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ABSTRACT
A fair contract signing protocol allows two potentially mis-
trusted parities to exchange their commitments (i.e., digital
signatures) to an agreed contract over the Internet in a fair
way, so that either each of them obtains the other’s signa-
ture, or neither party does. Based on the RSA signature
scheme, a new digital contract signing protocol is proposed
in this paper. Like the existing RSA-based solutions for
the same problem, our protocol is not only fair, but also
optimistic, since the third trusted party is involved only in
the situations where one party is cheating or the commu-
nication channel is interrupted. Furthermore, the proposed
protocol satisfies a new property, i.e., it is abuse-free. That
is, if the protocol is executed unsuccessfully, none of the
two parties can show the validity of intermediate results to
others. Technical details are provided to analyze the secu-
rity and performance of the proposed protocol. In summary,
we present the first abuse-free fair contract signing protocol
based on the RSA signature, and show that it is both secure
and efficient.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols; K.4.4 [Computer and Society]: Electronic Com-
merce—Security, Distributed Commercial Transactions; K.6.5
[Management of Computing and Information Sys-
tems]: Security and Protection—Authentication

General Terms
Algorithms, Design, Legal Aspects, Security, Theory.

Keywords
Contract signing, fair-exchange, digital signatures, RSA, e-
commerce, cryptographic protocols, security

1. INTRODUCTION

1.1 Background
Contract signing plays a very important role in any busi-

ness transaction, in particular in situations where the in-
volved parties do not trust each other to some extent al-
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ready. In the paper-based scenario, contract signing is truly
simple due to the existence of “simultaneity”. That is, both
parties generally sign two hard copies of the same contract
at the same place and at the same time. After that, each
party keeps one copy as a legal document that shows both
of them have committed to the contract. If one party does
not abide by the contract, the other party could provide the
signed contract to a judge in court.

As the electronic commerce is becoming more and more
important and popular in the world, it is desirable to need a
mechanism that allows two parties to sign a digital contract
via the Internet. However, the problem of contract signing
becomes difficult in this setting, since there is no simultane-
ity any more in the scenario of computer networks. In other
words, the simultaneity has to be mimicked in order to de-
sign a digital contract signing protocol. This requirement
is essentially captured by the concept of fairness: At the
end of the protocol, either both parties have valid signa-
tures for a contract or neither does, even if one of them tries
to cheat or the communication channel is out of order. In
fact, Even and Yacobi [20] proved that fairness is impossible
to be achieved in a deterministic two-party contract signing
protocol. The intuitive reason could be explained as follows.
The purpose is to go from the initial fair state, in which no
party has what he/she expects, to the desired fair state in
which both obtain what they want. However, information is
exchanged in computer networks non-simultaneously, so an
unfair state must be passed through.

1.2 Related Work
From the view point of technique, the problem of digital

contract signing belongs to a wide topic: fair exchange, i.e.,
how to enable two (or multiple) potentially mistrusted par-
ities exchanging digital items over computer networks in a
fair way, so that each party gets the other’s item, or nei-
ther party does. Actually, fair exchange includes the follow-
ing different but related issues: contract signing protocols
[20, 12, 16, 6, 2, 4, 23, 33, 7], certified e-mail systems [39,
30, 5, 28, 1], non-repudiation protocols [38, 31, 27], and e-
payment schemes in electronic commerce [15, 34]. For more
references and discussions on the relationships between those
conceptions, please refer to [3, 31]. In this paper, we mainly
focus on the problem of digital contract signing. Since a
party’s commitment to a digital contract is usually defined
as his/her digital signature on the contract, digital contract
signing is essentially implied by fair exchange of digital sig-
natures between two potentially mistrusted parities.
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There is a rich history of contract signing (i.e., fair ex-
change of digital signatures) because this is a fundamental
problem in electronic transactions. According to the involve-
ment degree of a trusted third party (TTP), contract sign-
ing protocols can be divided into three types: (1) gradual
exchanges without any TTP; (2) protocols with an on-line
TTP; and (3) protocols with an off-line TTP. Early efforts
[25, 19, 16] mainly focused on the first type protocols to
meet computational fairness: Both parties exchange their
commitments/secrets “bit-by-bit”. If one party stops pre-
maturely, both parties have about the same fraction of the
peer’s secret, which means that they can complete the con-
tract off-line by investing about the same amount of com-
puting work. The major advantage of this approach is that
no TTP is involved. However, this approach is unrealistic
for most real-world applications due to the following several
reasons. First of all, it is assumed that the two parties have
equivalent computation resources. Otherwise, such a proto-
col is favorable to the party with stronger computing power,
who may conditionally force the other party to commit the
contract by its own interest. At the same time, such pro-
tocols are inefficient because the costs of computation and
communication are extensive. In addition, as pointed out in
[12], this approach has the unsatisfactory property of uncer-
tain termination. For example, suppose two parties are sign-
ing a house-sale contract. If the protocol stops prematurely
on the side of the buyer, the seller will never be sure whether
the buyer is continuing with the protocol, or has terminated
- and perhaps even has engaged in another house-sale con-
tract signing protocol with another seller. The buyer may
be in a similar situation if the protocol terminated on the
side of the seller.

In the second type of fair exchange protocols [12, 17, 38],
an on-line TTP is always involved in every exchange. In this
scenario, a TTP is essentially a mediator: (a) Each party
first sends his/her item to the TTP; (b) Then, the TTP
checks the validity of those items; (c) If all expected items
are correctly received, the TTP finally forwards each item to
the party who needs it. Generally speaking, contract signing
protocols with an on-line TTP could be designed more easily
since the TTP facilitates each step of exchanging, but may
be still expensive and inefficient because the TTP needs to
be paid and must be part of every execution. In practice, the
TTP is prone to become a bottleneck in the whole system,
especially in the situation where many users rely on a single
TTP.

Compared with the schemes belonging to previous two
types, contract signing protocols with off-line TTP [2, 3, 4,
6, 34] are more appealing and practical for most applica-
tions. Because those protocols are optimistic in the sense
that the TTP is not invoked in the execution of exchange
unless one of the two parties misbehaves or the communi-
cation channel is out of order. Bao et al. [6] and Ateniese
[4] constructed fair exchange protocols of digital signatures
from verifiably encrypted signatures, while Asokan et al. [2,
3] proposed such protocols by using verifiable escrows. The
basic ideas behind those two cryptographic primitives are
similar, as explained below. To get the digital signature from
the other party Bob, a party Alice first encrypts her signa-
ture under the TTP’s public encryption key, and proves to
Bob that the ciphertext indeed corresponds to her signature,
interactively or non-interactively. Then, Bob sends his digi-
tal signature (or some digital item) to Alice. After receiving

the expected item from Bob, Alice reveals her signature to
Bob. The point is that if Alice refuses to do so after getting
Bob’s item, the TTP can decrypt Alice’s encrypted signa-
ture and sends the result to Bob. The difference between
those two kinds of schemes is that in the verifiable escrow
based schemes, Alice, the creator of the encryption, has the
ability to control the conditions under which the encryption
could be decrypted by the TTP. Though their techniques can
be applied to a variety of signature schemes, the overheads
of computation and communication are usually expensive.
In particular, the schemes in [2, 3, 6] are inefficient, since
expensive cut-and-choose techniques [21] are used to prove
the correctness of the encrypted signature. In addition, it
is noticed in [8] that the Schnorr and ElGamal signatures
based fair-exchange schemes in [4] should be improved to
avoid a security flaw.

In [33], Micali constructed several simple fair exchange
schemes based on any secure signature and encryption algo-
rithms. However, Bao et al. [7] pointed his contract signing
protocol is actually unfair because there is an intrinsic flaw
in the dispute resolution protocol, which is the policy ex-
ploited by the TTP to settle potential disputes between the
two parties involved in a contract signing.

Based on an RSA multisignature scheme, Park et al. [34]
proposed a novel fair exchange protocol with an off-line
trusted party in PODC 2003. Their protocol was fair and
optimistic but insecure, since Dodis and Reyzin [18] broke
their protocol by pointing out that an honest-but-curious
TTP can easily derive a user’s private key after the end of
his/her registration. Moreover, as an improvement of Park
et al.’s scheme, Dodis et al. even constructed a provably
secure fair exchange protocol from the non-interactive two-
signature of Boldyreva [13]. Their scheme works in gap
Diffie-Hellman (GDH) groups1. The pairing based cryp-
tosystems [14, 13] are typical examples constructed from
GDH groups. However, note that in such cryptosystems,
the computation of the pairing is still time-consuming, al-
though several papers have investigated into speeding up the
pairing computation [9, 22].

Furthermore, we remark that in the essence Dodis et al.’s
scheme is not an improvement of Park et al.’s scheme, since
the security of their scheme is based on the GDH problem
instead of the RSA probem or factoring problem [36]. Note
that the RSA cryptosystem [36] is now the de facto indus-
trial standard and is widely used in many applications, it is
highly desirable to construct fair exchange protocols based
on RSA. Actually, as we mentioned before, several such
schemes have been proposed: Asokan et al.’s scheme [2, 3]

1A group G is called a gap Deffie-Hellman group, if it is in-
feasible to solve the computational Diffie-Hellman (CDH)
problem in G, but the decisional Deffie-Hellman (DDH)
problem in G can be solved feasibly. We give more explana-
tions on those problems. Let G = 〈g〉 denote a multiplicative
cyclic group. Then, the CDH problem is to output the value
of gab when g, ga, gb ∈ Gq are given, where a and b are un-
known random numbers. In the DDH problem, it is required
to determine whether gab equals gc when g, ga, gb, gc ∈ Gq

are given, where a, b and c are unknown random numbers.
Actually, another related problem is the discrete logarithm
(DL) problem. That is, given g, ga ∈ G where a is a random
number, how to solve a. In fact, it is easy to know that
the DL problem is at least as difficult as the CDH problem,
and the CDH problem is at least as difficult as the DDH
problem.
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from verifiable escrow, Ateniese’s scheme [4] from verifiably
encrypted signature, and Park et al.’s scheme [34] from mul-
tisignature. However, all those schemes are not abuse-free
[23]. That is, a party can get verifiable intermediate results
when the signature exchange protocol is executed unsuccess-
fully. Consequently, this party may obtain some benefits by
showing such universally verifiable intermediate results to a
third party. For example, if Bob is looking for a job and he
has received two offers from competing companies A and C.
Bob prefers to join company C though the offered salary is
not so much satisfactory. In contrast, company A promises
a higher salary but he does not really like to join it due
to some personal reason, such as weather, culture or some-
thing else. In this scenario, Bob may first pretend to sign
an employment contract with company A. Then, he termi-
nates the execution of the contract signing protocol after he
obtained the intermediate results generated by company A.
By showing such universally verifiable proofs to company C,
Bob may get a higher salary from company C. There exists
the same problem in other similar situations.

Therefore, running contract protocols without the prop-
erty of abuse-freeness is a risk for a honest party, as a possi-
ble dishonest party maybe does not really want to sign the
contract with her, but only use her willingness to sign to get
leverage for another contract. Consequently, this is an im-
portant security requirement for contract signing protocols,
especially in the situations where partial commitments to a
contract may be beneficial to a dishonest party or an out-
sider. However, except the discrete logarithm based scheme
of Garay et al. [23], all other optimistic contract signing
protocols [2, 3, 4, 6, 7, 33, 34] are not abuse-free.

1.3 Our Work
Motivated by the above example that shows the impor-

tance of abuse-freeness, and the question of how to improve
Park et al.’s scheme in a secure way, this paper proposes a
new contract signing protocol for two mutually distrusted
parties. Our protocol is based on an RSA multisignature,
which is formally proved to be secure by Bellare and Sandhu
[11]. Like the schemes in [2, 4, 34], our protocol is fair
and optimistic. Furthermore, different from the above ex-
isting schemes, our protocol is abuse-free. The reason is that
we integrate an interactive protocol, proposed for confirm-
ing RSA undeniable signatures by Gennaro et al. [24], into
our scheme to prove the validity of the intermediate results.
Technical analysis and discussion are provided in detail to
show that our scheme is secure and efficient.

More specifically, the new protocol satisfies the following
desirable properties.

(1) Fairness: Our protocol guarantees the two parities
involved to obtain or not obtain the other’s signature
simultaneously. This property implies that even a dis-
honest party who tries to cheat cannot get an advan-
tage over the other party.

(2) Optimism: The third trusted party (TTP) is involved
only in the situation where one party is cheating or the
communication channel is interrupted. So it could be
expected that the TTP is only involved in settling dis-
putes between users rarely, due to the fact that fairness
is always satisfied, i.e., cheating is not beneficial to the
cheater.

(3) Abuse-Freeness: If the protocol is not executed suc-
cessfully, any of the two parties cannot show the valid-
ity of the intermediate results generated by the other
to an outsider2. As we mentioned before, the unique
known abuse-free contract signing protocol [23] is based
on the discrete logarithm problem, instead of the RSA
cryptosystem.

(4) Provable Security: Under the standard assumption
that the RSA problem is intractable [36, 11], the pro-
tocol is provably secure in the random hash function
model [10], where a hash function is treated as if it
were a “black box” containing a random function.

(5) Timely Termination: The execution of a protocol
instance will be terminated in a predetermined time.
This property is implemented by adding a reasonable
deadline t in a contract, as suggested by Micali in [33].
If one party does not send his/her signature to the
other party after the deadline t, both of them are free
of liability to their partial commitments to the contract
and do not need to wait any more.

(6) Compatibility: In our protocol, each party’s com-
mitment to a contract is a standard digital signature.
This means that to use the protocol in existing sys-
tems, there is no need to modify the signature scheme
or message format at all. Thus, it will be very con-
venient to integrate the contract signing protocol into
existing softwares for electronic transactions.

(7) TTP’s Statelessness: To settle potential disputes
between users, the TTP is not required to maintain a
database to searching or remembering the state infor-
mation for each protocol instance. So the overhead on
the side of the TTP is reduced greatly, compared with
the previous schemes in [2, 3, 23].

(8) High Performance: In a typical implementation, the
protocol execution in a normal case requires only inter-
action of several rounds between two parties, transmis-
sion of about one thousand bytes of data, and compu-
tation of a few modular exponentiations by each party.

The rest of the paper is organized as follows. Section 2
reviews Park et al.’s scheme and its security. In Section 3, we
propose a new contact signing protocol based on the RSA
signature. Then, we analyze its security and efficiency in
Sections 4 and 5, respectively. Finally, Section 6 concludes
the paper.

2. PARK ET AL.’S SCHEME AND ITS
SECURITY

In this section, we briefly overview Park et al.’s scheme
and the attack on it identified by Dodis and Reyzin. For
more details, please refer to the original papers [34, 18].

In Park et al.’s scheme, Alice sets an RSA modulus n =
pq, where p and q are two k-bit safe primes, and picks her

2Note that if the two parties signed a contract by success-
fully executing the protocol, it does not matter whether the
intermediate results are publicly verifiable or can be proved
to others by one party. Because, in this case, both parties’
digital signatures, i.e., the their complete commitments to
the contract, are already publicly verifiable.
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random public key e ∈R Z∗
φ(n), and calculates her private

key d = e−1 mod φ(n), where φ(n) = (p− 1)(q− 1). Then,
she registers her public key with a certification authority
(CA) to get her certificate CA. After that, Alice randomly
splits d into d1 and d2 so that d = d1 +d2 mod φ(n), where
d1 ∈R Z∗

φ(n). To get a voucher VA from a TTP, Alice is

required to send (CA, e1, d2) to the TTP, where e1 = d−1
1

mod φ(n). The voucher VA is the TTP’s signature that
implicitly shows two facts: (1) e1 can be used to verify a
partial signature generated by using secret key d1, and (2)
the TTP knows a secret d2 that matches with RSA key pairs
(d1, e1) and (d, e).

When Alice and Bob want to exchange their signatures on
a message m, Alice first computes σ1 = h(m)d1 mod n, and
sends (CA, VA, σ1) to Bob, where h(·) is a secure hash func-
tion. Upon receiving (CA, VA, σ1), Bob checks the validity
of CA and VA, and whether h(m) ≡ σe1

1 mod n. If all those
verifications go through, Bob returns his signature σB to
Alice, since he is convinced that the expected σ2 = h(m)d2

mod n can be revealed by Bob or the TTP. After receiving
valid σB , Alice reveals σ2 = h(m)d2 mod n to Bob. Finally,
Bob obtains Alice’s signature σA for message m by setting
σA = σ1σ2 mod n, since we have

h(m) ≡ σe
A = h(m)(d1+d2)e = h(m)de mod n.

The security problem in Park et al.’s scheme is that an
honest-but-curious TTP can easily derive Alice’s private key
d. The reason is that with the knowledge of (n, e, e1, d2),
the TTP knows that the integer e − (1 − ed2)e1 is a non-
zero multiple of φ(n). It is well known that knowing such
a multiple of φ(n), Alice’s RSA modulus n can be easily
factored. Consequently, the TTP can get Alice’s private
key d by the extended Euclidean algorithm.

The point is that we do not want the TTP having the
ability of making a user’s signatures independently, though
the TTP is a (partially) trusted party. The main reason
is that as the pivotal secret of any cryptosystem, the pri-
vate key should not be revealed to any party, including a
partially trusted party. In addition, if there is a completely
trusted TTP, the problem of fair exchange can be solved
trivially as follows. Firstly, each party gives his/her private
key to the TTP before exchanging items so that the TTP
can generate signatures on behalf of any party if necessary.
Then, the TTP issues a voucher for each registered party to
show that it knows this party’s private key. When Alice and
Bob want to exchange their signatures on a message m, they
first exchange their vouchers issued by the TTP. By doing
so correctly, it is proved that both of them have registered
with the TTP. After that, their signatures can be delivered
directly to the other side. If one party, say Alice, does not
receive Bob’s signature on m, she applies the TTP’s help by
providing her signature and message m. After checking the
correctness of this information, the TTP will generate and
send Bob’s signature on m to Alice by using Bob’s private
key.

3. THE PROPOSED PROTOCOL
In this section, we describe our new contract signing pro-

tocol based on the RSA signature [36]. The basic idea is
that Alice first splits her private key d into d1 and d2 so that
d = d1 + d2 mod φ(n), as Park et al. did in [34]. Then,
only d2 is delivered to the TTP, while Alice keeps (d, d1, d2)

as secrets. To exchange her signature σA = h(m)d mod n
with Bob, Alice first sends partial signature σ1 = h(m)d1

mod n to Bob, and proves that σ1 is prepared correctly in
an interactive zero-knowledge way by exploiting Gennaro et
al.’s protocol [24]. After that, Bob sends his signature σB on
message m to Alice, since he is convinced that even if Alice
refuses to reveal the second partial signature σ2 = h(m)d2

mod n, the TTP can do the same thing.
As usual, we assume that the communication channel be-

tween Alice and Bob is unreliable, i.e., messages inserted
into such a channel may be lost due to the failure of com-
puter network or attacks from adversaries. However, the
TTP is linked with Alice and Bob by reliable communica-
tion channels, i.e., messages inserted into such a channel will
be delivered to the recipient after a finite delay.

3.1 Registration Protocol
To use our protocol for exchanging digital signatures, only

the initiator Alice needs to register with the TTP. That is,
Alice is required to get a voucher VA from the TTP be-
sides obtaining a certificate CA from a certification authority
(CA). To this end, the following procedures are executed.

(1) Alice first sets an RSA modulus n = pq, where p and
q are two k-bit safe primes, i.e., there exist two primes
p′ and q′ such that p = 2p′ + 1 and q = 2q′ + 1. Then,
Alice selects her random public key e ∈R Z∗

φ(n), and

calculates her private key d = e−1 mod φ(n), where
φ(n) = (p − 1)(q − 1). Finally, Alice registers her
public key with a CA to get her certificate CA, which
binds her identity and the corresponding pubic key
(n, e) together.

(2) Alice randomly splits d into d1 and d2 such that d =
d1 + d2 mod φ(n) by choosing d1 ∈R Z∗

φ(n), and com-

putes e1 = d−1
1 mod φ(n). At the same time, she gen-

erates a sample message-signature pair (w, σw), where
w ∈ Z∗

n \ {1,−1}, ord(w) ≥ p′q′, and σw = wd1

mod n. Then, Alice sends (CA, w, σw, d2) to the TTP
but keeps (d, d1, d2, e1) secret.

(3) The TTP first checks Alice’s certificate CA is valid. Af-
ter that, the TTP checks that the triple (w, σw, d2) is
prepared correctly. If everything is in order, the TTP
stores d2 securely, and creates a voucher VA by com-
puting VA = SignTTP (CA, w, σw). That is, VA is the
TTP’s signature on message (CA, w, σw), which guar-
antees that the TTP can issue a valid partial signature
on behalf of Alice by using the secret d2.

We give some notes on the above registration protocol.
To get her certificate from a CA, Alice has to prove that
modulus n is the product of two safe primes. This technical
issue is addressed in [24]. Of course, step (1) can be omit-
ted if Alice has obtained such a certificate before she regis-
ters with the TTP. To validate the correctness of the triple
(w, σw, d2), the TTP needs to do the followings. Firstly, the
TTP validates that w is an element of order at least of p′q′ by
checking that w ∈ Z∗

n \ {1,−1}, and that both gcd(w− 1, n)
and gcd(w+1, n) are not prime factors of n ([24], Lemma 1).
Then, Alice is required to show that she knows the discrete
logarithm of σw to the base w via a zero-knowledge proto-
col interactively or non-interactively (see Section 4.3 of [24]).
Finally, the TTP checks whether w ≡ (σwwd2)e mod n. If
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Alice: Initiator Bob: Responder

σ1 = h(m)d1 mod n. (1)
CA, VA, σ1−−−−−−−−−−→

Pick i, j ∈R [1, n] and

Set r = ce1 mod n (2a)
c←−−−−−−− set c = σ2i

1 σj
w mod n.

and r̄ = commit(r). (2b)
r̄−−−−−−−→

(2c)
i, j←−−−−−−−

Send r if c ≡ σ2i
1 σj

w mod n. (2d)
r−−−−−−−→

If r ≡ h(m)2iwj mod n and

(3)
σB←−−−−−−−−−− r̄ ≡ commit(r), send σB .

Send σ2 = h(m)d2 mod n (4)
σ2−−−−−−−−−−→ If h(m)2 ≡ (σ1σ2)

2e mod n,
if σB is valid. accept σ2. Otherwise,

apply the TTP’s help.

Figure 1: Signature Exchange Protocol.

all those validations pass, the TTP accepts (w, σw, d2) as a
valid triple and creates the voucher VA for Alice.

Though the above registration protocol is a little compli-
cated, we remark that this stage needs to be executed only
once for a sufficiently long period, for example, one year. In
this period, Alice can fairly sign any number of contracts
with all potential parties. Furthermore, it seems reasonable
in the real world to require users to first register with the
TTP before they are served. The reason is that the TTP is
usually unlikely to provide free service for settling disputes
between users. Moreover, for enhancing efficiency, the sam-
ple message w can be fixed as a constant, e.g., w = 2, as
pointed out by Gennaro et al. [24]. Compared with schemes
based on verifiably encrypted signatures [2, 4, 6], one disad-
vantage of our registration protocol is that the TTP needs to
keep a distinct secret d2 for each registered user. However,
this shortcoming can be eliminated by some simple tech-
niques. For example, the TTP can encrypt each concate-
nation of d2 and the corresponding user’s unique identifier
by exploiting a secure symmetric-key encryption algorithm,
and then stores the results into its database. To extract a
user’s d2 later, the TTP only needs to decrypt the corre-
sponding record using the unique symmetric key.

3.2 Signature Exchange Protocol
We assume that a contract m has been agreed between

Alice and Bob before they begin to sign it. In addition, it
is supposed that the contract explicitly contains the follow-
ing information: a predetermined but reasonable deadline
t, the identities of Alice, Bob, and the TTP. Our signature
exchange protocol is briefly illuminated in Figure 1, and fur-
ther described in detail as follows.

(1) Firstly, the initiator Alice computes her partial sig-
nature σ1 = h(m)d1 mod n, and then sends the triple
(CA, VA, σ1) to the responder Bob. Here, h(·) is a cryp-
tographically secure hash function.

(2) Upon receiving (CA, VA, σ1), Bob first verifies that CA

is Alice’s certificate issued by a CA, and that VA is Al-
ice’s voucher created by the TTP. Then, Bob checks if
the identities of Alice, Bob, and the TTP are correctly
specified in the contract m. If all those validations

hold, Bob initiates the following interactive protocol
with Alice to check whether σ1 is Alice’s valid partial
signature on contact m.

(2a) Bob picks two numbers i, j ∈R [1, n] at random,
and sends a challenge c to Alice by computing
c = σ2i

1 σj
w mod n.

(2b) After getting the challenge c, Alice calculates the
respondence r = ce1 mod n, and then returns
her commitment r̄ = commit(r) to Bob, where
commit(·) is a secure commitment scheme (See
[35], for example).

(2c) When the commitment r̄ is received, Bob sends
the pair (i, j) to Alice.

(2d) Alice checks whether the challenge c is prepared
properly, i.e., c ≡ σ2i

1 σj
w mod n. If the answer

is positive, Alice reveals the respondence r to
Bob. With the knowledge of r, Bob accepts σ1

as valid if and only if r ≡ h(m)2iwj mod n and
r̄ ≡ commit(r).

(3) Only if σ1 is Alice’s valid partial signature and the
deadline t specified in contract m is sufficient for ap-
plying dispute resolution from the TTP, Bob sends his
signature σB on contract m to Alice, since he is con-
vinced that another partial signature σ2 can be re-
leased by the TTP, in case Alice refuses to do so.

(4) Upon receiving σB , Alice checks whether it is Bob’s
valid signature on message m. If this is correct, she
sends Bob the partial signature σ2 by computing σ2 =
h(m)d2 mod n. When Bob gets σ2, he sets σ̄A = σ1σ2

mod n, and accepts σ2 as valid if and only if h(m)2 =
σ̄2e

A mod n. In this case, Bob can recover Alice’s stan-
dard RSA signature σA on message m from σ̄A (more
details are provided later). If Bob does not receive the
value of σ2 or only receives an invalid σ2 from Alice
timely, he applies help from the TTP via the dispute
resolution protocol before the deadline t expires (see
Section 3.3).

The following is further explanation of our signature ex-
change protocol. Firstly, the interactive protocol exploited
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in step (2) is exactly the confirmation protocol for RSA un-
deniable signatures by Gennaro et al. [24], with respect to
the private key (d1, e1) and the public key (n, w, σw). Note
that similar approaches are used to construct e-payment
protocol [15] and certified e-mail system [5]. In [24], it is
proved that a successful execution of this zero-knowledge
protocol guarantees that σ1 = βh(m)d1 mod n, where β ∈
{1,−1, α1, α2} and αi’s (i = 1, 2) denote the two non-trivial
elements of order 2. In this case, Bob accepts σ1 as valid and
sends his signature σB on contract m to Alice in step (3),
since he is convinced that another partial signature σ2 can
be revealed by either Alice or the TTP. After that, if Alice
does not reveal the value of σ2 or only sends invalid σ2 to
Bob before the deadline t, Bob resorts to the TTP to get the
correct value of σ2. If Alice honestly reveals σ2 = h(m)d2

mod n to Bob in step (4), we have h(m)2 ≡ σ̄2e
A mod n, i.e.,

σ̄A = σ1σ2 mod n is valid. In such condition, Bob can re-
cover the correct value of σA from σ̄A by using the following
recovery algorithm:

(a) set σA = σ̄A, if h(m) = σ̄e
A mod n;

(b) set σA = −σ̄A mod n, if h(m) = −σ̄e
A mod n;

(c) get σA by factoring n, else, i.e., h(m) 6= ±σ̄e
Amod n.

We describe how Bob can factor n and then get the value
of σ̄A in case (c), i.e., h(m)2 = σ̄2e

A mod n but h(m) 6= ±σ̄e
A

mod n. Note that the equality h(m)2 = σ̄2e
A mod n im-

plies that σ̄A = βh(m)d mod n, where β ∈ {1,−1, α1, α2}.
When β = ±1, corresponding to cases (a) and (b), Bob
can easily find the value of σA. So we conclude that case
(c) means σ̄A = αih(m)d mod n, i = 1 or 2. Recall that
ord(αi) = 2 and e is an odd number (due to e ∈ Z∗

φ(n)

and φ(n) = 4p′q′), so we have σ̄e
A = (αih(m)d)e mod n =

αih(m) mod n. Therefore, Bob can get the value of αi by
computing αi = σ̄e

Ah(m)−1 mod n. It is well known that
with the knowledge of such a non-trivial element of order 2,
Alice’s RSA modulus n can be easily factored, i.e., (αi − 1)
and (αi + 1) are the two prime factors of n. Consequently,
Bob can get Alice’s private key d by using extended Eu-
clidean algorithm, and then obtain the value σA by comput-
ing σA = h(m)d mod n.

Based on the above discussion, we conclude that case (c)
does not happen in the real world unless Alice wants to re-
veal her private key. That is, if Alice reveals σ1 = αih(m)d1

mod n and σ2 = h(m)d2 mod n, Bob will not only always
recover her signature σA on contract m, but also could derive
her private key d (and then forge signatures). So we ignore
case (c) in the discussions hereafter under an implicit as-
sumption that any user does not want to compromise his/her
own private key.

3.3 Dispute Resolution Protocol
If Bob has sent his signature σB to Alice but does not re-

ceive the value of σ2 or only receives an invalid σ2 from Alice
before the deadline t, then he sends the TTP (CA, VA, m, σ1,
σB) to apply dispute resolution. Upon receiving Bob’s ap-
plication, the TTP performs as follows:

(1) The TTP first verifies whether CA, VA, and σB are Al-
ice’s valid certificate, voucher, and Bob’s signature on
contract m, respectively. After that, the TTP checks
whether the deadline t embedded in m expires, and
whether Alice, Bob and itself are the correct parties
specified in m. If any validation fails, the TTP sends
an error message to Bob. Otherwise, continue.

(2) Then, the TTP computes σ2 = h(m)d2 mod n, and
checks whether h(m)2 ≡ (σ1σ2)

2e mod n. If this equal-
ity holds, the TTP sends (m, σ2) to Bob and forwards
(m, σB) to Alice. Otherwise, i.e., h(m)2 6= (σ1σ2)

2e

mod n, the TTP sends an error message to Bob.

In the following, we explain why our dispute resolution
protocol works. Since the TTP sets σ2 = h(m)d2 mod n,
we conclude that h(m)2 ≡ (σ1σ2)

2e mod n if and only if
σ1 ≡ βh(m)d1 mod n, where β ∈ {1,−1, α1, α2}. That is,
the TTP can determine whether Bob has sent a valid σ1

to apply dispute resolution by checking h(m)2 =?(σ1σ2)
2e

mod n. If this equality holds, the TTP reveals the correct
value of σ2 to Bob and forwards Bob’s signature σB on con-
tract m to Alice. After getting the correct σ2, Bob can re-
cover Alice’s signature σA on contract m by employing the
recovery algorithm given in previous section. In the case of
h(m)2 6= (σ1σ2)

2e mod n, the TTP knows that Bob is a
cheater, and so only sends an error message to him.

Note that if the σ1 sent to the TTP is prepared as σ1 =
αih(m)d1 mod n, the TTP can also get Alice’s private key
d as Bob does.

Remark 1. Deadline t is a very important parameter in
our protocol. If Bob receives valid σ1 at a time which is very
close to the deadline t, he should not reveal his signature σB

to Alice. In this situation, Bob could have several choices
to guarantee the fairness: (1) Ignore this protocol instance;
(2) Get valid σ2 from the TTP directly by initiating dispute
resolution protocol; or (3) Require Alice use a new deadline
t′ and run the signature exchange protocol again.

4. SECURITY DISCUSSION
Based on the descriptions and discussions presented in last

section, we know that in the normal situation, i.e., both in-
volved parties are honest and the communication channel is
in order, each of the two parties can get the other’s signature
correctly, and the TTP is not involved. In other words, our
scheme is complete and optimistic. At the same time, if Bob
shows the partial signature σ1 with the proof (c, r̄, i, j, r)
to others, nobody (other than Alice and the TTP) believes
that σ1 is indeed Alice’s partial signature on contract m.
Because, for any contract m, Bob himself can simulate such
a proof for any (valid or invalid) σ1 as follows: By choosing
two random numbers i and j, then set c = σ2i

1 σj
w mod n,

r = h(m)2iwj mod n, and r̄ = commit(r). Furthermore,
such a simulated proof is computationally indistinguishable
from the real proof generated by Alice and Bob together.
Therefore, the proposed protocol is also abuse-free.

Moreover, our protocol overcomes the security flaw in
Park et al.’s scheme. Namely, if Alice is honest, the TTP
cannot derive Alice’s private key d from d2 and other public
information. Otherwise, the RSA signature scheme can be
broken as follows. For any RSA public key (n, e), an at-
tacker first chooses an even number d2, and then inquiries
the signing oracle for a polynomial number of adaptively
chosen messages m(i). Then, from the corresponding an-

swers σ(i), the attacker computes σ
(i)
1 = σ(i)(h(m)d2)−1 mod

n. Finally, the attacker calls the TTP as a subroutine to get
the private key d. In fact, the above reduction is also valid
to prove that except Alice herself, anybody (including the
TTP) cannot forge a valid partial signature σ1 for a new
message with non-negligible probability. Formal proofs can
be obtained by straightforwardly adapting the techniques
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of Bellare and Sandu (see the 5th paragraph on page 5 of
[11]). In other words, under the assumption that the RSA
is intractable [36], the proposed protocol is provably secure
in the random oracle model [10].

In addition, the TTP is stateless in our contract signing
protocol, because it does not need to keep any state informa-
tion related to each protocol instance. However, the schemes
in [2, 3, 23] all require the TTP maintain a database to re-
member and search state information. Otherwise, a dishon-
est party could cheat successfully and then breach fairness.
Namely, in those schemes, the TTP has to correctly record
whether a specific protocol instance is solved or aborted af-
ter receiving the application from a particular party. So the
TTP’s workload and liability in our solution are reduced sig-
nificantly. Hence, the cost of pay for the TTP can be cut
accordingly, and performance of the TTP could be further
improved. Obviously, this property is truly meaningful for a
practical system. The compatibility is met naturally, since
our basic goal is to define each party’s commitment to a con-
tract as his/her standard signature on the contract, instead
of a signature satisfying some special structures [3, 33, 7].
As we have mentioned in Introduction, this is also an ap-
pealing property since the contract signing protocol can be
conveniently integrated into existing softwares for electronic
transactions.

Similar to the approach adopted by Micali in [33], a rea-
sonable deadline t is added in each contract, hence the ex-
ecution of a protocol instance will be terminated in a pre-
determined time limit, i.e., no later than the expiration of
deadline. The result is that each party is free of liability to
his/her partial commitment to the contract after the dead-
line t. The key point is that after the deadline specified in
a contract, the TTP does not accept a dispute resolution
application related with that contract. More discussion on
this issue could be found in [33].

Now, we discuss the most important security property for
a fair exchange protocol: fairness. That is, we have to show
that in our scheme, any of the two involved parties cannot
take advantage over the other in the process of signature ex-
changing even if he or she behaves dishonestly. We classified
our discussion into two cases: (1) Alice is honest, but Bob is
cheating; and (2) Bob is honest, but Alice is cheating. For
simplicity, however, the effect of deadline on the fairness is
not explained explicitly below.

Case 1: Alice is honest, but Bob is cheating. First of all,
according to the results of Gennaro et al. [24] and Bellare et
al. [11], except Alice and the TTP, any adversary including
Bob cannot forge signatures σ1 or σ2 for a new message
m′ with non-negligible probability even if he has adaptively
interacted with Alice and/or the TTP polynomial times (in
the security parameter k). This means that nobody can
generate valid σ1 except Alice, and that nobody can generate
valid σ2 except Alice and the TTP.

Case (1) implies that in step (1) of our signature ex-
change protocol, Alice first properly computes σ1 = h(m)d1

mod n, and sends the triple (CA, VA, σ1) to Bob, where CA

is Alice’s public key certificate issued by a trusted CA, and
VA is Alice’s valid voucher created by the TTP. The purpose
of step (2) in our signature exchange protocol is that Alice
interactively convinces Bob to accept valid σ1 in a zero-
knowledge proof way. According to Theorem 1 in [24], we
know that even if Bob cheats in any possible way, he cannot

learn other information except σ1 is valid, i.e., σ1 = βh(m)d1

mod n, for some β ∈ {1,−1, α1, α2}. Actually, β must be 1
since Alice is honest in this setting. This also implies that
Bob cannot factor Alice’s RSA modulus n by first getting a
non-trivial element of order 2.

Upon receiving the valid value of σ1, Bob has to make a
choice whether he needs to send his signature σB on contract
m to Alice. If Bob does, honest initiator Alice returns back
her second partial signature σ2 = h(m)d2 mod n as Bob
expects. In such situation, Bob gets Alice’s signature on
contract m by setting σA = σ1σ2 mod n, while Alice also
obtains Bob’s signature σB simultaneously. If Bob does not
send σB or only sends an incorrect σB to Alice, he cannot get
the value of σ2 from Alice in step (4). Furthermore, in this
setting, Bob also cannot get the value of σ2 from the TTP
so that Alice does not obtain his signature σB . The reason
is that in our dispute resolution protocol, to get the value
of σ2 from the TTP Bob has to submit valid σ1 and σB to
the TTP. Once those values are submitted, Bob indeed gets
σ2 from the TTP but Alice receives (m, σB) from the TTP,
too. Therefore, once again, Bob and Alice get the other’s
signature on contract m at the same time.

Case 2: Bob is honest, but Alice is cheating. In our sig-
nature exchange protocol, Alice may cheat in any or some of
the following steps: step (1), step (2) and step (4). First of
all, according to the specification of our signature exchange
protocol, to get the signature σB on contract m from the
honest responder Bob, the initiator Alice has to convince
Bob accepting σ1 as a valid partial signature in the step
(2). Recall that step (2) is exactly Gennaro et al.’s con-
firmation protocol for RSA undeniable signatures, and that
their protocol satisfies the property of soundness (Theorem
1, [24]). The soundness means that the possible cheating Al-
ice (prover), even computationally unbounded, cannot con-
vince Bob (verifier) to accept an invalid σ1 as valid with
non-negligible probability. Therefore, we conclude that to
get σB from Bob, Alice has to send valid σ1 (with valid
CA and VA) in step (1) and perform honestly in step (2). In
other words, Alice has to send σ1 = βh(m)d1 mod n to Bob
unless she does not want to get Bob’s signature σB , where
β ∈ {1,−1, α1, α2}. Based on our discussion in previous
section, we know that Alice is not so silly by preparing and
sending σ1 = αih(m)d1 mod n to Bob. Otherwise, Bob can
drive her private key d (and then computes signature σA),
though he indeed gets Bob’s signature σB . Therefore, to get
signature σB from Bob, Alice has to compute σ1 = ±h(m)d1

mod n and send it to Bob. In this situation, Bob receives
valid σ1 = ±h(m)d1 mod n from Alice before Alice gets
valid σB from Bob. After that, step (4) is the only one pos-
sible cheating chance for Alice, i.e., she may refuse to reveal
σ2 or just send an incorrect σ2 to Bob. However, this cheat-
ing behavior does not harm Bob essentially, since he can get
the value of σ2 from the TTP via our dispute resolution pro-
tocol. The reason is that Bob has received valid σ1 before
he sends σB to Alice. After getting the value of σ2 from
the TTP, Bob can recover Alice’s signature σA according to
the recovery algorithm specified in section 3.2. Therefore,
in case (b) where Bob is honest but Alice is dishonest, Alice
cannot get Bob’s signature such that Bob does not obtain
her signature.

Based on the above analysis, we conclude that the pro-
posed protocol is not advantageous to any dishonest party.
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Table 1. Comparison of Efficiency

Asokan et al. [2, 3] Ateniese [4] Park et al. [34] Our Protocol

Number of Exponentiations. 75 13.3 7 10.5

Data to Be Exchanged (bytes) 8000 916 600 1216

In other words, our contract signing protocol satisfies the
property of fairness.

5. EFFICIENCY
Table 1 shows the comparison of efficiency between our

new protocol and several other RSA-based solutions, i.e.,
Asokan et al.’s scheme [2, 3] from verifiable escrow, Ate-
niese’s scheme [4] from verifiably encrypted signature, and
Park et al.’s scheme [34] from multisignature. In the com-
parison, we analyze the overheads of computation and com-
munication in the signature exchange protocol needed by
both Alice and Bob in normal case. In other words, the op-
erations of the dispute resolution protocol are not discussed
here. Moreover, we take the number of modular exponenti-
ations as the computational cost since exponentiation is the
most expensive cryptographic operation in the finite field
Zn. In addition, note that a modular exponentiation in Zn

requires about 1.5 × |n| modular multiplications, and that
exponentiation of the form ax1

1 ax2
2 is only equivalent to 1.167

single exponentiation by means of an exponent array (pages
618 of [32]).

For comparison, we make similar but different assump-
tions from [4, 34]. Namely, we assume that the length of
RSA modulus n is 1200-bit, and that the hash function h(·)
has 128-bit fixed output. For simplicity, we also assume
that σB could be generated and verified by one modular
exponentiation separately, and that the voucher VA can be
validated by one modular exponentiation, too. However, the
overhead related to Alice’s certificate CA is excluded as did
in [4, 34], since such validation may be as simple as to check
the certificate list on CA’s web site.

Some numbers listed in Table 1 are different from the
results that appeared in [4, 34], since we take into consider-
ation all exponentiations needed in the signature exchange
protocols by both Alice and Bob, while Anteniese only con-
cerned the amount of each signature algorithm, and Park
et al. [34] only considered the overhead required for creat-
ing/verifying the fairness primitives (i.e., σ1 and VA). For
example, Anteniese did not include the overheads of creat-
ing and checking the proof for proving the equality of two
discrete logarithms, while Park et al. did not estimate the
overheads of generating and verifying Alice’s signature σA.
Our analysis is more reasonable since it accurately reflects
what happens in practice. In addition, note that the num-
bers for the Asokan et al.’s scheme were taken from [34]
directly.

According to the results in Table 1, the computational
efficiency of our scheme is in the middle between Park et
al.’s scheme and Ateniese’s scheme, while the communica-
tion cost of our scheme increases by 103% and 33% more
than that of Park et al.’s scheme and Ateniese’s scheme, re-
spectively. The overhead of communication becomes larger
naturally, since our scheme exploits interactive protocol to
prove the validity of σ1. The bonus in our new scheme is
that Bob cannot show the validity of σ1 to other parties,

i.e., abuse-freeness, as we discussed before. We believe that
this cost deserves the advantage of our scheme in the situa-
tions where the intermediate results should not be revealed
unfairly. Actually, all those three schemes are suited for
most applications where the cost of communication is not
the main concern.

6. CONCLUSION
In this paper, based on the standard RSA signature scheme,

we proposed a new digital contract signing protocol that al-
lows two potentially mistrusted parties to exchange their
digital signatures on a contract in an efficient and secure
way. Like the existing RSA-based solutions, the new proto-
col is fair and optimistic, i.e., two parties get or do not get
the other’s digital signature simultaneously, and the trusted
third party is only needed in abnormal cases that occur oc-
casionally. However, different from all previous RSA-based
contract signing protocol, the proposed protocol is further
abuse-free. That is, if the contract signing protocol is exe-
cuted unsuccessfully, each of the two parties cannot show the
validity of intermediate results generated by the other party
to outsiders. In other words, each party cannot convince
an outsider to accept the partial commitments coming from
the other party. This is an important security property for
contract signing, especially in the situations where partial
commitments to a contract may be beneficial to a dishonest
party or an outsider. Technical details are provided to show
that our protocol meets a number of desirable properties,
not only those just mentioned.

In addition, exploiting some techniques of Park et al. [34],
our protocol can be adapted to fair payments in e-commerce
(though their solution has a security flaw). In this setting,
one customer purchases a digital goods from a merchant via
the Internet by paying a digital check or cash. The extended
scheme could implement such an electronic transaction be-
tween two parties fairly. That is, it is guaranteed that the
customer gets the digital goods from the merchant if and
only if the merchant gets the money from the customer.

Finally, using the technique of threshold RSA signature
introduced by Shoup [37], the proposed protocol could be
extended for the scenarios where the trust on a single TTP
needs to be distributed into multiple TPPs, or a contract
is required to be signed only by a given quota of members
cooperatively.
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