
An Abstraction-Refinement Approach to Verification of
Artificial Neural Networks

Luca Pulina and Armando Tacchella

DIST, Università di Genova, Viale Causa, 13 – 16145 Genova, Italy
{Luca.Pulina,Armando.Tacchella}@unige.it

Abstract. A key problem in the adoption of artificial neural networks in safety-
related applications is that misbehaviors can be hardly ruled out with traditional
analytical or probabilistic techniques. In this paper we focus on specific networks
known as Multi-Layer Perceptrons (MLPs), and we propose a solution to ver-
ify their safety using abstractions to Boolean combinations of linear arithmetic
constraints. We show that our abstractions are consistent, i.e., whenever the ab-
stract MLP is declared to be safe, the same holds for the concrete one. Spurious
counterexamples, on the other hand, trigger refinements and can be leveraged
to automate the correction of misbehaviors. We describe an implementation of
our approach based on the HYSAT solver, detailing the abstraction-refinement
process and the automated correction strategy. Finally, we present experimental
results confirming the feasibility of our approach on a realistic case study.

1 Introduction

Artificial neural networks are one of the most investigated and well-established Ma-
chine Learning techniques, and they find application in a wide range of research and
engineering domains – see, e.g., [1]. However, in spite of some exceptions, neural net-
works are confined to systems which comply only to the lowest safety integrity levels,
achievable with standard industrial best practices [2]. The main reason is the absence of
effective safety assurance methods for systems using neural networks. In particular, tra-
ditional analytical and probabilistic methods can be ineffective in ensuring that outputs
do not generate potential hazards in safety-critical applications [3] .

In this paper we propose a formal method to verify safety of neural networks. We
consider a specific kind of feed-forward neural network known as Multi-Layer Percep-
tron (MLP), and we state that an MLP is safe when, given every possible input value, its
output is guaranteed to range within specific bounds. Even if we consider MLPs with
a fairly simple topology, the Universal Approximation Theorem [4] guarantees that, in
principle, such MLPs can approximate every non-linear real-valued function of n real-
valued inputs. Also, our notion of safety is representative of all the cases in which an
out-of-range response is unacceptable, such as, e.g., minimum and maximum reach of
an industrial manipulator, lowest and highest percentage of a component in a mixture,
and minimum and maximum dose of a drug that can be administered to a patient.

Our first contribution, in the spirit of [5], is the abstraction of MLPs to correspond-
ing Boolean combinations of linear arithmetic constraints. Abstraction is a key enabler

T. Touili, B. Cook, and P. Jackson (Eds.): CAV 2010, LNCS 6174, pp. 243–257, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

244 L. Pulina and A. Tacchella

for verification, because MLPs are compositions of non-linear and transcendental real-
valued functions, and the theories to handle such functions are undecidable [6]. Even
considering rational approximations of real numbers, the amount of computational re-
sources required to reason with realistic networks could still be prohibitive. For the
MLPs that we consider, we show that our abstraction mechanism yields consistent over-
approximations of concrete networks, i.e., once the abstract MLP is proven to be safe,
the same holds true for the concrete one. Clearly, abstraction opens the path to spuri-
ous counterexamples, i.e., violations of the abstract safety property which fail to realize
on the concrete MLP. In these cases, since we control the “coarseness” of the abstrac-
tion through a numeric parameter, it is sufficient to modify such parameter to refine the
abstraction and then retry the verification. While our approach is clearly inspired by
counterexample guided abstraction-refinement (CEGAR) [7], in our case refinement is
not guided by the counterexample, but just caused by it, so we speak of counterexample
triggered abstraction-refinement (CETAR).

Our second contribution is a strategy for automating MLP repair – a term borrowed
from [8] that we use to indicate modifications of the MLP synthesis attempting to cor-
rect its misbehaviors. The idea behind repair is simple, yet fairly effective. The problem
with an unsafe network is that it should be redesigned to improve its performances.
This is more of an art than a science, and it has to do with various factors, including
the knowledge of the physical domain in which the MLP operates. However, spurious
counterexamples open an interesting path to automated repair, because they are essen-
tially an input vector which would violate the safety constraints if the concrete MLP
were to respond with less precision than what is built in it. Intuitively, since the abstract
MLP consistently over-approximates the concrete one, a spurious counterexample is a
weak spot of the abstract MLP which could be critical also for the concrete one. We
provide strong empirical evidence in support of this intuition, and also in support of the
fact that adding spurious counterexamples to the training set yields MLPs which are
safer than the original ones.

We implemented the above ideas in the tool NEVER (for Neural networks Verifier) [9]
which leverages HYSAT [6] to verify abstract networks and the SHARK library [10] to
provide MLP infrastructure, including representation and support for evaluation and re-
pairing. In order to test the effectiveness of our approach, we experiment with NEVER

on a case study about learning the forward kinematics of an industrial manipulator. We
aim to show that NEVER can handle realistic sized MLPs, as well as support the MLP
designer in establishing or, at least, in improving the safety of his design in a com-
pletely automated way. The paper is structured as follows. Section 2 is a crash-course
on MLPs – introducing basic notation, terminology and methodologies – and includes
a detailed description of our case study. In Section 3 we describe MLP abstraction, and
we prove its consistency. We also describe the basic CETAR algorithm, and we show
some experiments confirming its feasibility. In Section 4, we extend the basic algorithm
with automated repair, we provide empirical evidence to support the correctness of our
approach, and we show experiments confirming its effectiveness in our case study. We
conclude the paper in Section 5 with some final remarks and a comparison of our work
with related literature.

An Abstraction-Refinement Approach to Verification of Artificial Neural Networks 245

i

j

aij

bj

cj

d

input
output

Input
layer

Hidden
layer

Output
layer

Fig. 1. Left: our MLP architecture of choice; neurons and connections are represented by circles
and arrows, respectively. Right: PUMA 500 industrial manipulator.

2 Preliminaries

Structure Multi-Layer Perceptrons (MLPs) [11] are probably the most widely studied
and used type of artificial neural network. An MLP is composed of a system of in-
terconnected computing units (neurons), which are organized in layers. Figure 1 (left)
shows our MLP architecture of choice, consisting of three layers: An input layer, that
serves to pass the input vector to the network. A hidden layer of computation neurons.
An output layer composed of at least a computation neuron. The MLPs that we consider
are fully connected, i.e., each neuron is connected to every neuron in the previous and
next layer. An MLP processes the information as follows. Let us consider the network
ν in Figure 1. Having n neurons in the input layer (n = 4 in Figure 1), the i-th input
value is denoted by xi, i = {1, . . . , n}. With m neurons in the hidden layer (m = 2
in Figure 1), the total input yj received by neuron j, with j = {1, . . . , m}, is called
induced local field (ILF) and it is defined as

yj =
n∑

i=1

ajixi + bj (1)

where aji is the weight of the connection from the i-th neuron in the input layer to
the j-th neuron in the hidden layer, and the constant bj is the bias of the j-th neuron.
The output of a neuron j in the hidden layer is a monotonic non-linear function of
its ILF, the activation function. As long as such activation function is differentiable
everywhere, MLPs with only one hidden layer can, in principle, approximate any real-
valued function with n real-valued inputs [4]. A commonly used activation function [11]
is the logistic function

σ(r) =
1

1 + exp(−r)
, r ∈ R (2)

Therefore, the output of the MLP is

ν(x) =
m∑

j=1

cjσ(yj) + d (3)

246 L. Pulina and A. Tacchella

where cj denotes the weight of the connection from the j-th neuron in the hidden layer
to the output neuron, while d represents the bias of the output neuron. Equation (3) im-
plies that the identity function is used as activation function of input- and output-layer
neurons. This is a common choice when MLPs deal with regression problems. In regres-
sion problems, we are given a set of patterns, i.e., input vectors X = {x1, . . . , xk} with
xi ∈ R

n, and a corresponding set of labels, i.e., output values Y = {y1, . . . , yk} with
yi ∈ R. We think of the labels as generated by some unknown function f : R

n → R

applied to the patterns, i.e., f(xi) = yi for i ∈ {1, . . . , k}. The task of ν is to extrapo-
late f given X and Y , i.e., construct ν from X and Y so that when we are given some
x∗ �∈ X we should ensure that ν(x∗) is “as close as possible” to f(x∗). In the following,
we briefly describe how this can be achieved in practice.

Training and Validation. Given a set of patterns X and a corresponding set of labels
Y generated by some unknown function f , the process of tuning the weights and the
biases of an MLP ν in order to extrapolate f is called training, and the pair (X, Y)
is called the training set. We can see training as a way of learning a concept, i.e., the
function f , from the labelled patterns in the training set. In particular, we speak of
supervised learning because labels can be used as a reference for training, i.e., whenever
ν(xi) �= yi with xi ∈ X and yi ∈ Y an error signal can be computed to determine how
much the weights should be adjusted to improve the quality of the response of ν. A well-
established training algorithm for MLPs is back-propagation (BP) [11]. Informally, an
epoch of BP-based training is the combination of two steps. In the forward step, for all
i ∈ {1, . . . , k}, xi ∈ X is input to ν, and some cumulative error measure ε is evaluated.
In the backward step, the weights and the biases of the network are all adjusted in
order to reduce ε. After a number of epochs, e.g., when ε stabilizes under a desired
threshold, BP stops and returns the weights of the neurons, i.e., ν is the inductive model
of f .

In general, extrapolation is an ill-posed problem. Even assuming that X and Y are
sufficient to learn f , it is still the case that different sets X, Y will yield different settings
of the MLP parameters. Indeed, we cannot choose elements of X and Y to guarantee
that the resulting network ν will not underfit f , i.e., consistently deviate from f , or
overfit f , i.e., be very close to f only when the input vector is in X . Both underfit-
ting and overfitting lead to poor generalization performances, i.e., the network largely
fails to predict f(x∗) on yet-to-be-seen inputs x∗. Statistical techniques can provide
reasonable estimates of the generalization error – see, e.g., [11]. In our experiments, we
use leave-one-out cross-validation (or, simply, leave-one-out) which works as follows.
Given the set of patterns X and the set of labels Y , we obtain the MLP ν(i) by applying
BP to the set of patterns X(i) = {x1, . . . , xi−1, xi+1, . . . xk} and to the corresponding
set of labels Y(i). If we repeat the process k times, then we obtain k different MLPs so
that we can estimate the generalization error as

ε̂ =

√√√√1
k

k∑

i=1

(yi − ν(i)(xi))2 (4)

An Abstraction-Refinement Approach to Verification of Artificial Neural Networks 247

which is the root mean squared error (RMSE) among all the predictions made by each
ν(i) when tested on the unseen input xi. Both leave-one-out and RMSE are a common
method of estimating and summarizing the generalization error in MLP applications
(see e.g. [11]).

Case Study. The experiments that we present1 concern a realistic case study about the
control of a Unimate PUMA 500 industrial manipulator – see Figure 1 (right). This is
a 6 degrees-of-freedom manipulator with revolute joints, which has been widely used
in industry and it is still common in academic research projects. The joints are actuated
by DC servo motors with encoders to locate angular positions. Our case study focuses
on learning forward kinematics, i.e., the mapping from joint angles to end-effector po-
sition along a single coordinate of a Cartesian system having origin in the center of the
robot’s workspace. Our desiderata is thus to build an MLP predicting the final position
of the end-effector knowing the joint angles. Since we learn the mapping using exam-
ples inside a region that we consider to be safe for the manipulator’s motion, we expect
the MLP to never emit a prediction that exceeds the safe region. An MLP failing to
do so is to be considered unsafe. To train the MLP, we consider a training set (X, Y)
collecting 141 entries. The patterns x ∈ X are vectors encoding the 6 joint angles, i.e.,
x = 〈θ1, . . . , θ6〉 (in radians), and the labels are the corresponding end-effector coor-
dinate (in meters). The range that we consider to be safe for motion goes from -0.35m
to 0.35m, thus for all y ∈ Y we have y ∈ [−0.35, 0.35]. We have built the training
set using the ROBOOP library [12] which provides facilities for simulating the PUMA
manipulator. The MLP was trained using the IRPROPPLUS algorithm [13], which is a
modern implementation of BP. Inside our system, training an MLP to perform forward
kinematics takes 0.64s across 500 epochs, yielding a RMSE estimate of the generaliza-
tion error ε̂ = 0.024m – the error distribution ranges from a minimum of 3.2×10−5m
to a maximum of 0.123m, with a median value of 0.020m. It is worth noticing that such
generalization error would be considered very satisfactory in MLP applications.

3 Verifying MLPs with Abstraction

Given an MLP ν with n inputs and a single output we define

– the input domain of ν as a Cartesian product I = D1 × . . . × Dn where for all
1 ≤ i ≤ n the i-th element of the product Di = [ai, bi] is a closed interval bounded
by ai, bi ∈ R; and

– the output domain of ν as a closed interval O = [a, b] bounded by a, b ∈ R.

In the definition above, and throughout the rest of the paper, a closed interval [a, b]
bounded by a, b ∈ R is the set of real numbers comprised between a and b, i.e, [a, b] =
{x | a ≤ x ≤ b} with a ≤ b. We thus consider any MLP ν as a function ν : I → O,
and we say that ν is safe if it satisfies the property

∀x ∈ I : ν(x) ∈ [l, h] (5)

1 Our empirical analysis is obtained on a family of identical Linux workstations comprised of
10 Intel Core 2 Duo 2.13 GHz PCs with 4GB of RAM running Linux Debian 2.6.18.5.

248 L. Pulina and A. Tacchella

where l, h ∈ O are safety thresholds, i.e., constants defining an interval wherein the
MLP output is to range, given all acceptable input values. Testing exhaustively all the
input vectors in I to make sure that ν respects condition (5) is untenable. On the other
hand, statistical approaches based on sampling input vectors – see, e.g., [14] – can
only give a probabilistic guarantee. In the spirit of [5], we propose to verify a con-
sistent abstraction of ν, i.e., a function ν̃ such that if the property corresponding to
(5) is satisfied by ν̃ in a suitable abstract domain, then it must hold also for ν. As in
any abstraction-based approach to verification, the key point is that verifying condition
(5) in the abstract domain is feasible, possibly without using excessive computational
resources. This comes at the price of spurious counterexamples, i.e., there may exist
some abstract counterexamples that do not correspond to concrete ones. A spurious
counterexample calls for a refinement of the abstraction which, in turn, can make the
verification process more expensive. In practice, we hope to be able to either verify ν
or exhibit a counterexample within a reasonable number of refinements.

Following the framework of [5], we build abstract interpretations of MLPs where
the concrete domain R is the set of real numbers, and the corresponding abstract do-
main [R] = {[a, b] | a, b ∈ R} is the set of (closed) intervals of real numbers. In the
abstract domain we have the usual containment relation “	” such that given two inter-
vals [a, b] ∈ [R] and [c, d] ∈ [R] we have that [a, b] 	 [c, d] exactly when a ≥ c and
b ≤ d, i.e., [a, b] is a subinterval of – or it coincides with – [c, d]. Given any set X ⊆ R,
abstraction is defined as the mapping α : 2R → [R] such that

α(X) = [min{X}, max{X}] (6)

In other words, given a set X ⊆ R, α(X) is the smallest interval encompassing all the
elements of X , i.e., for all x ∈ X , x ranges within α(X) and there is no [a, b] 	 α(X)
for which the same holds unless [a, b] coincides with α(X). Conversely, given [a, b] ∈
[R], concretization is defined as the mapping γ : [R]→ 2R such that

γ([a, b]) = {x | x ∈ [a, b]} (7)

which represents the set of all real numbers comprised in the interval [a, b]. Given the
posets 〈2R,⊆〉 and 〈[R],	〉, the pair 〈α, γ〉 is indeed a Galois connection because the
following four properties follow from definitions (6) and (7):

1. Given two sets X, Y ∈ 2R, if X ⊆ Y then α(X) 	 α(Y).
2. Given two intervals [a, b] ∈ [R] and [c, d] ∈ [R], if [a, b] 	 [c, d] then γ([a, b]) ⊆

γ([c, d]).
3. Given a set X ∈ 2R, we have that X ⊆ γ(α(X)).
4. Given an interval [a, b] ∈ [R], we have that α(γ([a, b]) coincides with [a, b].

Let ν : I → O denote the MLP for which we wish to prove safety in terms of (5). We
refer to ν as the concrete MLP. Given a concrete domain D = [a, b], the corresponding
abstract domain is [D] = {[x, y] | a ≤ x ≤ y ≤ b}, and we denote with [x] a
generic element of [D]. We can naturally extend the abstraction to Cartesian products
of domains, i.e., given I = D1 × . . . ×Dn, we define [I] = [D1] × . . . × [Dn], and
we denote with [x] = 〈[x1], . . . , [xn]〉 the elements of [I] that we call interval vectors.

An Abstraction-Refinement Approach to Verification of Artificial Neural Networks 249

Fig. 2. Activation function σ(x) and its abstraction σ̃p(x) in the range x ∈ [−2, 2]. The solid line
denotes σ, while the boxes denote σ̃p with p = 0.5.

If X ⊆ I with X = {x1, . . . , xk} is a set of input vectors, then we can extend the
abstraction function α by considering

α(X) = 〈[min
1≤j≤k

{x1j}, max
1≤j≤k

{x1j}], . . . , [min
1≤i≤k

{xnj}, max
1≤j≤k

{xnj}]〉 (8)

where xij denotes the i-th component (1 ≤ i ≤ n) of the j-th vector in X (1 ≤ j ≤ k).
The result of α(X) is thus the interval vector whose components are n intervals, each
obtained by considering minimum and maximum of the corresponding components in
the input vectors. An abstract MLP ν̃ is a function ν̃ : [I] → [O]. Given a set of input
vectors X ⊆ I, ν̃ provides a consistent abstraction of ν if it satisfies

{ν(x) | x ∈ X} ⊆ γ(ν̃(α(X))) (9)

In words, when given the interval vector α(X) as input, ν̃ outputs an interval which
corresponds to a superset of the values that ν would output if given as input all the
vectors in X . Given our safety thresholds l, h ∈ O, if we can prove

∀[x] ∈ [I] : ν̃([x]) 	 [l, h] (10)

then, from (9) and the definition of γ, it immediately follows that

{ν(x) | x ∈ I} ⊆ {y | l ≤ y ≤ h} (11)

which implies that condition (5) is satisfied by ν, because ν may not output a value
outside [l, h] without violating (11).

We abstract the concrete MLP ν assuming that the activation function of the hidden-
layer neurons is the logistic function (2), where σ(x) : R→ Oσ andOσ = [0, 1]. Given
an abstraction parameter p ∈ R

+, the abstract activation function σ̃p can be obtained
by considering the maximum increment of σ over intervals of length p. Since σ is a
monotonically increasing function, and its first derivative is maximum in the origin,
we can use the increment of σ in the origin as the upper bound on the increment of σ
elsewhere. The tangent to σ in the origin has slope 1/4 so we have that

∀x ∈ R : 0 ≤ σ(x + p)− σ(x) ≤ p

4
(12)

250 L. Pulina and A. Tacchella

NEVER(Δ, Π , [l, h], p, r)
1 isSafe← FALSE; isFeasible← FALSE

2 ν ← TRAIN(Δ, Π)
3 repeat
4 ν̃p← ABSTRACT(ν, p)
5 s̃← NIL; isSafe← CHECKSAFETY(ν̃p, [l, h], s̃)
6 if (not isSafe) then
7 isFeasible← CHECKFEASIBILITY(ν, s̃)
8 if (not isFeasible) then
9 p← p / r

10 until isSafe or (not isSafe and isFeasible)
11 return isSafe

Fig. 3. Pseudo-code of NEVER

for any choice of the parameter p ∈ R
+. Now let x0 and x1 be the values that satisfy

σ(x0) = p/4 and σ(x1) = 1−p/4, respectively. We define σ̃p : [R]→ [Oσ] as follows:

σ̃p([xa, xb]) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[0, p/4] if xb ≤ x0

[0, σ(�xb

p) + p
4] if xa ≤ x0 and xb < x1

[σ(�xa

p), σ(�xb

p) + p
4] if x0 < xa and xb < x1

[σ(�xa

p), 1] if x0 < xa and x1 ≤ xb

[1− p/4, 1] if xa ≥ x1

(13)

Figure 2 gives a pictorial representation of the above definition. As we can see, σ̃p is
a consistent abstraction of σ because it respects property (9) by construction. Accord-
ing to (13) we can control how much σ̃p over-approximates σ, since large values of p
correspond to coarse-grained abstractions, whereas small values of p correspond to fine-
grained ones. Formally, if p < q then for all [x] ∈ [R], we have that σ̃p([x]) 	 σ̃q([x]).
We can now define ν̃p : [I]→ [O] as

ν̃p([x]) =
m∑

j=1

cj σ̃p(ỹj([x])) + d (14)

where ỹj([x]) =
∑n

i=1 aji[xi] + bj , and we overload the standard symbols to denote
products and sums, e.g., we write x + y to mean x+̃y when x, y ∈ [R]. Since σ̃p is a
consistent abstraction of σ, and products and sums on intervals are consistent abstrac-
tions of the corresponding operations on real numbers, defining ν̃p as in (14) provides
a consistent abstraction of ν. This means that our original goal of proving the safety
of ν according to (5) can be now recast, modulo refinements, to the goal of proving its
abstract counterpart (10).

We can leverage the above definitions to provide a complete abstraction-refinement
algorithm to prove MLP safety. The pseudo-code in Figure 3 is at the core of our tool
NEVER2 which we built as proof of concept. NEVER takes as input a training set Δ, a

2 NEVER is available for download at http://www.mind-lab.it/never. NEVER is
written in C++, and it uses HYSAT to verify abstract MLPs and the SHARK library to handle
representation, training, and repairing of the concrete MLPs.

http://www.mind-lab.it/never

An Abstraction-Refinement Approach to Verification of Artificial Neural Networks 251

Table 1. Safety checking with NEVER. The first two columns (“l” and “h”) report lower and
upper safety thresholds, respectively. The third column reports the final result of NEVER, and
column “# CETAR” indicates the number of abstraction-refinement loops. The two columns un-
der “TIME” report the total CPU time (in seconds) spent by NEVER and by HYSAT, respectively.

l h RESULT # CETAR TIME

TOTAL HYSAT
-0.350 0.350 UNSAFE 8 1.95 1.01
-0.450 0.450 UNSAFE 9 3.15 2.10
-0.550 0.550 UNSAFE 12 6.87 5.66
-0.575 0.575 SAFE 11 6.16 4.99
-0.600 0.600 SAFE 1 0.79 0.12
-0.650 0.650 SAFE 1 0.80 0.13

set of MLP parameters Π , the safety thresholds [l, h], the initial abstraction parameter
p, and the refinement rate r. In line 1, two Boolean flags are defined, namely isSafe and
isFeasible. The former is set to TRUE when verification of the abstract network suc-
ceeds; the latter is set to TRUE when an abstract counterexample can be realized on the
concrete MLP. In line 2, a call to the function TRAIN yields a concrete MLP ν from the
set Δ. The set Π must supply parameters to control topology and training of the MLP,
i.e., the number of neurons in the hidden layer and the number of BP epochs. The result
ν is the MLP with the least cumulative error among all the networks obtained across
the epochs [10]. Lines 4 to 11 are the CETAR loop. Given p, the function ABSTRACT

computes ν̃p exactly as shown in (14) and related definitions. In line 5, CHECKSAFETY

is devoted to interfacing with the HYSAT solver in order to verify ν̃p. In particular,
HYSAT is supplied with a Boolean combination of linear arithmetic constraints mod-
eling ν̃p : [I] → [O], and defining the domains [I] and O, plus a further constraint
encoding the safety condition. In particular, this is about finding some interval [x] ∈ [I]
such that ν̃([x]) �	 [l, h]. CHECKSAFETY takes as input also a variable s̃ that is used to
store the abstract counterexample, if any. CHECKSAFETY returns one of the following
results:

– If the set of constraints supplied to HYSAT is unsatisfiable, then for all [x] ∈ [I]
we have ν̃p([x]) 	 [l, h]. In this case, the return value is TRUE, and s̃ is not set.

– If the set of constraints supplied to HYSAT is satisfiable, this means that there exists
an interval [x] ∈ [I] such that ν̃([x]) �	 [l, h]. In this case, such [x] is collected in
s̃, and the return value is FALSE.

If isSafe is TRUE after the call to CHECKSAFETY, then the loop ends and NEVER exits
successfully. Otherwise, the abstract counterexample s̃ must be checked to see whether
it is spurious or not. This is the task of CHECKFEASIBILITY, which takes as input
the concrete MLP ν, and a concrete counterexample extracted3 from s̃. If the abstract
counterexample can be realized then the loop ends and NEVER exits reporting an un-
successful verification. Otherwise, we update the abstraction parameter p according to
the refinement rate r – line 9 – and we restart the loop.

We conclude this section with an experimental account of NEVER using the case
study introduced in Section 2. Our main target is to find a region [l, h] within which

3 We consider a vector whose components are the midpoints of the components of the interval
vector emitted by HYSAT as witness.

252 L. Pulina and A. Tacchella

we can guarantee a safe calculation of the forward kinematics by means of a trained
MLP. To do so, we set the initial abstraction parameter to p = 0.5 and the refinement
rate to r = 1.1, and we train an MLP with 3 neurons in the hidden layer. In order to
find l and h, we start by considering the interval [−0.35, 0.35] – recall that this is the
interval in which we consider motion to be safe. Whenever we find a counterexample
stating that the network is unsafe with respect to given bounds, we enlarge the bounds.
Once we have reached a safe configuration, we try to shrink the bounds, until we reach
the tightest bounds that we can consider safe. The results of the above experiment are
reported in Table 1. In the Table, we can see that NEVER is able to guarantee that the
MLP is safe in the range [−0.575, 0.575]. If we try to shrink these bounds, then NEVER

is always able to find a set of inputs that makes the MLP exceed the bounds. Notice that
the highest total amount of CPU time corresponds to the intervals [−0.550, 0.550] and
[−0.575, 0.575], which are the largest unsafe one and the tightest safe one, respectively.
In both cases, the number of abstraction-refinement loops is also larger than other con-
figurations that we tried.

Given that there is only one parameter governing the abstraction, we may consider
whether starting with a precise abstraction, i.e., setting a relatively small value of p,
would bring any advantage. However, we should keep into account that the smaller is p,
the larger is the HYSAT internal propositional encoding to check safety in the abstract
domain. As a consequence, HYSAT computations may turn out to be unfeasibly slow
if the starting value of p is too small. To see this, let us consider the range [−0.65, 0.65]
for which Table 1 reports that HYSAT solves the abstract safety check with p = 0.5
in 0.13 CPU seconds, and NEVER performs a single CETAR loop. The corresponding
propositional encoding accounts for 599 variables and 2501 clauses in this case. If we
consider the same safety check using p = 0.05, then we still have a single CETAR
loop, but HYSAT now runs for 30.26 CPU seconds, with an internal encoding of 5273
variables and 29322 clauses. Notice that the CPU time spent by HYSAT in this single
case is already more than the sum of its runtime across all the cases in Table 1. Setting
p = 0.005 confirms this trend: HYSAT solves the abstract safety check in 96116 CPU
seconds (about 27 hours), and the internal encoding accounts for 50774 variables and
443400 clauses. If we consider the product between variables and clauses as a rough
estimate of the encoding size, we see that a 10× increase in precision corresponds to
at least a 100× increase in the size of the encoding. Regarding CPU times, there is
more than a 200× increase when going from p = 0.5 to p = 0.05, and more than a
3000× increase when going from p = 0.05 to p = 0.005. In light of these results, it
seems reasonable to start with coarse abstractions and let the CETAR loop refine them
as needed. As we show in the following, efficiency of the automated repair heuristic is
also another compelling reason behind this choice.

4 Repairing MLPs Using Spurious Counterexamples

In the previous Section we have established that, in spite of a very low generalization
error, there are specific inputs to the MLP which trigger a misbehavior. As a matter of
fact, the bounds in which we are able to guarantee safety would not be very satisfac-
tory in a practical application, since they are about 64% larger than the desired ones.

An Abstraction-Refinement Approach to Verification of Artificial Neural Networks 253

This result begs the question of whether it is possible to improve MLPs response us-
ing the output of NEVER. In this section, we provide strong empirical evidence that
adding spurious counterexamples to the dataset Δ and training a new MLP, yields a
network whose safety bounds are tighter than the original ones. We manage to show
this because our forward kinematics dataset is obtained with a simulator, so whenever
a spurious counterexample is found, i.e., a vector of joint angles causing a misbehav-
ior in the abstract network, we can compute the true response of the system, i.e., the
position of the end-effector along a single axis. While this is feasible in our experimen-
tal setting, the problem is that MLPs are useful exactly in those cases where the target
function f : I → O is unknown. However, we show that even in such cases the original
MLP can be repaired, at least to some extent, by leveraging spurious counterexamples
and the response of the concrete MLP under test. Intuitively, this makes sense because
the concrete MLP ought to be an accurate approximation of the target function. Our
experiments show that adding spurious counterexamples to the dataset Δ and training a
new MLP inside the CETAR loop, also yields networks whose safety bounds are tighter
than the original ones. Since Δ must contain patterns of the form (〈θ1, . . . , θ6〉, y), and
counterexamples are interval vectors of the form s̃ = 〈[θ1], . . . , [θ6]〉 we have the prob-
lem of determining the pattern corresponding to s̃ which must be added to Δ. Let ν be
the MLP under test, and s̃ be a corresponding spurious counterexample. We proceed in
two steps: First, we extract a concrete input vector s = 〈θ1, . . . , θ6〉 from s̃ as described
in the previous Section. Second, we compute ν(s), and we add the pattern (s, ν(s)) to
Δ. As we can see in Figure 3, if s̃ is a spurious counterexample, the computation of s
already comes for free because it is needed to check feasibility (line 7).

Our first experiment shows that leveraging spurious counterexamples together with
their true response – a process that we call manual-repair in the following – yields
MLPs with improved safety bounds. We consider the tightest SAFE interval in Table 1
([−0.575, 0.575]), and we proceed as follows:

1. We train a new MLP ν1 using the dataset Δ1 = Δ ∪ (s1, f(s1)) where Δ is the
original dataset, s1 is extracted from s̃ after the first execution of the CETAR loop
during the check of [−0.575, 0.575], and f(s1) is the output of the simulator.

2. We sample ten different input vectors {r1, . . . , r10}, uniformly at random from the
input space; for each of them, we obtain a dataset Γi = Δ ∪ (ri, f(ri)) where Δ
and f are the same as above; finally we train ten different MLPs {μ1, . . . , μ10},
where μi is trained on Γi for 1 ≤ i ≤ 10.

Given the MLP ν1 and the control MLPs {μ1, . . . , μ10}, we check for their safety with
NEVER. In the case of ν1 we are able to show that the range [−0.4, 0.4] is safe, which
is already a considerable improvement over [−0.575, 0.575]. On the other hand, in the
case of {μ1, . . . , μ10} the tightest bounds that we can obtain range from [−0.47, 0.47]
to [−0.6, 0.6]. This means that a targeted choice of a “weak spot” driven by a spurious
counterexample turns out to be winning over a random choice. This situation is depicted
in Figure 4 (left), where we can see the output of the original MLP ν corresponding to
s1 (circle dot) and to {r1 . . . r10} (triangle dots). As we can see, ν(s) = 0.484 is out-
side the target bound of [−0.35, 0.35] – notice that f(s) = 0.17 in this case. On the
other hand, random input vectors do not trigger, on average, an out-of-range response

254 L. Pulina and A. Tacchella

Fig. 4. Representation of ROBOOP and MLPs input-output in the manual-repair experiment. The
plane (PC1-PC2) at the bottom is a two-dimensional projection of the input domain obtained
considering only the first two components of a Principal Component Analysis (PCA) of the input
vectors – see, e.g., Chap. 7 of [15] for an introduction to PCA. The Y axis is the output of
ROBOOP and the MLPs under test. The plane (Y-PC2) on the left shows the output vs. the second
principal component. All square points in space are the output of ROBOOP corresponding to the
input vectors, and we also show them projected onto the (Y-PC2) plane. Circles and triangles
in space are the output of the MLPs under test: circles correspond to spurious counterexamples
obtained by NEVER; triangles correspond to random input samples that we use as control; for
both of them we also show their projection onto the (Y-PC2) plane. For all data points, a line
joins the output of the system – either ROBOOP or the MLPs under test – to the corresponding
input pattern in the (PC1-PC2) plane.

of ν4. We repeat steps 1 and 2 above, this time considering Δ1 as the initial dataset, and
thus computing a new dataset Δ2 = Δ1∪ (s2, f(s2)) where s2 is extracted from s̃ after
the second execution of the CETAR loop. We consider a new MLP ν2 trained on Δ2,
as well as other ten networks trained adding a random input pattern to Δ1. Checking
safety with NEVER, we are now able to show that the range [−0.355, 0.355] is safe
for ν2, while the safety intervals for the remaining networks range from [−0.4, 0.4] to
[−0.56, 0.56]. In Figure 4 (right) we show graphically the results of this second round,
where we can see again that the response of ν1(s2) is much closer to the target bound
than the response of ν1 when considering random input patterns. In the end, the above
manual-repair experiment provides strong empirical evidence that spurious counterex-
amples are significantly more informative than randomly chosen input patterns and that
they can help in improving the original safety bounds. However, a precise theoretical
explanation of the phenomenon remains to be found. In this regard, we also notice
that there are cases in which training on a dataset enlarged by a single pattern may
cause NEVER to be unable to confirm the same safety bounds that could be proven be-
fore. In other words, safety is not guaranteed to be preserved when adding patterns and
retraining.

4 Notice that s is still spurious in this case because we are aiming to the bound [−0.575, 0.575].

An Abstraction-Refinement Approach to Verification of Artificial Neural Networks 255

Table 2. Safety checking with NEVER and repair. The table is organized as Table 1, with the only
exception of column “MLP”, which reports the CPU time used to train the MLP.

l h RESULT # CETAR TIME

TOTAL MLP HYSAT
-0.350 0.350 UNSAFE 11 9.50 7.31 1.65
-0.400 0.400 UNSAFE 7 6.74 4.68 1.81
-0.425 0.425 UNSAFE 13 24.93 8.74 1.52
-0.450 0.450 SAFE 3 3.11 1.92 1.10

To automate repairing, we modify NEVER by replacing lines 6-9 in the pseudo-code
of Figure 3 with the following:

6 if (not isSafe) then
7 o← NIL; isFeasible← CHECKFEASIBILITY(ν, s̃, o)
8 if (not isFeasible) then
9 p← p / r; Δ← UPDATE(Δ, s̃, o); ν ← TRAIN(Δ, Π)

The parameter o is used to store the answer of ν when given s̃ as input. The rest of
the code is meant to update the concrete MLP by (i) adding the input pattern extracted
from the spurious counterexample s̃ and the corresponding output o to the set Δ, and
(ii) training a new network on the extended set.

After this modification, we run a new experiment similar to the one shown in Sec-
tion 3, with the aim of showing that we can improve the safety of the MLP in a com-
pletely automated, yet fairly efficient, way. Our goal is again finding values of l and
h as close as possible to the ones for which the controller was trained. Table 2 shows
the result of the experiment above. As we can see in the Table, we can now claim
that the MLP prediction will never exceed the range [−0.450, 0.450], which is “only”
28% larger than the desired one. Using this repairing heuristic in NEVER we are thus
able to shrink the safety bounds of about 0.125m with respect to those obtained with-
out repairing. This gain comes at the expense of more CPU time spent to retrain the
MLP, which happens whenever we find a spurious counterexample, independently of
whether NEVER will be successful in repairing the network. For instance, considering
the range [−0.350, 0.350] in Table 1, we see that the total CPU time spent to declare
the network unsafe is 1.95s without repairing, whereas the same result with repairing
takes 9.50s in Table 2. Notice that updating the MLP also implies an increase of the
total amount of CETAR loops (from 8 to 11). On the other hand, still considering the
range [−0.350, 0.350], we can see that the average time spent by HYSAT to check
the abstract network is about the same for the two cases.

Since we have shown in the previous Section that reducing p is bound to increase
HYSAT runtimes substantially, automated repairing with a fixed p could be an option.
Indeed, the repair procedure generates a new ν at each execution of the CETAR loop,
independently from the value of p. Even if it is possible to repair the original MLP
without refinement, our experiments show that this can be less effective than repair
coupled with refinement. Let us consider the results reported in Table 2, and let p = 0.5
for each loop. We report the NEVER returns SAFE for the interval [−0.450, 0.450] after
59.12s and 36 loops. The first consideration about this result concerns the CPU time
spent, which is one order of magnitude higher than repair with refinement, and it is

256 L. Pulina and A. Tacchella

mainly due to the higher number of retrainings. The second consideration is about the
total amount of loops. Considering that the proportion of new patterns with respect to
the original dataset is about 25%, and also considering that p = 0.5 is rather coarse, we
also incur into a high risk of overfitting the MLP.

5 Conclusion and Related Work

Summing up, the abstraction-refinement approach that we proposed allows the applica-
tion of formal methods to verify and repair MLPs. The two key results of our work are
(i) showing that a consistent abstraction mechanism allows the verification of realistic
MLPs, and (ii) showing that our repair heuristic can improve the safety of MLPs in a
completely automated way. To the best of our knowledge, this is the first time in which
formal verification of a functional Machine Learning technique is investigated. Contri-
butions that are close to ours include a series of paper by Gordon, see e.g. [8], which
focus on the domain of discrete-state systems with adaptive components. Since MLPs
are stateless and defined over continuous variables, the results of [8] and subsequent
works are unsuitable for our purposes. Robot control in the presence of safety con-
straints is a topic which is receiving increasing attention in recent years – see, e.g., [16].
However, the contributions in this area focus mostly on the verification of traditional,
i.e., non-adaptive, methods of control. While this is a topic of interest in some fields of
Machine Learning and Robotics – see, e.g., [14,3] – such contributions do not attack the
problem using formal methods. Finally, since learning the weights of the connections
among neurons can be viewed as synthesizing a relatively simple parametric program,
our repairing procedure bears resemblances with the counterexample-driven inductive
synthesis presented in [17], and the abstraction-guided synthesis presented in [18]. In
both cases the setting is quite different, as the focus is on how to repair concurrent
programs. However, it is probably worth investigating further connections of our work
with [17,18] and, more in general, with the field of inductive programming.

References

1. Zhang, G.P.: Neural networks for classification: a survey. IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews 30(4), 451–462 (2000)

2. Smith, D.J., Simpson, K.G.L.: Functional Safety – A Straightforward Guide to applying IEC
61505 and Related Standards, 2nd edn. Elsevier, Amsterdam (2004)

3. Kurd, Z., Kelly, T., Austin, J.: Developing artificial neural networks for safety critical sys-
tems. Neural Computing & Applications 16(1), 11–19 (2007)

4. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal ap-
proximators. Neural networks 2(5), 359–366 (1989)

5. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: 4th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, pp. 238–252 (1977)

6. Franzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-
linear arithmetic constraint systems with complex boolean structure. Journal on Satisfiability,
Boolean Modeling and Computation 1, 209–236 (2007)

An Abstraction-Refinement Approach to Verification of Artificial Neural Networks 257

7. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction re-
finement for symbolic model checking. Journal of the ACM (JACM) 50(5), 794 (2003)

8. Gordon, D.F.: Asimovian adaptive agents. Journal of Artificial Intelligence Research 13(1),
95–153 (2000)

9. Pulina, L., Tacchella, A.: NEVER: A tool for Neural Network Verification (2010),
http://www.mind-lab.it/never

10. Igel, C., Glasmachers, T., Heidrich-Meisner, V.: Shark. Journal of Machine Learning Re-
search 9, 993–996 (2008)

11. Haykin, S.: Neural networks: a comprehensive foundation. Prentice Hall, Englewood Cliffs
(2008)

12. Gordeau, R.: Roboop – a robotics object oriented package in C++ (2005),
http://www.cours.polymtl.ca/roboop

13. Igel, C., Husken, M.: Empirical evaluation of the improved Rprop learning algorithms. Neu-
rocomputing 50(1), 105–124 (2003)

14. Schumann, J., Gupta, P., Nelson, S.: On verification & validation of neural network based
controllers. In: Proc. of International Conf. on Engineering Applications of Neural Networks,
EANN’03 (2003)

15. Witten, I.H., Frank, E.: Data Mining, 2nd edn. Morgan Kaufmann, San Francisco (2005)
16. Pappas, G., Kress-Gazit, H. (eds.): ICRA Workshop on Formal Methods in Robotics and

Automation (2009)
17. Solar-Lezama, A., Jones, C.G., Bodik, R.: Sketching concurrent data structures. In: 2008

ACM SIGPLAN conference on Programming language design and implementation, pp.
136–148. ACM, New York (2008)

18. Vechev, M., Yahav, E., Yorsh, G.G.: Abstraction-guided synthesis of synchronization. In:
37th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pp. 327–338. ACM, New York (2010)

http://www.mind-lab.it/never
http://www.cours.polymtl.ca/roboop

	An Abstraction-Refinement Approach to Verification of Artificial Neural Networks
	Introduction
	Preliminaries
	Verifying MLPs with Abstraction
	Repairing MLPs Using Spurious Counterexamples
	Conclusion and Related Work
	References

