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An Abuse-Free Fair Contract-Signing Protocol Based
on the RSA Signature

Guilin Wang

Abstract—A fair contract-signing protocol allows two potentially
mistrusted parities to exchange their commitments (i.e., digital sig-
natures) to an agreed contract over the Internet in a fair way, so
that either each of them obtains the other’s signature, or neither
party does. Based on the RSA signature scheme, a new digital con-
tract-signing protocol is proposed in this paper. Like the existing
RSA-based solutions for the same problem, our protocol is not only
fair, but also optimistic, since the trusted third party is involved
only in the situations where one party is cheating or the commu-
nication channel is interrupted. Furthermore, the proposed pro-
tocol satisfies a new property— abuse-freeness. That is, if the pro-
tocol is executed unsuccessfully, none of the two parties can show
the validity of intermediate results to others. Technical details are
provided to analyze the security and performance of the proposed
protocol. In summary, we present the first abuse-free fair contract-
signing protocol based on the RSA signature, and show that it is
both secure and efficient.

Index Terms—Contract signing, cryptographic protocols, digital
signatures, e-commerce, fair-exchange, RSA, security.

I. INTRODUCTION

C
ONTRACT signing plays a very important role in any

business transaction, in particular in situations where the

involved parties do not trust each other to some extent already.

In the paper-based scenario, contract signing is truly simple due

to the existence of “simultaneity.” That is, both parties generally

sign two hard copies of the same contract at the same place and

at the same time. After that, each party keeps one copy as a

legal document that shows both of them have committed to the

contract. If one party does not abide by the contract, the other

party could provide the signed contract to a judge in court.

As electronic commerce is becoming more and more impor-

tant and popular in the world, it is desirable to have a mechanism

that allows two parties to sign a digital contract via the Internet.

However, the problem of contract signing becomes difficult in

this setting, since there is no simultaneity any more in the sce-

nario of computer networks. In other words, the simultaneity

has to be mimicked in order to design a digital contract-signing

protocol. This requirement is essentially captured by the con-

cept of fairness: At the end of the protocol, either both parties

Manuscript received June 30, 2009; accepted September 15, 2009. First pub-
lished November 06, 2009; current version published February 12, 2010. An
early version of this work appears in Proc. 14th Int. Conf. World Wide Web
(WWW’05), 2005. The associate editor coordinating the review of this manu-
script and approving it for publication was Robert H. Deng.

The author is with the School of Computer Science, University of Birm-
ingham, Birmingham, B15 2TT, U.K. (e-mail: G.Wang@cs.bham.ac.uk).
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have valid signatures for a contract or neither does, even if one

of them tries to cheat or the communication channel is out of

order. In fact, Even and Yacobi [22] proved that it is impossible

to achieve fairness in a deterministic two-party contract-signing

protocol. The intuitive reason could be explained as follows. The

purpose of such a protocol is to go from the initial fair state, in

which no party has what he/she expects, to the desired fair state

in which both obtain what they want. However, information is

exchanged in computer networks nonsimultaneously, so at least

an unfair state must be passed through.

Related Work: From the view point of technique, the

problem of digital contract signing belongs to a wider topic:

fair exchange, i.e., how to enable two (or multiple) potentially

mistrusted parities exchanging digital items over public com-

puter networks like the Internet in a fair way, so that each

party gets the other’s item, or neither party does. Actually, fair

exchange includes the following different but related issues:

contract-signing protocols [2], [4], [6], [7], [12], [17], [22],

[26], [39], certified e-mail systems [1], [5], [32], [35], [49],

nonrepudiation protocols [31], [36], [46], [48], and e-payment

schemes in electronic commerce [15], [40]. For more references

and discussions on the relationships between those conceptions,

please refer to [3], [36], and [46]. In this paper, we mainly

focus on the problem of digital contract signing between two

parties. Since a party’s commitment to a digital contract is

usually defined as his/her digital signature on the contract, dig-

ital contract signing is essentially implied by fair exchange of

digital signatures between two potentially mistrusted parities.

There is a rich history of contract signing (i.e., fair exchange

of digital signatures) because this is a fundamental problem in

electronic transactions. According to the involvement degree

of a trusted third party (TTP), contract-signing protocols can

be divided into three types: 1) gradual exchanges without any

TTP; 2) protocols with an on-line TTP; and 3) protocols with

an off-line TTP. Early efforts [17], [21], [29] mainly focused

on the first type of protocols to meet computational fairness:

Both parties exchange their commitments/secrets “bit-by-bit.”

If one party stops prematurely, both parties have about the same

fraction of the peer’s secret, which means that they can com-

plete the contract off-line by investing about the same amount

of computing work, e.g., exclusively searching the remaining

bits of the secrets. The major advantage of this approach is that

no TTP is involved. However, this approach is unrealistic for

most real-world applications due to the following reasons. First

of all, it is assumed that the two parties have equivalent or re-

lated computation resources. Otherwise, such a protocol is fa-

vorable to the party with stronger computing power, who may

conditionally force the other party to commit the contract by its

1556-6013/$26.00 © 2010 IEEE
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own interest. At the same time, such protocols are inefficient

because the costs of computation and communication are ex-

tensive. In addition, as pointed out in [12], this approach has the

unsatisfactory property of uncertain termination. For example,

suppose two parties are signing a house-sale contract. If the pro-

tocol stops prematurely on the side of the buyer, the seller will

never be sure whether the buyer is continuing with the protocol,

or has terminated—and perhaps even has engaged in another

house-sale contract-signing protocol with another seller. The

buyer may be in a similar situation if the protocol terminated

on the side of the seller.

In the second type of fair exchange protocols [12], [18], [48],

an on-line TTP is always involved in every exchange. In this sce-

nario, a TTP is essentially a mediator: a) Each party first sends

his/her item to the TTP; b) then, the TTP checks the validity

of those items; c) if all expected items are correctly received,

the TTP finally forwards each item to the party who needs it.

Generally speaking, contract-signing protocols with an on-line

TTP could be designed more easily since the TTP facilitates the

execution of each exchange, but may be still expensive and in-

efficient because the TTP needs to be paid and must be part of

every execution (though maybe not involved in each step). In

practice, the on-line TTP is prone to become a bottleneck in the

whole system, especially in the situation where many users rely

on a single TTP.

Compared with the schemes belonging to the previous two

types, contract-signing protocols with off-line TTP [2], [3], [4],

[6], [40] are more appealing and practical for most applications

because those protocols are optimistic in the sense that the TTP

is not invoked in the execution of exchange unless one of the

two parties misbehaves or the communication channel is out of

order. Bao et al. [6] and Ateniese [4] constructed fair exchange

protocols of digital signatures from verifiably encrypted signa-

tures, while Asokan et al. [2], [3] proposed such protocols by

using verifiable escrows. The basic ideas behind those two cryp-

tographic primitives are similar, as explained below. To get the

digital signature from the other party, Bob, a party, Alice, first

encrypts her signature under the TTP’s public encryption key,

and proves to Bob that the ciphertext indeed corresponds to her

signature, interactively or noninteractively. Then, Bob sends his

digital signature (or some digital item) to Alice. After receiving

the expected item from Bob, Alice reveals her signature to Bob.

The point is that if Alice refuses to do so after getting Bob’s

item, the TTP can decrypt Alice’s encrypted signature and sends

the result to Bob. The difference between those two kinds of

schemes is that in the verifiable escrow-based schemes, Alice,

the creator of the encryption, has the ability to control the condi-

tions under which the encryption could be decrypted by the TTP.

Though their techniques can be applied to a variety of signature

schemes, the overheads of computation and communication are

usually expensive. In particular, the schemes in [2], [3], and [6]

are inefficient, since expensive cut-and-choose techniques [23]

are used to prove the correctness of the encrypted signature. In

addition, it is noticed in [8] that the Schnorr and ElGamal sig-

nature-based fair-exchange schemes in [4] should be improved

to avoid a security flaw.

In [39], Micali constructed several simple fair exchange

schemes based on any secure signature and encryption al-

gorithms. However, Bao et al. [7] pointed out that his con-

tract-signing protocol is actually unfair because there is an

intrinsic flaw in the dispute resolution protocol, i.e., the policy

exploited by the TTP to settle potential disputes between the

two parties involved in a contract signing.

Based on an RSA multisignature scheme, Park et al. [40] pro-

posed a novel fair exchange protocol with an off-line trusted

party. Their protocol was fair and optimistic but insecure, since

Dodis and Reyzin [20] broke their protocol by pointing out that

an honest-but-curious TTP can easily derive a user’s private key

after the end of his/her registration. Moreover, as an improve-

ment of Park et al.’s scheme, Dodis et al. [20] even constructed

a provably secure fair exchange protocol from the noninteractive

two-signature one of Boldyreva [13]. Their scheme works in gap

Diffie–Hellman (GDH) groups (refer to [45] for an explanation).

The pairing-based cryptosystems [13], [14] are typical exam-

ples constructed from GDH groups. However, note that in such

cryptosystems, the computation of the pairing is still time-con-

suming, although several papers have investigated speeding up

the pairing computation [9], [25].
Furthermore, we remark that, in essence, Dodis et al.’s

scheme is not an improvement of Park et al.’s scheme, since
the security of their scheme is based on the GDH problem
instead of the RSA probem or factoring problem [42]. As the
RSA cryptosystem [42] is now the de facto industrial standard
and is widely used in many applications, it is highly desirable
to construct fair exchange protocols based on RSA. Actually,
as we mentioned before, several such schemes have been pro-
posed: Asokan et al.’s scheme [2], [3] from verifiable escrow,
Ateniese’s scheme [4] from verifiably encrypted signature, and
Park et al.’s scheme [40] from multisignature. However, all
those schemes are not abuse-free [26]. That is, a party can get
verifiable intermediate results when the signature exchange
protocol is executed unsuccessfully. Consequently, this party
may obtain some benefits by showing such universally verifi-
able intermediate results to a third party. For example, Bob is
looking for a job and he has received two offers from competing
companies and . Bob prefers to join company though
the offered salary is not satisfactory. In contrast, company
promises a higher salary but he does not really like to join
it due to some personal reason, such as weather, culture, or
something else. In this scenario, Bob may first pretend to sign
an employment contract with company . Then, he terminates
the execution of the contract-signing protocol after he obtained
the intermediate results generated by company . By showing
such universally verifiable proofs to company , Bob may get a
higher salary from company . There exists the same problem
in other similar situations.

Therefore, running contract protocols without the property of
abuse-freeness is a risk for a honest party, as a possible dis-
honest party maybe does not really want to sign the contract
with her, but only use her willingness to sign to get leverage
for another contract. Consequently, this is an important security
requirement for contract-signing protocols, especially in the sit-
uations where partial commitments to a contract may be bene-
ficial to a dishonest party or an outsider. However, except the
discrete logarithm-based scheme of Garay et al. [26], all other
optimistic contract-signing protocols [2], [3], [4], [6], [7], [39],
[40] are not abuse-free.
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Our Work: Motivated by the above example that shows the

importance of abuse-freeness, and the question of how to im-

prove Park et al.’s scheme in a secure way, this paper proposes

a new contract-signing protocol for two mutually distrusted par-

ties. Our protocol is based on an RSA multisignature, which is

formally proved to be secure by Bellare and Sandhu [11]. Like

the schemes in [2], [4], and [40], our protocol is fair and opti-

mistic. Furthermore, different from the above existing schemes,

our protocol is abuse-free. The reason is that we integrate an

interactive zero-knowledge protocol, proposed for confirming

RSA undeniable signatures by Gennaro et al. [27], into our

scheme to prove the validity of the intermediate results. More-

over, we exploit trapdoor commitment schemes to enhance this

zero-knowledge protocol so that the abuse-freeness property can

be fully achieved. Technical analysis and discussion are pro-

vided in detail to show that our scheme is secure and efficient.

More specifically, the new protocol satisfies the following de-

sirable properties.

1) Fairness: Our protocol guarantees the two parities in-

volved to obtain or not obtain the other’s signature simulta-

neously. This property implies that even a dishonest party

who tries to cheat cannot get an advantage over the other

party.

2) Optimism: The TTP is involved only in the situation

where one party is cheating or the communication channel

is interrupted. So it could be expected that the TTP is only

involved in settling disputes between users rarely, due to

the fact that fairness is always satisfied, i.e., cheating is not

beneficial to the cheater.

3) Abuse-Freeness: If the whole protocol is not finished suc-

cessfully, any of the two parties cannot show the validity of

the intermediate results generated by the other to an out-

sider, either during or after the procedure where those in-

termediate results are produced. 1 As we mentioned be-

fore, the unique known abuse-free contract-signing pro-

tocol [26] is based on the discrete logarithm problem, in-

stead of the RSA cryptosystem.

4) Provable Security: Under the standard assumption that

the RSA problem is intractable [11], [42], the protocol is

provably secure in the random hash function model [10],

where a hash function is treated as if it were a “black box”

containing a random function.

5) Timely Termination: The execution of a protocol instance

will be terminated in a predetermined time. This property

is implemented by adding a reasonable deadline in a con-

tract, as suggested by Micali in [39]. If one party does not

send his/her signature to the other party after the deadline

, both of them are free of liability to their partial commit-

ments to the contract and do not need to wait any more.

6) Compatibility: In our protocol, each party’s commitment

to a contract is a standard digital signature. This means

that to use the protocol in existing systems, there is no

need to modify the signature scheme or message format

1Note that if the two parties signed a contract by successfully executing the
protocol, it does not matter whether the intermediate results are publicly verifi-
able or can be proved to others by one party, because, in this case, both parties’
digital signatures, i.e., the their complete commitments to the contract, are al-
ready publicly verifiable.

at all. Thus, it will be very convenient to integrate the con-

tract-signing protocol into existing software for electronic

transactions.

7) TTP’s Statelessness: To settle potential disputes between

users, the TTP is not required to maintain a database to

searching or remembering the state information for each

protocol instance, so the overhead on the side of the TTP

is reduced greatly, compared with the previous schemes in

[2], [3], and [26].

8) High Performance: In a typical implementation, the pro-

tocol execution in a normal case requires only interac-

tion of several rounds between two parties, transmission

of about one thousand bytes of data, and computation of a

few modular exponentiations by each party.

The rest of the paper is organized as follows. Section II re-

views Park et al.’s scheme and its security. We then introduce

trapdoor commitment schemes in Section III, as they are crucial

for fully archiving abuse-freeness. Section IV presents our new

contact signing protocol based on the RSA signature. After that,

we analyze its security and efficiency in Sections V and VI, re-

spectively. Finally, Section VII gives the conclusion.

II. PARK ET AL.’S SCHEME AND ITS SECURITY

In this section, we briefly overview Park et al.’s scheme and

the attack on it identified by Dodis and Reyzin. For more detail,

please refer to the original papers [20], [40].

In Park et al.’s scheme, Alice sets an RSA modulus ,

where and are two -bit safe primes, and picks her

random public key , and calculates her private

key , where is

Euler’s totient function. Then, she registers her public key

with a certification authority (CA) to get her certificate .

After that, Alice randomly splits into and so that

, where . To get a voucher

from a TTP, Alice is required to send to the

TTP, where . The voucher is the TTP’s

signature that implicitly shows two facts: 1) can be used to

verify a partial signature generated by using secret key , and

2) the TTP knows a secret that matches with RSA key pairs

and .

When Alice and Bob want to exchange their signatures on

a message , Alice first computes , and

sends to Bob, where is a secure hash func-

tion. Upon receiving , Bob checks the validity of

and , and whether . If all those verifi-

cations go through, Bob returns his signature to Alice, since

he is convinced that the expected can be

revealed by Bob or the TTP. After receiving valid , Alice re-

veals to Bob. Finally, Bob obtains Alice’s

signature for message by setting , since

we have

The security problem in Park et al.’s scheme is that an

honest-but-curious TTP can easily derive Alice’s private key .

The reason is that with the knowledge of , the TTP

knows that the integer is a nonzero multiple of
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. It is well known that knowing such a multiple of ,

Alice’s RSA modulus can be easily factored. Consequently,

the TTP can get Alice’s private key by the extended Euclidean

algorithm.

The point is that we do not want the TTP to have the ability

of making a user’s signature independently, though the TTP is

a (partially) trusted party. The main reason is that as the piv-

otal secret of any cryptosystem, the private key should not be

revealed to any party, including a partially trusted party. In ad-

dition, if there is a completely trusted TTP, the problem of fair

exchange can be solved trivially as follows. First, each party

gives his/her private key to the TTP before exchanging items so

that the TTP can generate signatures on behalf of any party if

necessary. Then, the TTP issues a voucher for each registered

party to show that it knows this party’s private key. When Alice

and Bob want to exchange their signatures on a message , they

first exchange their vouchers issued by the TTP. By doing so

correctly, it is proved that both of them have registered with the

TTP. After that, their signatures can be delivered directly to the

other side. If one party, say Alice, does not receive Bob’s signa-

ture on , she applies the TTP’s help by providing her signature

and message . After checking the correctness of this informa-

tion, the TTP will generate and send Bob’s signature on to

Alice by using Bob’s private key.

III. TRAPDOOR COMMITMENT SCHEMES

As using standard zero-knowledge is not enough to guar-

antee the abuse-freeness in our protocol, we need another cryp-

tographic primitive, called trapdoor commitment schemes. So

we now introduce this important concept and review two pop-

ular and very efficient schemes, based on RSA and discrete log-

arithm problems, respectively.

As a two-phase protocol running between a sender and a re-

ceiver, a commitment scheme [16], [41] allows the sender to

first hide a value by computing a commitment, and then re-

veals the hidden value together with some related information

to open the commitment so that the receiver can check whether

the commitment is decommitted correctly. Informally, a secure

commitment scheme should satisfy the hiding property and the

binding property. The former means that given a commitment,

the receiver is unable to know which value is committed, while

the latter requires that once a commitment have been made, the

sender cannot change his mind to cheat the receiver by revealing

a different value, which is not the value committed initially.

In a trapdoor commitment (TC) scheme [24], [28], [37],

there is one trapdoor that would allow the owner of this trapdoor

to open a commitment in different ways. Due to this amazing

additional property, a valid answer to a commitment can only be

accepted by the owner of the trapdoor, usually the commitment

receiver. The reason is that once getting such a valid answer, an

outsider cannot distinguish whether this answer is revealed by

the sender or forged by the receiver using the trapdoor. Actually,

this is why trapdoor commitment schemes can help us to achieve

the abuse-freeness property in the contract-signing scenario.

Formally, a trapdoor commitment scheme consists of four

algorithms, i.e., . The

receiver, say Bob, runs the key generation algorithm to

get a commitment public key and the corresponding trapdoor

. Given a value and the commitment public key , commit-

ment algorithm outputs a pair , where

is the commitment to value and is the related information

used to decommit . A commitment verification algorithm

is used to check whether an answer is valid to a

given commitment w.r.t. public key . Finally, a simula-

tion algorithm allows the receiver Bob, using the trapdoor , to

simulate a new answer for a commitment when

one answer for is given.

Note that theoretically any secure digital signature implies a

secure trapdoor commitment scheme. This result can be easily

obtained from [24], [37], and [43], as it is shown in [43] that

the existence of secure signatures is equivalent to the existence

of one-way functions, while [24] and [37] report how to con-

struct trapdoor commitment schemes from any one-way func-

tions. This means that for any kind of public key held by the

receiver Bob for his secure signature scheme, we can find at

least one trapdoor commitment scheme that can be used by

the sender, say Alice, to achieve abuse-freeness in our con-

tract-signing protocol. In the following, we just show how ef-

ficient and secure trapdoor commitment schemes can be con-

structed from RSA and discrete logarithm related problems, as

the corresponding signature schemes are very popular.

A. Strong RSA-Based Trapdoor Commitment Scheme

The following RSA-based efficient trapdoor commitment

scheme is proposed by Gennaro in [28].

1) : The receiver Bob first generates two large primes

and , sets an RSA modulus , selects a

random number , picks a 160-bit prime number

such that , and selects a colli-

sion-resistant hash function .

Then, outputs the commitment public key

and the trapdoor , where

is the th root of , i.e., . (Alternatively,

the factors of can be used as trapdoor.)

2) : To commit to a string with arbitrary length,

the sender sends the receiver ,

where is a randomness, and stores .

3) : To decommit the sender reveals , so that the

receiver can check if .

4) : Given an answer to a commitment ,

by using the trapdoor the receiver Bob can decommit

w.r.t. any string by revealing , where

. It is easy to see that is

also a valid answer to the commitment .

In [28], the above trapdoor commitment scheme is formally

proved to be secure under the strong RSA assumption, which

says that given a random element , it is infeasible to

find a pair such that .

Note that in the above trapdoor commitment scheme the pa-

rameters and can be shared by multiple receivers. For ex-

ample, we can let and a fixed 160-bit prime number

for all receivers who employ RSA signatures. In this way, a re-

ceiver Bob’s standard RSA public key implicitly defines a trap-

door commitment scheme. Therefore, a sender Alice who only

knows Bob’s RSA public key can run the above trapdoor com-

mitment scheme without enquiring the values of and , and
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the receiver Bob is also not required to run an extra commit-

ment key generation algorithm, though Bob may need to extract

the trapdoor when necessary. This feature simplifies our new

contract-signing protocol.

B. DL-Based Trapdoor Commitment Scheme

As pointed out in [24], Pedersen’s commitment scheme [41]

can be easily extended into a trapdoor commitment scheme,

whose security relies on the discrete logarithm (DL) problem.

1) : The receiver Bob first generates a large prime ,

picks a generator for the subgroup of prime

order , where and , selects a

random number , sets , and

chooses a collision-resistant hash function

. Then, outputs the commitment public

key and the trapdoor .

2) : To commit to a string with arbitrary length, the

sender sends the receiver , where

is a randomness, and stores .

3) : To decommit , the sender reveals , so that

the receiver can check if .

4) : Given an answer to a commitment

, by using the trapdoor , the receiver Bob can de-

commit w.r.t. any string by revealing , where

. It is easy to see that

is also a valid answer to .

Note that the above DL-based trapdoor commitment scheme

perfectly matches the Diffie–Hellman key setting. Namely, if

a receiver has such a key pair for Schnorr signature, ElGamal

signature, or DSA, etc., his key pair implicitly defines a secure

trapdoor commitment without running any extra algorithm.

IV. THE PROPOSED PROTOCOL

In this section, we describe our new contract-signing protocol

based on the RSA signature [42]. The basic idea is that Alice

first splits her private key into and so that

, as Park et al. did in [40]. Then, only is deliv-

ered to the TTP, while Alice keeps as secrets. To ex-

change her signature with Bob, Alice first

sends partial signature to Bob, and proves

that is prepared correctly in an interactive zero-knowledge

way by exploiting Gennaro et al.’s protocol [27]. Moreover,

to fully achieve abuse-freeness, this interactive zero-knowledge

protocol is enhanced by a trapdoor commitment scheme (see

Section III), which depends on Bob’s signature public key. After

that, Bob sends his signature on message to Alice, since

he has been convinced that even if Alice refuses to reveal the

second partial signature , the TTP can do

the same thing.

As usual [36], [46], we assume that the communication

channel between Alice and Bob is unreliable, i.e., messages

inserted into such a channel may be lost due to the failure of

computer network or attacks from adversaries. However, the

TTP is linked with Alice and Bob by reliable communication

channels, i.e., messages inserted into such a channel will be

delivered to the recipient after a finite delay.

A. Registration Protocol

To use our protocol for exchanging digital signatures, only

the initiator Alice needs to register with the TTP. That is, Alice

is required to get a long-term voucher from the TTP besides

obtaining a certificate from a CA. To this end, the following

procedures are executed.

1) Alice first sets an RSA modulus , where and are

two -bit safe primes, i.e., there exist two primes and

such that and . Then, Alice

selects her random public key , and calculates

her private key , where

. Finally, Alice registers her public key with a CA

to get her certificate , which binds her identity and the

corresponding pubic key together.

2) Alice randomly splits into and such that

by choosing , and com-

putes . At the same time, she gener-

ates a sample message-signature pair , where

, , and .

Then, Alice sends to the TTP but keeps

secret.

3) The TTP first checks that Alice’s certificate is valid.

After that, the TTP checks that the triple is

prepared correctly. If everything is in order, the TTP stores

securely, and creates a voucher by computing

. That is, is the TTP’s signature

on message , which guarantees that the TTP

can issue a valid partial signature on behalf of Alice by

using the secret .

We give some notes on the above registration protocol. To get

her certificate from a CA, Alice has to prove that modulus is

the product of two safe primes. This technical issue is addressed

in [27]. Of course, step (1) can be omitted if Alice has obtained

such a certificate before she registers with the TTP. To validate

the correctness of the triple , the TTP needs to do the

following. First, the TTP validates that is an element of order

at least of by checking that , and that both

and are not prime factors of [27,

Lemma 1]. Then, Alice is required to show that she knows the

discrete logarithm of to the base via a zero-knowledge

protocol interactively or noninteractively (see [27, Sec. 4.3]).

Finally, the TTP checks whether . If all

those validations pass, the TTP accepts as a valid

triple and creates the voucher for Alice.

Though the above registration protocol is a little complicated,

we remark that this stage needs to be executed only once for a

sufficiently long period, for example, one year. In this period,

Alice can fairly sign any number of contracts with all poten-

tial parties. Furthermore, it seems reasonable in the real world

to require users to first register with the TTP before they are

served. The reason is that the TTP is usually unlikely to provide

free service for settling disputes between users. Moreover, for

enhancing efficiency, the sample message can be fixed as a

constant, e.g., , as pointed out by Gennaro et al. [27].

Compared with schemes based on verifiably encrypted signa-

tures [2], [4], [6], one disadvantage of our registration protocol

is that the TTP needs to keep a distinct secret for each reg-

istered user. However, this shortcoming can be eliminated by
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Fig. 1. Signature exchange protocol.

some simple techniques. For example, the TTP can encrypt each

concatenation of and the corresponding user’s unique identi-

fier by exploiting a secure symmetric-key encryption algorithm,

and then stores the results into its database. To extract a user’s

later, the TTP only needs to decrypt the corresponding record

using the unique symmetric key.

B. Signature Exchange Protocol

We assume that a contract has been agreed between Alice

and Bob before they begin to sign it. In addition, it is supposed

that the contract explicitly contains the following information:

a predetermined but reasonable deadline , and the identities of

Alice, Bob, and the TTP. Our signature exchange protocol is

briefly illuminated in Fig. 1, and further described in detail as

follows.

1) First, the initiator Alice computes her partial signa-

ture , and then sends the triple

to the responder Bob. Here, is a crypto-

graphically secure hash function.

2) Upon receiving , Bob first verifies that is

Alice’s certificate issued by a CA, and that is Alice’s

voucher created by the TTP. Then, Bob checks if the iden-

tities of Alice, Bob, and the TTP are correctly specified

as part of the contract . If all those validations hold, Bob

initiates the following interactive zero-knowledge protocol

with Alice to check whether is indeed Alice’s valid par-

tial signature on contact .

a) Bob picks two numbers at random,

and sends a challenge to Alice by computing

.

b) After getting the challenge , Alice calculates the

respondence , and then returns her

commitment to Bob by selecting

a random number , where is the commit-

ment algorithm of a secure trapdoor commitment

scheme which depends on Bob’s public key (refer to

Section III for details).

c) When the commitment is received, Bob sends Alice

the pair to show that he prepared the challenge

properly.

d) Alice checks whether the challenge is indeed pre-

pared correctly, i.e., . If the answer

is positive, Alice decommits the commitment by re-

vealing the respondence to Bob. With the knowl-

edge of , Bob accepts as valid if and only if

and .

3) Only if is Alice’s valid partial signature and the deadline

specified in contract is sufficient for applying dispute

resolution from the TTP, Bob sends his signature on

contract to Alice, since he is convinced that another par-

tial signature can be released by the TTP, in case Alice

refuses to do so.

4) Upon receiving , Alice checks whether it is Bob’s

valid signature on message . If this is correct, she

sends Bob the partial signature by computing

. When Bob gets , he sets

, and accepts as valid if and only

if . In this case, Bob can recover

Alice’s standard RSA signature on message from

(more details are provided later). If Bob does not

receive the value of or only receives an invalid

from Alice timely, he applies help from the TTP via the

dispute resolution protocol before the deadline expires

(see Section IV-C).

The following are further explanations on the above signature

exchange protocol.

First, the interactive protocol exploited in step (2) is essen-

tially the confirmation protocol for RSA undeniable signatures

by Gennaro et al. [27], with respect to the private key

and the public key . Note that similar approaches

are used to construct e-payment protocol [15] and certified

e-mail system [5]. In [27], it is proved that a successful

execution of this zero-knowledge protocol guarantees that

, where and ’s

( ) denote the two nontrivial elements of order 2. In

this case, Bob accepts as valid and sends his signature

on contract to Alice in step (3), since he is convinced that

another partial signature can be revealed by either Alice or

the TTP. After that, if Alice does not reveal the value of or

only sends invalid to Bob for a reasonable long period before

the deadline , Bob resorts to the TTP to get the correct value



164 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 5, NO. 1, MARCH 2010

of . If Alice honestly reveals to Bob in

step (4), we have , i.e.,

is valid. In this situation, Bob can recover the correct value of

from by using the following recovery algorithm:

a) set , if ;

b) set , if ;

c) get by factoring , else, i.e., .

We describe how Bob can factor and then get the value

of in case (c), i.e., but

. Note that the equality im-

plies that , where .

When , corresponding to cases (a) and (b), Bob can

easily find the value of . So we conclude that case (c) means

, or . Recall that

and is an odd number (due to and ),

so we have .

Therefore, Bob can get the value of by computing

. It is well known that with the knowledge

of such a nontrivial element of order 2, Alice’s RSA modulus

can be easily factored, i.e., and are the two

prime factors of . Consequently, Bob can get Alice’s private

key by using an extended Euclidean algorithm, and then ob-

tain the value by computing .

Based on the above discussion, we conclude that case (c) will

no happen in the real world unless Alice wants to reveal her

private key. That is, if Alice revealed

and , Bob will not only be able to recover

her signature on contract , but also could derive her private

key (and then forge signatures). So we ignore case (c) in the

discussions hereafter under an implicit assumption that any user

does not want to compromise his/her own private key.

Second, the trapdoor commitment enhances the security of

the above zero-knowledge protocol that shows the validity of

partial signature . Specifically, using a commitment scheme

in the above protocol forces Bob to prepare the challenge cor-

rectly (otherwise, he cannot get the response ), and therefore

Bob cannot forward the intermediate results to convince an out-

sider of the validity of after execution of the zero-knowl-

edge protocol. Using a trapdoor commitment scheme here even

makes Bob unable to collude with one or more outsiders during

the execution of this zero-knowledge protocol by generating the

challenge collectively. More discussions on this issue will be

given in Section VI, as this is the exact reason why our con-

tract-signing protocol is abuse-free.

Finally, the trapdoor commitment scheme relies on Bob’s

public key so it may need some extra parameters other than his

standard public key. However, as we discussed in Section III, at

least for the two most popular public keys based on RSA and

discrete logarithm problems, we at most need some implicit de-

fault parameters. For some special public keys, if such extra pa-

rameters are necessary, we can assume that they are specified in

Bob’s public key certificate. Anyway, note that in our protocol

the responder Bob does not need to register with the TTP at all,

though the initiator Alice needs to do so.

C. Dispute Resolution Protocol

If Bob has sent his signature to Alice but does not receive

the value of or only receives an invalid from Alice before

the deadline , then he sends the TTP to

apply dispute resolution. Upon receiving Bob’s application, the

TTP performs as follows:

1) The TTP first verifies whether , , and are Alice’s

valid certificate, voucher, and Bob’s signature on contract

, respectively. After that, the TTP checks whether the

deadline embedded in expires, and whether Alice, Bob,

and itself are the correct parties specified in . If any val-

idation fails, the TTP sends an error message to Bob. Oth-

erwise, continue.

2) Then, the TTP computes and checks

whether . If this equality holds,

the TTP sends to Bob and forwards to

Alice. Otherwise, i.e., , the TTP

sends an error message to Bob.

In the following, we explain why our dispute resolution pro-

tocol works. Since the TTP sets , we

conclude that if and only if

, where . That is, the TTP

can determine whether Bob has sent a valid to apply dis-

pute resolution by checking . If this

equality holds, the TTP reveals the correct value of to Bob

and forwards Bob’s signature on contract to Alice. After

getting the correct , Bob can recover Alice’s signature

on contract by employing the recovery algorithm given in

Section III. In the case of , the TTP

knows that Bob is a cheater, and so only sends an error message

to him.

Note that if the sent to the TTP is prepared as

, the TTP can also get Alice’s private key

as Bob does.

Remark 1: Deadline is a very important parameter in our

protocol. If Bob receives valid at a time which is very close to

the deadline , he should not reveal his signature to Alice. In

this situation, Bob could have several choices to guarantee fair-

ness: 1) ignore this protocol instance; 2) get valid from the

TTP directly by initiating dispute resolution protocol; or 3) re-

quire Alice use a new deadline and run the signature exchange

protocol with Alice again.

V. SECURITY DISCUSSION

Based on the descriptions and discussions presented in Sec-

tion IV, we know that in the normal situation, i.e., both involved

parties are honest and the communication channel is in order,

each of the two parties can get the other’s signature on the same

contract correctly, and the TTP is not involved. In other words,

our scheme is complete and optimistic.

Now, we discuss the abuse-freeness. First, after the execu-

tion of the zero-knowledge protocol in Step (2) of the Signa-

ture Exchange Protocol, if Bob forwards the partial signature

with the proof to others, nobody (other than

Alice and the TTP) believes that is indeed Alice’s partial

signature on contract . Here are the reasons. For any contract

, Bob himself can simulate such a proof for any purported

, which may be valid or invalid with respect to contract ,

as follows: By first choosing three random numbers , , and ,

Bob can then set , ,

and . Furthermore, such a simulated proof is
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computationally indistinguishable from the real proof, i.e., the

authentic transcript generated by the interaction between Alice

and Bob via running the signature exchange protocol given in

Fig. 1. Therefore, if Bob forwards the transcript

to an outsider Charlie after the execution of the zero-knowl-

edge protocol for validating partial signature , Charlie cannot

accept this as convincing evidence showing the validity of ,

since Charlie (and any user) knows that such a transcript could

be simulated by Bob alone. (In fact, this is called zero-knowl-

edge property as what Bob gets via running the protocol is just

something he can compute without Alice’s interaction, i.e., Bob

obtains nothing or zero-knowledge except the confirmation that

is valid.) So, the proposed protocol is abuse-free after the ex-

ecution of the zero-knowledge protocol.

Note that, however, if we used a standard commitment

scheme rather than a trapdoor commitment scheme, Bob is still

able to convince an outsider Charlie that is a valid partial

signature by colluding with Charlie during the execution of the

zero-knowledge protocol. To this end, Charlie and Bob first

independently compute two challenges ,

, respectively, where random number pairs

and are chosen by

them separately. Then, they combine these two challenges as

one by setting . After

that, as the verifier, Bob runs the zero-knowledge protocol with

Alice honestly to get a commitment and the answer for

by revealing ( , ). By first informing

Charlie the value of and then asking the values of , Bob

can convince Charlie that is Alice’s valid partial signature,

since nobody can change the answer for the commitment

even after seeing the values of . 2

In contrast, as we exploit a trapdoor commitment scheme
to hide Alice’s real response , the above collusion attack does
not work any more. The reason is that even is not Alice’s
valid partial signature; Bob is able to run the above attack with
Charlie successfully without any interaction with Alice as fol-
lows. After and are released, Bob first selects two random
numbers to make a commitment . After
forwarding to Charlie, Bob can get which allows him
to compute and and then find a number
for the value , thanks to the algo-
rithm of our trapdoor commitment scheme. Finally, Bob returns
the simulated but valid answer to Charlie, who is unable
to tell whether this is a true response from Alice or a simulated
answer from Bob by using his secret key. This means that our
contract-signing protocol is also abuse-free during the execu-
tion of zero-knowledge protocol.

Therefore, the proposed contract-signing protocol fully satis-
fies the abuse-freeness either after execution or during the exe-
cution of the zero-knowledge protocol in Step (2) of the Signa-
ture Exchange Protocol.

Moreover, our protocol overcomes the security flaw in Park

et al.’s scheme. Namely, if Alice is honest, the TTP cannot

derive Alice’s private key from and other public infor-

2In the early version of this paper [45], only a (standard) commitment scheme
is specified, so the protocol is vulnerable to this attack. Due to this reason, we
update our protocol here by explicitly stressing that a trapdoor commitment
scheme is necessary in the proposed contract-signing protocol to fully achieve
abuse-freeness.

mation. Otherwise, the RSA signature scheme can be broken

as follows. For any RSA public key , an attacker first

chooses an even number , and then inquiries the signing or-

acle for a polynomial number of adaptively chosen messages

. Then, from the corresponding answers , the attacker

computes . Finally, the attacker

calls the TTP as a subroutine to get the private key . In fact,

the above reduction is also valid to prove that except Alice her-

self, anybody (including the TTP) cannot forge a valid partial

signature for a new message with nonnegligible probability.

Formal proofs can be obtained by straightforwardly adapting the

techniques of Bellare and Sandu (see [11, 5th paragraph, p. 5]).

In other words, under the assumption that the RSA problem is

intractable [42], the proposed protocol is provably secure in the

random oracle model [10].

In addition, the TTP is stateless in our contract-signing pro-

tocol, because it does not need to keep any state information re-

lated to each protocol instance. However, the schemes in [2], [3],

and [26] all require the TTP maintain a database to remember

and search state information. Otherwise, a dishonest party could

cheat successfully and then breach fairness. Namely, in those

schemes, the TTP has to correctly record whether a specific

protocol instance is solved or aborted after receiving the appli-

cation from a particular party. So the TTP’s workload and lia-

bility in our solution are reduced significantly. Hence, the cost

of pay for the TTP can be cut accordingly, and performance of

the TTP could be further improved. Obviously, this property is

truly meaningful for a practical system. The compatibility is met

naturally, since our basic goal is to define each party’s commit-

ment to a contract as his/her standard signature on the contract,

instead of a signature satisfying some special structures [3], [7],

[39]. As we have mentioned in Section I, this is also an appealing

property since the contract-signing protocol can be conveniently

integrated into existing software for electronic transactions.

Similar to the approach adopted by Micali in [39], a reason-

able deadline is added in each contract; hence, the execution of

a protocol instance will be terminated in a predetermined time

limit, i.e., no later than the expiration of the deadline. The result

is that each party is free of liability to his/her partial commit-

ment to the contract after the deadline . The key point is that

after the deadline specified in a contract, the TTP does not ac-

cept a dispute resolution application related with that contract.

More discussion on this issue can be found in [39].

Now, we discuss the most important security property for a

fair exchange protocol: fairness. That is, we have to show that

in our scheme, any of the two involved parties cannot take ad-

vantage over the other in the process of signature exchanging

even if he or she behaves dishonestly. We classified our discus-

sion into two cases: 1) Alice is honest, but Bob is cheating; and

2) Bob is honest, but Alice is cheating. For simplicity, however,

the effect of deadline on the fairness is not explained explicitly

below.

Case 1: Alice is honest, but Bob is cheating. First of all, ac-

cording to the results of Gennaro et al. [27] and Bellare et al.

[11], except Alice and the TTP, any adversary including Bob

cannot forge signatures or for a new message with

nonnegligible probability even if he has adaptively interacted

with Alice and/or the TTP polynomial times (in the security pa-
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TABLE I
EFFICIENCY COMPARISON

rameter ). This means that nobody can generate valid except

Alice, and that nobody can generate valid except Alice and

the TTP.

Case (1) implies that in step (1) of our signature exchange

protocol, Alice first properly computes ,

and sends the triple to Bob, where is Alice’s

public key certificate issued by a trusted CA, and is Alice’s

valid voucher created by the TTP. The purpose of step (2)

in our signature exchange protocol is that Alice interactively

convinces Bob to accept valid in a zero-knowledge proof

way. According to [27, Th. 1], we know that even if Bob

cheats in any possible way, he cannot learn other information

except is valid, i.e., , for some

. Actually, must be 1 since Alice is

honest in this setting. This also implies that Bob cannot factor

Alice’s RSA modulus by first getting a nontrivial element of

order 2.

Upon receiving the valid value of , Bob has to make a

choice whether he should send his signature on contract to

Alice. If Bob does, honest initiator Alice returns back her second

partial signature as Bob expects. In such

a situation, Bob gets Alice’s signature on contract by setting

, while Alice also obtains Bob’s signature

simultaneously. If Bob does not send or only sends an

incorrect to Alice, he cannot get the value of from Alice

in step (4). Furthermore, in this setting, Bob also cannot get the

value of from the TTP so that Alice does not obtain his sig-

nature . The reason is that in our dispute resolution protocol,

to get the value of from the TTP, Bob has to submit valid

and to the TTP. Once those values are submitted, Bob in-

deed gets from the TTP but Alice receives from the

TTP, too. Therefore, once again, Bob and Alice get the other’s

signature on contract at the same time.

Case 2: Bob is honest, but Alice is cheating. In our signa-

ture exchange protocol, Alice may cheat in any or some of the

following steps: step (1), step (2), and step (4). First of all, ac-

cording to the specification of our signature exchange protocol,

to get the signature on contract from the honest responder

Bob, the initiator Alice has to convince Bob accepting as a

valid partial signature in step (2). Recall that step (2) is exactly

Gennaro et al.’s confirmation protocol for RSA undeniable sig-

natures, and that their protocol satisfies the property of sound-

ness [27, Th. 1]. The soundness means that the possible cheating

Alice (prover), even computationally unbounded, cannot con-

vince Bob (verifier) to accept an invalid as valid with non-

negligible probability. Therefore, we conclude that to get

from Bob, Alice has to send valid (with valid and ) in

step (1) and perform honestly in step (2). In other words, Alice

has to send to Bob unless she does not

want to get Bob’s signature , where .

According to our discussions given in Section IV, we

know that Alice is not so silly by preparing and sending

to Bob. Otherwise, Bob can drive her

private key (and then compute signature ), though she

indeed can get Bob’s signature . Therefore, to get signature

from Bob, Alice has to compute

and send it to Bob. In this situation, Bob receives valid

from Alice before Alice gets valid

from Bob. After that, step (4) is the only one possible cheating

chance for Alice, i.e., she may refuse to reveal or just send

an incorrect to Bob. However, this cheating behavior does

not harm Bob essentially, since he can get the value of from

the TTP via our dispute resolution protocol. The reason is that

Bob has received valid before he sends to Alice. After

getting the value of from the TTP, Bob can recover Alice’s

signature according to the recovery algorithm specified in

Section III-B. Therefore, in case (b) where Bob is honest but

Alice is dishonest, Alice cannot get Bob’s signature such that

Bob does not obtain her signature.

Based on the above analysis, we conclude that the proposed

protocol is not advantageous to any dishonest party. In other

words, our contract-signing protocol satisfies the property of

fairness.

VI. EFFICIENCY

Table I shows the comparison of efficiency between our new

protocol and several other RSA-based solutions, i.e., Asokan et

al.’s scheme [2], [3] from verifiable escrow, Ateniese’s scheme

[4] from verifiably encrypted signature, and Park et al.’s scheme

[40] from multisignature. In the comparison, we analyze the

overheads of computation and communication in the signature

exchange protocol needed by both Alice and Bob in the normal

case. In other words, the operations of the dispute resolution

protocol are not discussed here. Moreover, we take the number

of modular exponentiations as the computational cost since ex-

ponentiation is the most expensive cryptographic operation in

the finite field . In addition, note that a modular exponenti-

ation in requires about modular multiplications,

and that exponentiation of the form is only equivalent to

1.167 single exponentiation by means of an exponent array [38,

p. 618].

For comparison, we make similar but different assumptions

from [4] and [40]. Namely, we assume that the length of RSA

modulus is 1200 bit, and that the hash function has

160-bit fixed output. For simplicity, we also assume that

could be generated and verified by one modular exponentiation

separately, and that the voucher can be validated by one

modular exponentiation, too. However, the overhead related to

Alice’s certificate is excluded, as in [4] and [40], since such

validation may be as simple as to check the certificate list on

the CA’s web site.

Some numbers listed in Table I are different from the results

that appeared in [4] and [40], since we take into consideration all

exponentiations needed in the signature exchange protocols by
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both Alice and Bob, while Anteniese only concerned the amount

of each signature algorithm, and Park et al. [40] only considered

the overhead required for creating/verifying the fairness primi-

tives (i.e., and ). For example, Anteniese did not include

the overheads of creating and checking the proof for proving

the equality of two discrete logarithms, while Park et al. did not

estimate the overheads of generating and verifying Alice’s sig-

nature . Our analysis is more reasonable since it accurately

reflects what happens in practice. In addition, note that the num-

bers for the Asokan et al.’s scheme were taken from [40] di-

rectly.

According to the results in Table I, the computational effi-

ciency of our scheme is in the middle between Park et al.’s

scheme and Ateniese’s scheme, while the communication cost

of our scheme increases by 123% and 46% more than that of

Park et al.’s scheme and Ateniese’s scheme, respectively. The

overhead of communication becomes larger naturally, since our

scheme exploits interactive protocol to prove the validity of .

The bonus in our new scheme is that Bob cannot show the va-

lidity of to other parties, i.e., abuse-freeness, as we discussed

before. We believe that this cost deserves the advantage of our

scheme in the situations where the intermediate results should

not be revealed unfairly. Actually, all three schemes are suited

for most applications where the cost of communication is not

the main concern.

VII. CONCLUSION

In this paper, based on the standard RSA signature scheme,

we proposed a new digital contract-signing protocol that allows

two potentially mistrusted parties to exchange their digital sig-

natures on a contract in an efficient and secure way. Like the

existing RSA-based solutions, the new protocol is fair and opti-

mistic, i.e., two parties get or do not get the other’s digital sig-

nature simultaneously, and the TTP is only needed in abnormal

cases that occur occasionally. However, different from all pre-

vious RSA-based contract-signing protocol, the proposed pro-

tocol is further abuse-free. That is, if the contract-signing pro-

tocol is executed unsuccessfully, each of the two parties cannot

show the validity of intermediate results generated by the other

party to outsiders, during or after the procedure where those in-

termediate results are output. In other words, each party cannot

convince an outsider to accept the partial commitments coming

from the other party. This is an important security property for

contract signing, especially in the situations where partial com-

mitments to a contract may be beneficial to a dishonest party

or an outsider. Technical details are provided to show that our

protocol meets a number of desirable properties, not only those

just mentioned.

In addition, exploiting some techniques of Park et al. [40], our

protocol can be adapted to fair payments in e-commerce (though

their solution has a security flaw). In this setting, one customer

purchases digital goods from a merchant via the Internet by

paying with a digital check or cash. The extended scheme could

implement such an electronic transaction between two parties

fairly. That is, it is guaranteed that the customer gets the digital

goods from the merchant if and only if the merchant gets the

money from the customer.

Finally, using the technique of threshold RSA signature intro-

duced by Shoup [44], the proposed protocol could be extended

for the scenarios where the trust on a single TTP needs to be

distributed into multiple TTPs, or a contract is required to be

signed only by a given quota of members cooperatively.
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