
conditions that trigger the discovery of external services (as discussed in Section 4.1) and the initialisation
of the new components and wires that result from the binding (as discussed in Section 4.2), both of which
are dealt with what we call ‘internal configuration policies’ (see Section 3.2). Consequently, we refrain from
making any further assumptions on State. The specific nature of the states and state transitions used in
Srml is presented in [FLA10].

Definition 2.1 (State configuration). A state configuration F consists of:

• A simple graph G, i.e., a set nodes(F) and a set edges(F) where every edge is associated with a 2-
element set (unordered pair) n↔m of nodes. We take nodes(F)⊆Comp (i.e., nodes are components) and
edges(F)⊆Wire (i.e., edges are wires).

• A (configuration) state S, which assigns a state S(n)∈Staten to every node n and a state S(e)∈Statee
to every edge e.

Every state configuration 〈G,S〉 can change because either the state function S or the graph G changes (or
both, in the case of components or wires that are not effected by the reconfiguration). Changes to the state
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function result from computations executed by components and the coordination activities performed by the
wires that connect them. However, the essence of SOC, as we see it in this paper, is not captured at the level
of state changes (which is basically a distributed view of computation), but at the level of the changes that
operate on configuration graphs: in SOC, changes to the underlying graph of components and wires occur
at run time when a component performs an action that triggers the discovery and binding of a service.

Another important aspect of our model is the fact that we view SOC as providing a layer that interacts
with two other layers. This can be noticed in Figure 2 where shadows are used for indicating that certain
components reside in different layers: LUI and AUI (two user interfaces) belong to what we call the top (or
user) layer; DB (a database of users) lies in the bottom (or persistent) layer; all other components execute
in the middle (or service) layer.

We use layers as abstractions of organisation and change, not as hierarchies of implementation as found
in software engineering where one layer provides the implementation of the design primitives used in the
layer above. Our notion of layer is closer to that of 3-tiered architectures, but our layers do not impose a
strict hierarchical design methodology in the sense that components are not designed and implemented to
sit on a particular layer. Rather, our layers reflect the dynamics of configurations from the point of view of
the activities that drive a given business system. This is why there is no formal, static semantics of layers: a
configuration is a (flat) graph as indicated above but, in order to understand and model the way it evolves,
it is useful to distinguish different levels of dynamicity.

More precisely, in the context of a business activity (for example, an activity executing the request of
a client for booking a holiday), the components that execute in the middle layer reflect the sessions of a
number of services whose discovery the activity has triggered (e.g., the workflow that orchestrates the travel
reservation of that client). These components are created when the session of the corresponding service
starts, i.e., as fresh instances that last only for the duration of the session.

The bottom layer consists of the components and connectors that are persistent as far as the service
layer is concerned; that is, when a new session of a service starts (for example, a travel agent starts booking
a trip on behalf of the activity’s client), the components of the bottom layer should be available so that, as
the service executes, they can be used as (shared) servers — for example, a database of clients shared by all
sessions of the travel booking service, or the reservation log of a hotel, or a currency converter. In particular,
the bottom layer can be used for making persistent the effects of services as they execute. In component-
based development (CBD) one often says that the bottom layer provides ‘services’ to the layer above. As we
see it in this paper, the difference between CBD and SOC is precisely in the way such services are procured,
which in the case of SOC involves identifying (possibly new) providers and negotiating terms and conditions
for each new instance of the activity, e.g., for each new user of a holiday-booking agent. SOA middleware
supports this service layer by providing the infrastructure for the discovery and negotiation processes to be
executed without having to be explicitly programmed as (part of) components.

The top layer is the one responsible for launching business activities. More precisely, the user of a given
activity resides in the top layer; it can be an interface for human-computer interaction, a software component,
or an external system (e.g., a control device equipped with sensors). When the user launches an activity, a
component is created in the service layer that starts executing a workflow that may involve the orchestration
of services that will be discovered and bound to the workflow at run time. This is explained in more detail
in Section 4.2.

2.3. Business activities and configurations

In our model, state configurations change as a result of the execution of business processes. More precisely,
changes to the configuration graph result from the fact that the discovery of a service is triggered and, as a
consequence, new components are added and bound to existing ones (and, possibly, other components and
wires disappear because they finished executing). The information about the triggers and the constraints that
apply to service discovery and binding are not coded in the components themselves: they are properties of the
business activities that are active and determine how the configuration evolves. Thus, in order to formalise
the dynamic aspects of SOC, we need to look beyond the information available in a state configuration —
state configurations account only for which components are active and how they are interconnected, not why
they are active and interconnected in that way.

Business activities are autonomous and active computational ensembles of components that collectively
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Fig. 3. The sub-configurations corresponding to two business activities

pursue a given business goal and are able to bind dynamically to services discovered at run time, thus
reconfiguring the ensemble as it executes. A business activity is characterised, in every configuration, by:

• A sub-configuration, i.e., a subset of the components, and the wires between them, that execute as part
of the activity.

• A model of the workflow that implements the business logic of the activity.

For instance, we identify in Figure 3 the sub-configurations of the two activities that we mentioned relative
to the configuration depicted in Figure 2. Intuitively, both correspond to two instances of the same business
logic (two customers booking their travel using the same service) but at different stages of their workflow:
one (launched by LUI) is already connected to a flight and a hotel agent (LauF and LauH, respectively); the
other (launched by AUI) is also connected to a (different) flight agent (AntF), but still has to find a hotel
agent. Both share the component DB (a database of users shared by all instances of the service), which
resides in the bottom layer (for persistency).

What we are calling ‘business logic’ is formally captured by typing the sub-configuration of the activity by
what we call an ‘activity module’. An activity module is a modelling artefact defined by a graph whose nodes
correspond to interfaces and are typed by formal descriptions or specifications of the behaviour expected at
those interfaces. We use the graphical notation of Srml [FLBAar] to depict activity modules, an example
of which is given in Figure 4 (a summary of the elements used in this notation is given in the Appendix).

We distinguish between different kinds of interfaces, which in the graphical notation corresponds to the
shapes and their placement relative to the boundary. What we call ‘component-interfaces’ correspond to
the rectangles inside the boundary: their labels are called ‘business roles’, which describe the behaviour of
the components that, in a state configuration, implement the interface. For instance, the activity module
depicted in Figure 4 types the component-interface Lau with the business role BizTrav. For the purposes
of this paper, the exact language that is used for defining business roles is not important. We will simply
assume that we have available a set Brol of business roles and a typing relation on Comp×Brol through
which we can tell whether a given component complies with a given business role.

Other nodes of activity modules may consist of interfaces to components of the bottom layer: this is
the case of DB of type UsrDB. Several such ‘uses-interfaces’ (possibly none) can be included in an activity
module. They are depicted through skewed quadrangles and placed at the bottom boundary. Every activity
module includes a ‘serves-interface’ for the top layer, also depicted through a skewed quadrangle but placed
at the top boundary. This is the case of LUI of type TravUI — a user interface through which the travel
booking is made. Both uses- and serves-interfaces are labelled by ‘layer protocols’ — descriptions of the
behaviour that can be expected at the interfaces. Once again, the exact nature of these descriptions is not
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Fig. 4. An activity module

relevant for the purposes of this paper, so we will simply assume that we have available a set Layp of
specifications of layer protocols and a typing relation on Comp× Layp.

The edges of an activity module are called ‘wire-interfaces’ and labelled with connectors [AG98]. For
instance, in Figure 4, the wire-interface BHL is labelled with the connector 〈c3,≡, b2〉. As defined in Section
3.3, a connector consists of an ‘interaction glue’ that describes a protocol between two ‘roles’ (by ≡ we
denote a direct transmission of events [ABFL07]) and two attachments (c3 and b2 in the example at hand)
linking the roles to the two nodes (LauBA and LauH, respectively). In general, the interaction glue may
include the routing of events, encryption/decryption of messages, or transforming sent data to the format
expected by the receiver. See [ABFL07] for a detailed account of how connectors are formalised in Srml,
and [FS07] for a language-independent algebraic semantics. We use Cnct to designate the set of connectors
and Iglu the set of specifications of the corresponding interaction glue. We also rely on a typing relation
Wire×Cnct between wires and connectors. In software architecture in general, connectors may involve an
arbitrary number of roles, but service-oriented architectures involve only interactions between two parties.

Finally, an activity module identifies three important aspects related to the way the configuration can
evolve and the activity can reconfigure its workflow:

• The external services that the activity may still need to discover and bind to in order to fulfil its business
goal.

• An internal configuration policy (indicated by the symbol ), which identifies the triggers of the external
service discovery process as well as the initialisation and termination conditions of the components.

• An external configuration policy (indicated by the symbol SLA ), which consists of the variables
and constraints that determine the quality profile of the activity to which the discovered services need
to adhere.

The configuration policies (both internal and external) are discussed in more detail in Section 3.2.
Concerning the external services, activity modules can have multiple (or none) ‘requires-interfaces’, which

are labelled by ‘business protocols’ specifying the properties required of the services that need to be procured
externally. Requires-interfaces are presented by convex pentagons and placed at the right-hand boundary.
For instance, the node BA labelled by the business protocol HotelAgent in the activity module depicted in
Figure 5 is a requires-interface for a hotel booking service. In Srml, business protocols are specifications
written in a temporal logic of stateful interactions [FLA10]. Once again, the exact logic that is used for
specifying requires-interfaces is not relevant for this paper, so we assume that we have available a set Busp
of specifications of business protocols.

Notice that the wire-interfaces that connect the requires-interfaces to the other parties — BH in the
example in Figure 5 — should also be seen as part of the services that are required by the activity. More
precisely, they specify the protocols through which the activity wants to interact with the external services.

Definition 2.2 (Activity module). An activity module M consists of:
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Fig. 5. An activity module with a requires-interface

• A graph graph(M).

• A subset of the nodes requires(M)⊆nodes(M).

• A subset of the nodes uses(M)⊆nodes(M) disjoint from requires(M).

• A node serves(M)∈nodes(M) not belonging to requires(M) or uses(M).

• A labelling function labelM such that

– labelM (n)∈Brol if n∈components(M), where
components(M) = nodes(M) \ (requires(M) ∪ uses(M) ∪ {serves(M)})

– labelM (n)∈Busp if n∈requires(M)

– labelM (n)∈Layp if n∈uses(M)

– labelM (serves(M))∈Layp

– labelM (e)∈Cnct if e∈edges(M)

• An internal configuration policy (discussed in Section 3.2).

• An external configuration policy (discussed in Section 3.2).

We denote by body(M) the (full) sub-graph of graph(M) that forgets the nodes in requires(M) and the
edges that connect them to the rest of the graph.

We can now formalise the typing of state configurations with activity modules that we discussed in
relation to Figure 3, which accounts for the coarser business dimension that is overlaid by services on global
computers. That is, we define what corresponds to a state configuration of a service overlay computer, which
we call a business configuration. We consider a space A of business activities to be given, which can be
seen to consist of reference numbers (or some other kind of identifier) such as the ones that organisations
automatically assign when a service request arrives.

Definition 2.3 (Business configuration). A business configuration consists of:

• A state configuration F .

• A partial mapping B that assigns an activity module B(a) to some activities a∈A — a model of the
workflow being executed by a in F . We say that the activities in the domain of this mapping are those
that are active in that state configuration.

• A mapping C that assigns a homomorphism C(a) of graphs body(B(a)) → F to every activity a∈A that
is active in F . We denote by F(a) the image of C(a) — the sub-configuration of F that corresponds to
the activity a.

A homomorphism of graphs is just a mapping of nodes to nodes and edges to edges that preserves the
end-points of the edges. Therefore, the homomorphism C of a business configuration 〈F ,B, C〉 types the nodes
(components) of F(a) with business roles or layer protocols — i.e., C(a)(n) : labelB(a)(n) for every node n



An Abstract Model of Service Discovery and Binding 11

DB
AntPay

Ant

CPA

AntBA
CBA

AntFBFA

LauPay

Lau

CPL

LauBA
CBL

LauF

LauH

BFL

BHL
LUI

AUI

BPL

BPA

LL

AA

BDL

BDA

A_ANT

AntBA:
BookingAgent

CBA:
a8,≡,d1

AntF:
PTwings

BFA:
c4,≡,b9

HA:
HotelAgent

BDA:c6,i/o,d6

BH:
c3,≡,d3

SLA_ANT

DB:
UsrDB

AntPay:
CredCo

Ant:
FunTrav

CPA:a6,≡,b6

AUI:
TravUI

AA:a10,i/o,b10

BPA:
c2,≡,b7

trigHAintAnt

intAntF

intAntB

intAntP

Fig. 6. The sub-configuration and type of the activity ANT executing in a given state configuration

— and the edges (wires) with connectors — i.e., C(a)(e) : labelB(a)(e) for every edge e of the body of the
activity. In other words, the homomorphism binds the components and wires of the state configuration to
the business elements (interfaces labelled with business roles, layer protocols and connectors) that they fulfil
in the activity.

We normally represent the homomorphism C(a) by drawing a dashed line around F(a) and replacing the
nodes of B(a) by those of F(a) as in Figure 6 for an activity that we will call ANT — the state graph is
the one in Figure 2, the sub-configuration F(ANT) is the one that we marked in the lower part of Figure
3, and the activity module B(ANT) is as in Figure 5. Notice that although we use the same icons for state
configurations as for modules, the nodes of modules are not components and the edges are not wires: modules
involve abstract models, not instances. The homomorphism establishes the correspondence between the two
levels.

The fact that the homomorphism is defined over the body of the activity module means that business
protocols are not used for typing components of the state configuration — one can note in Figure 6 that
the node HA of the activity module is not mapped to the state configuration. Indeed, as discussed above,
the purpose of the requires-interfaces is for identifying dependencies that the activity has, in that state,
on external services. In particular, this makes requires-interfaces different from uses-interfaces as the latter
are indeed mapped through the homomorphism to a component of the state configuration. The operational
semantics that we propose in Section 4.2 for discovery and binding shows that these two kinds of interfaces
fulfil totally different purposes: the former are for ‘horizontal’ dynamic composition through service discovery
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and binding; the latter are for ‘vertical’ composition with the bottom layer through a ‘classic’ static binding
process.

In a sense, the homomorphism makes state configurations reflective in the sense of [CBG+08] as it
adds meta (business) information to the state configuration. This information is used for deciding how the
configuration will evolve (namely, how it will react to events that trigger the discovery process). Indeed,
reflection has been advocated as a means of making systems adaptable through reconfiguration, which is
similar to the mechanisms through which activities evolve in our model.

3. Modelling Services

3.1. Service modules

In our approach, services are modelled through ‘service modules’, which are like the activity modules that
we discussed in the previous section except that, instead of a serves-interface to the upper layer, they include
a ‘provides-interface’ through which activities can connect to the service (identified through a requires-
interface). Such interfaces are labelled by business protocols that describe the properties that a customer
can expect from the interactions with the service. Uses-interfaces and requires-interfaces can be included in
service modules in the same way as in activity modules.

Definition 3.1 (Service module). A service module M consist of:

• A graph graph(M).

• A distinguished subset of nodes requires(M)⊆nodes(M).

• A distinguished subset of nodes uses(M)⊆nodes(M).

• A node provides(M)∈nodes(M) not belonging to requires(M) or uses(M).

• A labelling function labelM such that

– labelM (n)∈Brol if n∈components(M), where
components(M) = nodes(M) \ (requires(M) ∪ uses(M) ∪ {provides(M)})

– labelM (n)∈Busp if n∈requires(M)

– labelM (n)∈Layp if n∈uses(M)

– labelM (provides(M))∈Busp

– labelM (e : n↔m)∈Cnct

• An internal configuration policy (discussed in Section 3.2).

• An external configuration policy (discussed in Section 3.2).

We denote by body(M) the (full) sub-graph of graph(M) that forgets provides(M), the nodes in requires(M),
and the edges that connect these nodes (including provides(M)) to the rest of the graph.

In Figure 7 we present the structure of a module that defines a service provided through an interface CR
of type Customer for booking a flight and a hotel for a given itinerary and dates. The service relies on a
component BA of type BookingAgent that orchestrates interactions with a service FA of type FlightAgent (for
booking flights), a service HA of type HotelAgent (for booking hotel rooms), a service PA of type PayAgent (for
handling payments), and an external component DB of type UsrDB (that stores information about registered
users). The module also makes explicit the connectors that, through the wires, coordinate the communication
between the parties involved in the provision of the service. Notice that the wires that connect the provides-
interface — CP and CB — are also part of the service offered by the module, i.e., they declare the protocols
through which the service can interact with its customers.

The definition of (service) module was inspired by concepts proposed in the Service Component Archi-
tecture (SCA) [OSO05]: “SCA is based on the idea that business function is provided as a series of services,
which are assembled together to create solutions that serve a particular business need. These composite ap-
plications can contain both new services created specifically for the application and also business function
from existing systems and applications, reused as part of the composition. SCA provides a model both for the
composition of services and for the creation of service components, including the reuse of existing application
function within SCA compositions”.
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Fig. 7. The structure of a module defining the booking service of a travel agency

Service modules as defined in this paper provide formal abstractions of composite services in the sense
of SCA and the way their execution involves a number of external parties that derive from the logic of
the business domain. These external parties are not explicitly identified in the module but only implicitly
through what we have called requires- and uses-interfaces. As already explained, such interfaces are more than
syntactic declarations: they are typed by business protocols — abstract specifications of the conversations in
which the parties are required to be involved — or by layer protocols in the case of uses-interfaces — abstract
specifications of the interactions supported with the external party. Likewise, the components themselves
are not explicitly identified in the module. Instead, the module includes semantic interfaces — business roles
— that model the way interactions are orchestrated by the components.

In the case of the provides-interface, the corresponding party is the customer to which the module will
be bound to provide a service. The behavioural properties offered in the business protocol that corresponds
to the provides-interface result from:

• The tasks performed by the (internal) components that instantiate the business roles;

• The interactions with the external parties that instantiate the requires- and uses-interfaces (and satisfy
the properties specified in the corresponding business and layer protocols).

For instance, the business protocol Customer could describe that committing to an offer made by the
BookingAgent ensures that the outcome of the payment process will be acknowledged and that the period
during which a booking can be revoked (negotiated prior to binding) is within certain bounds. One of the
advantages of working in a formal framework such as ours is that we are able to check that the properties
being offered in the provides-interface do result from the orchestration, which in the case of Srml is achieved
through model-checking techniques [AMFG09, tBFGM08]. This notion of correctness is defined in Section
3.3.

By ‘customer’ we mean the business activity that triggers the discovery of the service, not the top layer
user. Indeed, service modules do not include the serves-interface because, in our model, interactions with the
top layer are performed exclusively by business activities. Hence, a user cannot invoke directly a service; a
user can launch an activity that, as part of its workflow, may trigger the discovery of a service. As already
mentioned, this is, for us, a distinguishing aspect of SOC when compared to CBD. For instance, in the case
of the business configuration that corresponds to Figure 3, we can see components — Lau and Ant — that
interact with the users of the activities through two interfaces (LUI and AUI, respectively). As discussed in
Section 4.2, these two interface components are created when the business activities are launched by the
corresponding users, orchestrating the interactions with the service components and the corresponding user.

We can use this example to illustrate how our operational semantics of service discovery and binding
works. Consider that, in the current state configuration, the top layer entity AUI launches a business activity
ANT typed by the activity module A ANT0 as in Figure 8. (We will not discuss the operational semantics
of the top layer, i.e., the mechanism through which entities of the top layer create new components in the
service layer.) Consider further that, at a certain point during the execution of the component Ant, the
trigger condition trigTA becomes true and that the service TravelBooking as defined in Figure 7 is selected.
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Fig. 8. AUI adds the component Ant to the service layer, typed with FunTrav

As explained in Section 4, this means that the requires-interface TA of A ANT0 and wire AT can be bound
to the provides-interface CR and wires CP and CB of TravelBooking.

The result of the binding is depicted in Figure 9 (and explained in Section 4.2): a new session of Travel-
Booking starts, which adds the component AntBA to the service layer of the state configuration and connects
it to Ant and the component DB of the bottom layer. That is, the workflow of activity ANT is reconfigured
and is now typed by the activity module A ANT1. Notice that every new session of a service adds to the
configuration new instances (components) of its business roles but uses the components already available in
the bottom layer.

The configuration depicted in Figure 2 with ANT typed as in Figure 5 would be reached after trigFA and
trigPA become true. Notice that, besides the workflow, the external configuration policy also changes as new
services are discovered and bound. This process, which determines the ranking and selection of the service,
is discussed in Section 4.

3.2. The configuration policies

Whereas business roles, business protocols, layer protocols and interaction protocols deal with functional
aspects of the behaviour of a (complex) service or activity, configuration policies address properties of the
configuration process itself. This is why we focus on them in more detail in this paper.

The internal configuration policy of a module M concerns the timing of the binding of its interfaces and
instantiation of its component and wire interfaces.

Definition 3.2 (Internal configuration policy). Given a module M , its internal configuration policy
consists of:



An Abstract Model of Service Discovery and Binding 15

Ant AntBA
CBA

DB

LauPay

Lau

CPL

LauBA
CBL

LauF

LauH

BFL

BHL
LUI

AUI

BPL

LL

AA

BDA

BDL

A_ANT1

CBA:
a8,≡,d1

SLA_ANT1

Ant:
FunTrav

AUI:
TravUI

AA:a10,i/o,b10

FA:
FlightAgent

HA:
HotelAgentAntBA:

BookingAgent

PA:
PayAgentBP:

c
2
,≡,d

2

BF:
c
4
,≡,d

4

DB:
UsrDB

CPA:a6,≡,d5

BDA:
c
6
,i/o,d

6

trigHA

trigFA

BH:
c
3
,≡,d

3

trigPA

intAnt

intAntBA

Fig. 9. A new session of TravelBooking starts and reconfigures the workflow of ANT

• For each requires-node n∈requires(M), an associated trigger condition trigger(n): this is a condition
that is evaluated over the state of the activity (i.e., the sub state configuration that corresponds to the
activity). When this condition becomes true as a result of a computation step, the process of discovery,
selection and binding starts executing, leading to a reconfiguration step (as discussed in Section 4.2)
that completes the transition of state configurations. The next computation step takes place in the new
configuration, i.e., computations resume when the components of the selected service are instantiated
and connected to those of the activity.

• For each component-node n∈components(M), an initialisation condition init(n) that is ensured when
the component is instantiated (as discussed in Section 4.2). Typically, these are conditions on the way
the state variables of the component are initialised, but they can also include the publication of given
events.

• For each component-node n∈components(M), a second state condition term(n) that determines when the
component stops executing and interacting with the rest of the components of the activity. Typically, this
condition triggers a garbage collection process that removes the associated wires from the configuration,
which may also require the delivery of any events pending in the wires (unless we choose to allow for the
loss of events).

The external policy concerns the way the module relates to external parties: it declares a set of constraints
that have to be taken into account during discovery and selection. Every constraint involves a set of variables



16 J. Fiadeiro, A. Lopes and L. Bocchi

that includes both local parameters of the service being provided (e.g., the percentage of the cost of a trip
that is refundable) and standard configuration parameters selected from a fixed set of types — availability,
response time, message reliability, inter alia. These standard configuration parameters may apply to the
service being provided, or to the services that need to be procured externally, or to the wires.

In our approach, we adopt the framework for constraint satisfaction and optimization presented in
[BMR97], in which constraint systems are defined in terms of c-semirings. As explained therein, this frame-
work is quite general and allows us to work with constraints of different kinds — both hard and ‘soft’, the
latter in many grades (fuzzy, weighted, and so on).

Definition 3.3 (c-semiring). A c-semiring is a semiring 〈A,+,×, 0, 1〉 in which A represents a space of de-
grees of satisfaction, e.g., the set {0, 1} for yes/no or the interval [0, 1] for intermediate degrees of satisfaction.
The operations × and + are used for composition and choice, respectively. Composition is commutative,
choice is idempotent and 1 is an absorbing element (i.e., there is no better choice than 1). That is, a c-
semiring is an algebra of degrees of satisfaction. Notice that every c-semiring S induces a partial order ≤S

(of satisfaction) over A — a ≤S b iff a+ b = b. That is, b is better than a iff the choice between a and b is b.

Definition 3.4 (Constraint system). A constraint system is a triple 〈S,D, V 〉 where S is a c-semiring, V
is a totally ordered set (of configuration variables), and D is a finite set (domain of possible elements taken
by the variables).

Definition 3.5 (Constraint). A constraint over a constraint system 〈S,D, V 〉 consists of a selected subset
con of V and a mapping def : D|con| → S that assigns a degree of satisfaction to each tuple of values taken
by the variables involved in the constraint.

Definition 3.6 (External configuration policy). The external configuration policy of a module M con-
sists of:

• A constraint system cs(M) based on a fixed c-semiring.

• A set sla(M) of constraints over cs(M).

• For every variable in cs(M), a type.

• A partial assignment owner of either a node or an edge of M to each variable of cs(M).

For instance, in the case of TravelBooking, one could consider the following configuration variables:

• KD and PERC — parameters of CR (customer) that denote the period before departure during which
a cancellation is accepted and the percentage of the cost that is refundable in case of cancellation,
respectively.

• RM1 and RM2 — two different reliable message mechanisms (see [MP04] for examples) that apply to the
wires CB, CP and BP (see Figure 7).

• BOOKFEE — a parameter of CR (customer) and FA (flight agent) that denotes the fixed fee for each
trip/flight booking transaction, respectively.

Because we are handling constraints that involve different degrees of satisfaction, it makes sense that we
work with the c-semiring 〈[0, 1],max,min, 0, 1〉 of soft fuzzy constraints [BMR97]. In this c-semiring, the
preference level is between 0 (worst) and 1 (best). The constraints are:

1. 〈{CR.KD,CR.PERC}, def1〉 where

def1(d, p) =

{

1 if 1 ≤ d and p ≤ 90 and p ≤ 50 + 50 ∗ d
0 otherwise

That is, the percentage PERC of the cost that is refundable is bounded by the least of 90 percent and a
linear function of the period KD during which the deal can be revoked (the maximum refundable cost is
obtained if the period has 8 or more days).

2. 〈{CB.RM1,CB.RM2,CP.RM1,CP.RM2,BP.RM1,BP.RM2}, def2〉 where

def2(a, b, c, d, e, f) =

{

1 if a = c = e = 1 and b = d = f = 0
1 if a = c = e = 0 and b = d = f = 1
0 otherwise

That is, the booking agent can use exactly one of the two reliable messaging mechanisms in the con-
versations with the customer and the pay agent and the same mechanism has to be used with all of
them.
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3. 〈{FA.BOOKFEE}, def3〉 where

def3(p) =
1

1+p

That is, the degree of satisfaction for a flight agent is inversely proportional to the booking fee.

4. 〈{CR.BOOKFEE,FA.BOOKFEE}, def4〉 where

def4(d, p) =

{

1 if p+ 5 ≤ d
0 otherwise

That is, the booking fee that the customer has to pay consists of the booking fee of the flight agent plus
5 units for the booking agent service.

As illustrated, we tend to use the dot-notation c.X (resp. w.X) in order to express that component c (resp.
wire w) is the owner of the configuration variable X.

The c-semiring approach also supports selection based on a characterisation of ‘best solution’ supported
by multi-dimensional criteria, e.g., minimizing the cost of a resource while maximizing the work it supports.
See [BM07] for other usages of this approach for service ranking and selection.

3.3. The correctness property of service modules

Service modules are considered to be ‘correct’ when the properties offered in the provides-interface are en-
sured by the orchestration of its components and the properties specified through its requires-interfaces. For
instance, in relation to our running example, we would like to certify that properties offered through the busi-
ness protocol Customer are effectively established by the orchestration performed by BA on the assumption
that PA, HA and FA are bound to services that deliver the properties required in the corresponding business
protocols (PayAgent, HotelAgent and FlightAgent, respectively). An example could be that committing to an
offer made by BA ensures that the outcome of the payment process will be acknowledged; and another that
the period during which a booking can be revoked (negotiated prior to binding) is within certain bounds.

This correctness property of modules is best expressed in terms of logical entailment. The mechanisms that
we provide for putting together, interconnecting and composing modules is largely independent of any such
logic. The particular choice of logic operators, their semantics and proof-theory are essential for supporting
the modelling of service-based applications but not for the semantics and pragmatics of composing modules.
For the purpose of this paper, what is important is that the logic satisfies some structural properties that
are required for the correctness condition and the notion of module composition to work well together as
explained below. Notice that this generic characterisation is also agnostic in relation to the specific techniques
through which correctness can be checked. In Srml, we have been investigating the use of model-checking
techniques [AMFG09, tBFGM08] in particular.

More specifically, we assume that we have available an entailment system (or π-institution) [Fia04]
〈Sign, gram,⊢〉. By Sign we denote the category of signatures of the logic, each of which represents a set
of interactions; signature morphisms are maps that preserve the structure of interactions (whether they are
synchronous or asynchronous, their parameters, and so on). The grammar functor gram : Sign → SET
generates, for each signature, the language used for describing properties of the interactions. Notice that,
given a signature morphism σ : Q → Q′, gram(σ) translates properties in the language of Q to the language
of Q′.

We denote by ⊢Q the entailment system that allows us to reason about properties in the language of Q.
We write S ⊢Q s to indicate that sentence s is entailed by the set of sentences S. Pairs 〈Q,S〉 consisting of a
set S of sentences over a signature Q — usually called theory presentations — can be organised in a category
Spec whose morphisms capture what are usually called ‘interpretations between theories’. We denote by
sign the functor Spec → Sign that projects theory presentations to the underlying signatures. We further
assume that Spec is finitely co-complete — i.e., that there is a canonical (minimal) way of amalgamating
a diagram of specifications — and coordinated over sign [Fia04] (implying that we can amalgamate mixed
diagrams of specifications and signatures).

Business roles, layer protocols, business protocols and interaction protocols carry a semantic meaning that
we take to be defined by mappings: specBrol : Brol → Spec, specLayp : Layp → Spec, specBusp : Busp →
Spec and specIglu : Iglu → Spec, respectively. In the case of business roles, this assumes that we can
abstract properties from orchestrations, which corresponds to defining an axiomatic semantics of an orches-
tration language. In the case of business and interaction protocols, this mapping is more of a translation
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from the language of interactions to a logic in which one can reason about their properties as well as that
of orchestrations. For simplicity, we shall also denote by signX the compositions of the functors specX with
sign, which we often simplify to sign if there is no risk of confusion. We summarise the relationships between
all these formalisms in Figure 10.

To formulate the correctness property of modules using these formalisms, we need to map modules to
diagrams in Spec. In order to define this mapping, we need to be more precise on what we mean by a
(binary) connector — an interaction protocol together with attachments to the parties being connected.

Definition 3.7 (Interaction protocol). An interaction protocol P is a triple 〈πA, glueP , πB〉 where

• glueP : Iglu

• πA : roleAP → sign(glueP ) and πB : roleBP → sign(glueP ) are signature morphisms.

The specification glueP — called the ‘glue’ — describes the coordination mechanisms enforced by the pro-
tocol. The signatures roleAP and roleBP — the ‘roles’ of the protocol — act as formal parameters. The
morphisms πA and πB identify the interactions involved in the roles of the protocol. This algebraic semantics
identifies every interaction protocol with a structured co-span [FS07] as depicted in Figure 11.

Definition 3.8 (Connector). A connector is a triple 〈µA, P, µB〉 where:

• P is an interaction protocol 〈πA, glueP , πB〉.

• µA and µB — the ‘attachments’ — are signature morphisms with sources roleAP and roleBP , respec-
tively.

Using this categorical view of connectors, we can now expand the labelled graph associated with every
module to define a proper diagram. This construction needs to take into account three different kinds of
edges: those that connect internal components, the provides-interface, and the requires-interfaces.

Given a module M , let e : n↔m be an edge such that neither n nor m belongs to requires(M) and, if
M is a service module, neither n nor m is provides(M). For M to be well typed, it is necessary that the
attachments of the connector 〈µA, P, µB〉 that labels e are morphisms µA : roleAP → sign(labelM (n)) and
µB : roleBP → sign(labelM (m)). As shown in Figure 12, such a connector defines a diagram in Sign.

In the case of a service module M , the connectors that label the wires ei : provides(M)↔mi need to
be treated in a special way because the ‘customer’ is not yet available and, therefore, the corresponding
attachments cannot be defined. This is why we choose a default signature that consists of all the interactions
that are involved in the protocols. More precisely, if the corresponding connectors labelM (ei) are of the form
〈µi, Pi, µmi

〉, the signature that represents the (logical) customer is the sum ⊕jroleAPj
of all the roles, and

the attachments are the inclusions roleAPi
→ ⊕jroleAPj

. The reason we take the sum is that this is the
biggest set of interactions that the corresponding protocol coordinates. Therefore, for a module to be well
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typed, we also need that all the attachments to provides(M) be inclusions roleAPi
→ ⊕jroleAPj

as depicted
in Figure 13.

On the other hand, although we defined the label of provides(M) to be a business protocol, that specifi-
cation represents the properties of the service offered by the module, not the customer with which the wires
ei should be connected. Therefore, the signature of labelM (provides(M)) should be the sum of the other
set of roles ⊕jroleBPj

, i.e., the properties of the provided service should be written in the language of this
signature and not that of the customer. In summary, the signature of the business protocol that labels the
provides-interface is not the signature to which the wires are attached (which is that of a logical customer)
but the sum of the interactions supported by the entities connected to it.

A similar condition applies to the requires-interfaces. More precisely, the signature of the business pro-
tocols that label the requires-interface should not require more interactions than the ones involved in the
wires that connect them to the body of the module (be it an activity or a service module). Therefore, the
signature of a business protocol should be a (disjoint) sum of the roles ⊕jroleBPj

of the interaction protocols
involved in the connections as depicted in Figure 14.

Definition 3.9 (Well-typed module). We say that a module M is well typed iff:

• If M is a service module, let ei : provides(M)↔mi be all the edges (wires) that connect the node
provides(M) and 〈µi, Pi, µmi

〉 the corresponding labels (connectors). The signature of the business proto-
col labelM (provides(M)) is (isomorphic to) the sum ⊕jroleBPj

and µi : roleAPi
→ ⊕jroleAPj

for every
attachment.

• For every R∈requires(M), let ei : mi↔R be all the edges (wires) that connect R and 〈µi, Pi, µmi
〉 the

corresponding labels (connectors). The signature of the business protocol labelM (R) is (isomorphic to)
the sum ⊕jroleBPj

and we have µmi
: roleAPi

→ ⊕jroleAPj
for every attachment.

• For every other edge e : n↔m let 〈µA, P, µB〉 be its label. In this case, we have µA : roleAP → sign(labelM (n))
and µB : roleBP → sign(labelM (m)).

Proposition and Definition 3.1 (expanded(M)). Given a module M that is well typed, we construct
another labelled graph expanded(M) as follows:
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Fig. 15. Example of expanded(M) — inside the dashed line — and its colimit. We also indicate (in grey) the morphism that
connects the signature of the provides-interface to the expanded diagram

• We remove the provides-interface and all the edges that connect it.

• For every edge (wire) of M that remains, we replace it by the diagram defined by its connector as in
Figure 12, which adds three new nodes (for the glue and roles) and four directed edges.

An example is given in Figure 15.

Proposition and Definition 3.2 (specA(M)). Given a module M that is well typed, if we apply the
mapping spec to the business roles (of the component interfaces), the layer protocols (of the serves- and
uses-interfaces), the glues of the interaction protocols, and the business protocols (of the requires-interfaces)
of expanded(M), we obtain a diagram in the (coordinated) category Spec. The colimit (amalgamated
sum) of this diagram returns a specification specA(M) and, for every node n of expanded(M), a morphism
qn : sign(labelM (n)) → sign(specA(M)).

Definition 3.10 (specB(M)). Given a module M that is well typed, we define the specification specB(M)
that results from adding to specA(M) the properties that derive from the internal configuration policy, which
include the initialisation and termination constraints as well as the triggers associated with the requires-
interfaces of M.
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Fig. 16. How the signature of the business protocol of the provides-interface maps to sign(specB(M)) for a generic M

As for the business protocol of provides(M), we have already defined its signature as being the sum
⊕jroleBPj

of the roles of the connectors that label the wires ei : provides(M)↔mi.

Proposition and Definition 3.3 (specP (M)). The attachments µmi
: roleBPi

→ sign(labelM (mi)) com-
posed with the morphisms qmi

: sign(labelM(mi)) → sign(specB(M)) extend to a morphism ⊕jroleBPj
→

sign(specB(M)) (see Figure 13 and Figure 16). We denote by specP (M) the translation of the specification
of the business protocol of provides(M) induced by that morphism.

Proof. The result follows from the universal properties of the sum.

Given that all these sets of sentences are now in the language of specB(M), we can define a correctness
property for service modules.

Definition 3.11 (Correctness). We say that a service module M is correct iff specB(M) ⊢ specP (M).

That is, a module is correct iff the properties of the provides-interface are entailed by the module assuming
that the properties of the requires-interfaces and their connectors hold.

Naturally, another important property is consistency, i.e. that specB(M) is free from contradictions (or,
equivalently, that it admits a model). Given that the specifications involved in the colimit are generated by
the mappings spec applied to business roles, business protocols, layer protocols and interaction protocols,
ensuring their consistency should not be difficult. Consistency of the whole module depends, essentially, on
the nature of the connections established by the wires. To state the obvious, specific strategies for ensuring
consistency will depend on the nature of the particular formalisms involved. Examples of formal techniques
that can be used for this purpose are [BBC+06, CHY07, VCS08]. See also [FLA10] for a discussion on
consistency for the specific computational and coordination models developed for Srml.

4. The Operational Semantics of Service Discovery and Binding

4.1. Unification: discovery, ranking and selection

As mentioned in Section 3.2, every module declares, as part of its internal configuration policy, a triggering
condition for each requires-interface. This is the condition that determines when a service needs to be
discovered and bound to the current configuration through that interface. More precisely, given a business
configuration BC = 〈〈G,S〉,B, C〉 and an activity a, each condition trigger(R) where R∈requires(B(a))
is evaluated over the state S. If the condition trigger(R) for a given requires-interface R holds in BC,
the ‘unification’ process is launched, which should return a service that ‘best’ fits the business protocol
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labelB(a)(R), the interaction protocols of the wires that connect the requires-interface to the rest of the
module, and the external configuration policy of B(a).

In our setting, this unification process involves three steps, outlined as follows:

• Discovery. This step consists in finding the services — among those that are able to guarantee the
properties of the business protocol labelB(a)(R) associated with R and of the interaction protocols that
label the wires that connect R — with which it is possible to reach a service-level agreement.

• Ranking. For each service M discovered in the previous step, we calculate the most favourable service-
level agreement that can be achieved — the contract that will be established between the two parties if
M is selected. This calculation uses a notion of satisfaction that takes into account the preferences of the
activity a and the service M .

• Selection. One of the services that maximises the level of satisfaction offered by the corresponding contract
is selected.

We are now going to define each of these steps in more detail.

Proposition and Definition 4.1 (Discovery). Consider a business configuration BC = 〈F ,B, C〉 and let
R be a requires-interface of a business activity a such that trigger(R) holds in F . The discovery phase
returns pairs 〈M,ρ〉 where M is a service module and ρ is a mapping satisfying the properties below. Let
PR be the provides-interface of M, i.e., PR = provides(M).

• For every wire w : s↔R of a, there is a non-empty set ρ(w) of wires of M of the form PR↔q (the set
of wires that unify with w). For every wire v : PR↔q of M there is w : s↔R of a such that v∈ρ(w), i.e.,
each wire on the side of the provides-interface unifies with at least one wire on the requires-interface side.

• Let ⊕ρ(w) be the sum of the interaction protocols of the wires in ρ(w) as co-spans, and 〈πA, glueP , πB〉
the interaction protocol of w. The mapping ρ defines a morphism 〈πA, glueP , πB〉 → ⊕ρ(w) of co-spans,
i.e., a morphism in Iglu between glueP and the sum of the glues of the interaction protocols of the wires
in ρ(w) and signature morphisms between the roles that commute with the morphism of glues.

• The collection of signature morphisms of the form roleBP → ⊕v∈ρ(w)roleBv for all wires that connect
R extends to a morphism labelB(a)(R) → labelM (PR) of specifications, i.e., the behavioural properties
offered by the provides-interface of M entail the properties required by the requires-interface of the
activity up to a suitable translation between the languages of both.

• The constraint system cs(M) of the external policy of M is compatible with that of cs(B(a)). This means
that the mapping ρ is such that, for every variable v ∈ cs(B(a)):

– if owner(v) = R, there exists ρ(v) in cs such that type(v) = type′(ρ(v)) and owner′(ρ(v)) = PR;

– if owner(v) is a wire w : s↔R then, for every w′ ∈ ρ(w) there is a variable ρ(v, w′) in cs(M) s.t.
owner′(ρ(v, w′)) = w′ and type(v) = type′(ρ(v, w′)).

• The combination sla(B(a))⊕R,ρ sla(M) of the sets of constraints of B(a) and M is consistent (as defined
below, in Definition 4.1).

Intuitively, compatibility means that each discovered service needs to support the negotiation of the con-
figuration parameters associated with R, i.e., those configuration parameters that belong to R or to the
wires that connect R to the components of the activity module. The last condition ensures that it is indeed
possible to achieve a service-level agreement between the activity and the service module. Compatibility of
the constraint systems of B(a) and M relative to R ensures that they can be combined, which gives rise to
another constraint system.

Definition 4.1 (Combined constraint system). The combined constraint system cs(B(a)) ⊕R,ρ cs(M)
is defined as follows:

• Its domain D” is the union D ∪D′ of the domains of cs(B(a)) and cs(M).

• Its set of variables V is the disjoint union of cs(B(a)) and cs(M) except that each pair of variables of
the form 〈v, ρ(v)〉 or 〈v, ρ(v, w′)〉 gives rise to a single variable denoted v|ρ(v) or v|ρ(v, w′), respectively
— the variable involved in the negotiation. Notice that, if owner(v) is a wire w : i↔R, then we may end
up with several ‘aliases’ v|ρ(v, w′), one for each wire w′ ∈ ρ(w), i.e., that ρ pairs with w. We denote by
neg(R, ρ) the set of such variables.
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The combined set of constraints is defined by ‘lifting’ the constraints of sla(B(a)) and sla(M) to the new
constraint system, for which two aspects need to be accounted for. On the one hand, we have to take into
account that variables may have multiple aliases, which requires constraints to be replicated (one for each
alias). On the other hand, we have to account for the fact that constraints lifted from any of the modules
involve variables from the other module; in such cases, we define that the degree of satisfaction of any tuple
assigning new domain elements to old variables is 0. Formally, the lifting operates as follows:

Definition 4.2 (Combined set of constraints). The combined set of constraints sla(B(a))⊕R,ρ sla(M)
is defined by:

• Lifting every constraint 〈con, def〉 over cs(B(a)) as follows:

– If con does not involve any variable being negotiated (i.e., neg(R, ρ)) we lift the constraint to
〈con, def”〉 where def” coincides with def on D|con| and assigns the value 0 elsewhere.

– For every v∈con that belongs to neg(R, ρ) and alias v|v′, we lift the constraint to 〈con”, def”〉 where
con” is obtained from con by replacing each such variable by the chosen alias, and def” coincides
with def on D|con| and assigns the value 0 elsewhere.

• Performing the same lifting on the constraints of cs(M).

It remains to discuss what we mean by consistency of the combined set of constraints.

Definition 4.3 (Consistency of a set of constraints). The consistency of a set of constraints is defined



24 J. Fiadeiro, A. Lopes and L. Bocchi

in terms of the notion best level of consistency, which assigns an element of the c-semiring to every set of
constraints C as follows (for more details see [BMR97]):

blevel(C) =
∑

t

∏

c∈C

defc(t ↓ con(c))

Intuitively, this notion gives us the degree of satisfaction that we can expect for the set of constraints of a
given problem. A set of constraints C is said to be consistent iff blevel(C) >S 0.

In order to illustrate these constructions (see Figure 18), consider the business activity A ANT0 (see also
in Figure 8). Consider that, at a certain point of the corresponding workflow, the condition trigTA becomes
true and triggers the unification process for TA. For the service module TravelBooking (see Figure 7) to be
discovered, we would need to

• Establish a specification morphism between TravelAgent (the business protocol that types TA) and Cus-
tomer (the business protocol that types the provides interface CR of TravelBooking) showing that the
properties required in TravelAgent are entailed by those of Customer.

• Check that the constraint systems of A ANT0 and TravelBooking are compatible.

Entailment is handled through the logic that is adopted for Spec as discussed in Section 3.3. In order
to illustrate what we mean by compatibility, suppose that the constraints imposed by the external policy
SLA ANT0 involve uniquely the variables TA.PERC, TA.KD, AT.RM1, and require that:

• The reliable messaging mechanism RM1 should be used in the conversations with TA over the wire AT
— a hard constraint.

• The degree of satisfaction associated with a refund p and a period for revoking of duration d is given by
p/(d ∗ 100) — a soft constraint.

In this situation, it is easy to check compatibility. The constraint system of TravelBooking includes the
variables CR.PERC, CR.KD, CB.RM1, CP.RM1 and, hence, their values can be negotiated establishing the
pairs TA.PERC|CR.PERC, TA.KD|CR.KD, AT.RM1|CB.RM1, AT.RM1|CP.RM1. Notice that AT.RM1 has two
aliases because CR is linked by two wires CB and CP. This implies that the constraint (1) over AT.RM1 is lifted
to two constraints: one over AT.RM1|CB.RM1 and the other over AT.RM1|CP.RM1. That is, in the combined
system, CB and CP have to use the reliable messaging mechanism RM1. Indeed, it is not difficult to conclude
that no inconsistencies arise when we combine the two sets of constraints. For instance, the level of satis-
faction associated with a situation in which TA.PERC|CR.PERC=55, TA.KD|CR.KD=1, AT.RM1|CB.RM1=1,
AT.RM1|CP.RM1=1 would be 0.55; this would be a possible service-level agreement if TravelBooking were to
be selected to be bound to the business activity A ANT0.

Finally, we can discuss how contracts are established.

Proposition and Definition 4.2 (Ranking). Together with the set neg(R, ρ) of the variables being nego-
tiated (those in the domain of ρ), the set of constraints sla(B(a))⊕R,ρ sla(M) defines a constraint problem.
The solution of this constraint problem is again a constraint and, hence, it assigns a degree of satisfac-
tion to each possible tuple of values for the variables in neg(R, ρ). The outcome of the negotiation be-
tween the business activity a and the provider of M is any tuple whose associated degree of satisfaction is
blevel(sla(B(a)) ⊕R,ρ sla(M)), which is again a constraint. That is, a service level agreement is simply an
assignment of values to the configuration parameters in neg(R, ρ). Hence, ranking a discovered service M
in our framework consists in finding an assignment that maximizes the degree of satisfaction. We denote by
contract(B(a)⊕R,ρ M) the constraint that results from the negotiation.

In our example, there are other assignments of values to TA.PERC|CR.PERC and TA.KD|CR.KD that
return a positive degree of satisfaction: for instance, 60 and 6 return 0.1. However, the previous assignment
maximizes this value, which is why it represents a possible service level agreement between conf and the
provider of the TravelBooking service.

Definition 4.4 (Selection). Selection consists in choosing one service from the set of discovered services,
taking into account its ranking — the degree of satisfaction assigned to the outcome of the negotiation. The
selected service is one with maximal rank.

In our example, the value 0.55 would have to be compared with the outcome of the negotiation of A ANT0
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Fig. 19. The wires that result from Figure 17

with other discovered travel agency services. If all the other outcomes were worse than 0.55, TravelBooking
would be the selected service.

4.2. The reconfiguration step

It remains to define the new business configuration that results from the process of discovery, ranking and
selection — what we call the ‘reconfiguration step’. This includes the new state configuration that results
from instantiating the selected service over the current configuration and binding it to the business activity
a that triggered the process, and the typing of the business activity with a new module. We start by defining
the activity module that will type a in the new business configuration.

Proposition and Definition 4.3 (Composition of modules). Consider a service module M returned
by the selection process upon the occurrence of trigger(R) where R is a requires-interface of B(a). The
binding of R with an instance of M involves the assembly of modules B(a) and M , giving rise to a new
module that corresponds to the new execution plan of a. This new module is the composition B(a)⊕R,ρ M
defined as follows:

The graph and its labelling The graph of B(a)⊕R,ρ M is obtained from the sum (disjoint union) of the
graphs of B(a) and M by eliminating the nodes R and provides(M) and the edges that connect them,
and adding an edge i↔j between any two nodes i and j such that w : i↔R is an edge of B(a) and
provides(M)↔j ∈ ρ(w). The requires-interfaces are those of B(a), except for R, and those of M . Given
that provides(M) has been eliminated, there are no provides-interfaces; we obtain an activity module B
that defines the new workflow of the activity a.

The labels of the resulting graph are inherited from the graphs of B(a) and M , except for the new edges
i↔j that result from the binding of R and provides(M) through the mapping ρ. These are calculated
by composing the connectors that label w : i↔R and each provides(M)↔j ∈ ρ(w). This process of
composition works as depicted in Figure 19: basically, we take the glue to be the sum ⊕ρ(w) and the
roles of i↔R and provides(M)↔j. This process is repeated for every pair of wires that are connected
through the mapping ρ.

The external configuration policy This is given by the combined constraint system cs(B(a))⊕R,ρ cs(M)
and the constraints of the sum sla(B(a))⊕R,ρsla(M) together with contract(B(a)⊕R,ρM) — the result of
the negotiation as defined in Section 4.1. Owners and types are inherited except for the pairs of variables
involved in the negotiation (which no longer require an owner).

The internal configuration policy Triggers, initialisation and termination conditions are all inherited
from B(a) and M .

We take this module to provide the reconfigured workflow of the business activity a. Notice that the
composition of the wires involves only the glues of the protocols, not the components. In [Fia04, WLF01],
we have shown how such forms of composition can be supported in CommUnity — an architectural descrip-
tion language. See also [BS08] for an algebraic formalisation of connector composition in the Behaviour-
Interaction-Priority (BIP) component framework.
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We can now define the new state and business configurations that result from the discovery and binding
processes.

Definition 4.5 (The reconfigured state configuration). The current state configuration is modified as
follows:

• New components (nodes) are added (to the service layer), which are typed by the business roles of
components(M).

• New wires (edges) are added that are typed with the connectors that link together the new components
introduced in the previous step.

• New wires are added between the new components and the ones that were already present in the config-
uration, which are typed by the composed connectors that result from the bindings.

• New wires are added that bind the new service components to components (of the bottom layer) that
are typed by the layer protocols of uses(M). Notice that we do not create new components (instances)
in the bottom layer.

• The new components and wires are chosen such that the negotiated conditions on configuration variables
are enforced, and initialised so as to satisfy the internal configuration policy of M .

The state of components and wires not affected by the reconfiguration can also change during a reconfigu-
ration step as a result of the computations that they execute.

Notice how this operational semantics differentiates between the different kinds of nodes and their spec-
ifications that we introduced in Sections 2.3 and 3.1. The difference between business roles and protocols
is that components that correspond to the business roles are created and bound to their interfaces when
the module is instantiated (i.e., when a new session of the service is initiated) whereas the external services
that correspond to the business protocols are bound to the require interfaces at run time after a process of
discovery, ranking and selection triggered according to the internal configuration policy of the module. The
difference with respect to layer protocols is that these bind to components of the bottom layer that persist
independently of the activities performed at the service layer, whereas business roles bind to components
that are added to the service layer and have no persistency beyond the session in which they are created.
Hence, in the case of the TravelBooking service, a new instance of BookingAgent is generated for each new
session whereas all sessions will share the same component that binds to DB (i.e., they all share the same
database of users).

The new business configuration is now easy to define:

Definition 4.6 (The reconfigured business configuration). In the new business configuration, the type
mapping B′ is the same as B except for the activity a for which the activity module (type) B′(a) is B(a)⊕R,ρM .
The homomorphism is as defined by the typing of nodes and wires discussed above.

An example of such a reconfiguration step can be given by the transition between the configurations in Figure
8 and Figure 9. As another example, the module that results from the composition indicated in Figure 18 is
the one on Figure 9. This figure also illustrates the state reconfiguration step (relative to Figure 8). Notice
how the component DB of the bottom layer becomes shared between the two activities ANT and LAU. The
new external configuration policy is the one discussed in Section 4.1.

5. Related Approaches

One of the main aspects that distinguish the approach that we proposed above from other work on Web
Services (e.g., [ACKM04]) and SOC in general (e.g., [OSO05]) is that we address not the middleware ar-
chitectural layers (or low-level design issues in general), but what we call the ‘business level’. For instance,
the main concern of the Service Component Architecture (SCA) [OSO05], from which we have borrowed
concepts and notations (as discussed in more detail in Section 3), is to provide an open specification “al-
lowing multiple vendors to implement support for SCA in their development tools and runtimes”. This is
why SCA offers a middleware-independent layer for service composition and specific support for a variety
of component implementation and interface types (e.g., BPEL processes with WSDL interfaces, or Java
classes with corresponding interfaces). Our work explores a complementary direction: our research aims for
a modelling framework supported by a mathematical semantics in which business activities and services
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can be defined in a way that is independent of the languages and technologies used for programming and
deploying the components that will execute them. The fact that the modelling framework is equipped with
a formal semantics makes it possible to support the analysis of services, service compositions and activities,
a direction that we are pursuing through the use of model-checking [AMFG09].

Another architectural approach to SOC has been designed [ABvH+06] that follows SCA very closely.
However, its purpose is to offer a meta-model that covers service-oriented modelling aspects such as interfaces,
wires, processes and data. Therefore, as in SCA, interfaces are syntactic and bindings are established at design
time, whereas our interfaces are behavioural and binding occurs at run time. Other approaches to service
modelling have considered richer interfaces that encompass business protocols, e.g., [BCT04, BSBM04, DD04,
Rei05, Rei08], but not the dynamic aspects.

Indeed, a characteristic that distinguishes our approach from other formal models of services such as
[BKM07] is the fact that we address the dynamic aspects of SOC, namely run-time discovery and binding.
Formalisms for modelling (web) services tend not to address these. For example, in BPEL, service compo-
sitions are created statically and are governed by a centralised engine. This also holds for approaches that
focus on choreography (e.g., [CHY07, Rei05]), where it is possible to calculate which are the partners that
can properly interact with a service, but the actual discovery and binding processes are not considered.
Exceptions can be found among some of the process calculi that have been developed for capturing semantic
foundations of SOC (e.g., [BBC+06, BM07, LPT07]). However, such process calculi tend not to address
dynamic reconfiguration separately from computation, i.e., the process of discovery and binding is handled
as part of the computation performed by a service. As far as we know, Srml is the first service-modelling
language to separate these two concerns.

Indeed, in our opinion, what makes SOC different from other paradigms is the fact that it concerns run-
time, not design-time complexity. This is also the view exposed in [Elf07] — a very clear account of what
distinguishes SOC from CBD (Component Based Development). For instance, starting from a universe of
(software) components as structural entities, [BKM07] views a service as a way of orchestrating interactions
among a subset of components in order to obtain some required functionality — services coordinate the inter-
play of components to accomplish specific tasks. Whereas in CBD component selection is either performed
at design time or programmed over a fixed universe of components, SOC provides a means of obtaining
functionalities by orchestrating interactions among components that are procured at run time according to
given (functional) types and service level constraints.

Another area related to the work that we have presented concerns the non-functional aspects of services,
namely the policies and constraints for service level agreement that have to be taken into account in the
composition of services. Most of the research developed in this area has been devoted to languages for
modelling specific kinds of policies (over specific non-functional features) and of selection algorithms, e.g.,
SCA Policy [OSO05] and several others [MDSR07, MP04, MPR+08, YL05, ea04]. These languages have
been primarily designed to be part of the technology available for implementing and executing services. As
such, they are tailored to the technological infrastructure that is currently enabling web services and are not
appropriate for being used at high-levels of business modelling.

6. Concluding Remarks and Further Work

In this paper, we presented an abstract semantics of discovery and binding in service overlay computers.
This is part of an effort that we started pursuing within the Sensoria project towards a methodological
and mathematical characterisation of the service-oriented computing paradigm [WHar]. The formal model
that we presented is being used to provide a mathematical semantics for Srml — the Sensoria Modelling
Reference Language — on the basis of which we are defining an engineering environment that includes
abstraction mappings from workflow languages (such as BPEL [BHLF07]) and policy languages (such as
StPowla [BGRM08]), and model-checking techniques that support qualitative analysis [AMFG09].

Section 2 of this paper outlined methodological implications of service engineering, namely the difference
between activity and service modelling, and the use of standard business protocols to facilitate service
publication and delivery. A more complete account of the software engineering methodology and associated
tools developed within Sensoria for service-oriented systems can be found in [WHar]. This includes research
on how elements of the UML can be specialised for supporting SOAs in general, and Srml in particular
[BFL08], as well as re-engineering and model-driven development techniques.

The operational model that we proposed is based on algebraic, graph-based techniques [FLB06, FS07].
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The notion of configuration and module were formalised in terms of graphs and their labelling with differ-
ent kinds of components, connectors, specifications and specification morphisms. In this context, another
interesting semantics of the reconfiguration process that we would like to explore is the use of graph trans-
formations, for instance as in [BLLMT07] where the architectural style of Srml is defined.

A novel aspect of our configuration model is the way the operational semantics induces three layers that
reflect different levels of change: what we called the middle or ‘service’ layer is the one that is reconfigured as
a result of discovery and binding; the top layer contains components that interface with external users and
launch business activities by adding new workflows to the middle layer; the bottom layer contains components
that are shared by all the services executing in the middle layer and persist beyond their execution. The layers
are not formally part of the architecture but help to understand the overall dynamics of the configuration of
global computers and the notion of service overlay. In a sense, the bottom layer offers ‘services’ in the more
standard terminology offered by component-based development (CBD) (e.g., [BKM07]). From our point of
view, SOC deals with run-time, not design-time complexity, which is precisely what the middle layer intends
to provide.

Discovery and selection at the service layer do not need to be programmed, but are provided by the
underlying middleware, which is why they are reflected in the operational semantics defined in Section 4.1.
Note that these activities operate over a set of services that is itself dynamically changing as service producers
revise their portfolios. This added flexibility comes at a price — dynamic interactions have the overhead of
selecting the co-party at each invocation — which means that the choice between invoking a service and
calling a component needs to be carefully justified. This is why Srml makes a provision for both types of
interaction (through requires and uses interfaces as discussed in Section 3), which is another feature that is
unique to Srml.

A core aspect of our mathematical model is reflection as formalised in Section 2.3: business configurations
superpose a typing mechanism over state configurations that identifies subsystems that execute according to
given business activities and adds the corresponding types to the configuration itself. In a sense, our model
provides an abstract virtual machine that captures the essence of SOC as a ‘business overlay computer’ in
the sense that it abstracts away from the middleware resources e.g., the service broker and the specific
platforms in which service components execute. As future work, we would like to investigate how this notion
of service overlay can be implemented in reflective middleware [CBG+08].

Another interesting aspect that we propose to investigate is the ‘interleaving’ of the discovery and bind-
ing process with the execution of the activity whose workflow is being reconfigured. Having offered separate
models for these two processes (the latter reported in [FLA10]), we intend to investigate how the reconfigura-
tion process can be analysed in conjunction with the computations that are being performed by components
and the coordination mechanisms on the interactions performed by the wires. Another avenue that we would
like to explore in this respect is the use of graphs as a computational model, for instance as in [FHL+05].
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(ATX Software) in particular for his insights and suggestions on the layered approach that we proposed in
the paper. We also received very useful feedback from reviewers of earlier versions of the paper. Finally,
throughout the time that it took us to write and rewrite the paper, João Abreu raised many important
questions on fundamental aspects of the model, which have been decisive for the version that we ended up
presenting.

References
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Appendix A — The Iconography

icon represents type 

 

component interface 

(instantiated when a new 

session starts; the lifetime 

is that of the session) 

business role 

(orchestration of inter-

actions) 

 

requires-interface 

(bound during service 

execution after discovery) 

business protocol 

(properties required of 

external services) 

 

provides-interface 

(bound when a new ses-

sion starts) 

business protocol 

(properties offered by 

the service) 

 

uses/serves-interface 

(bound to a component in 

the bottom/top layer when 

a new session starts) 

layer protocol (proper-

ties assumed of the 

components in the 

bottom or top layer) 

 

wire interface 

(instantiated together with 

the second party) 

connector (interaction 

protocol and attach-

ments) 

 

external configuration 

policy 

constraint system 

 
internal configuration 

policy 

state conditions 

 

 

 

 




