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ABSTRACT Partial registration for point clouds plays an important role in various fields such as 3Dmapping

reconstruction, remote sensing, unmanned driving, and cultural heritage protection. Unfortunately, partial

registration is challenging due to difficulties such as the low overlap ratio of two point clouds and the

perturbation in the orderless and sparse 3D point clouds. Thus, a variety of the 3D shape context descriptors

are introduced for finding the optimal matching. However, extracting geometric features and descriptors

are time consuming and easily degenerated by noise. To overcome these problems, we introduce a parallel

coarse-to-fine partial registration method. Our contributions can be summarized as: Firstly, a robust coarse

trimmedmethod is proposed to estimate the coarse overlap area and the initial transformation via fast bilateral

denoising and parallel point feature histogram (PPFH) descriptor aligning. Secondly, an accelerated fine

registration procedure is conducted by a parallel trimmed iterative closest point (PTrICP) method. Moreover,

most parts of our coarse-to-fine workflow are accelerated under the Graphics Processing Unit (GPU) parallel

execution mode for efficiency. Thirdly, we extend our method from the rigid registration to the isotropic

scaling registration, which improves its applicability. Experiments have demonstrated that our method is

feasible and robust in various situations, including the low overlap ratio, outlier, noise and scaling.

INDEX TERMS Point clouds, GPU parallel, partial registration, coarse-to-fine, trimmed strategy.

I. INTRODUCTION

Point cloud data processing is a hot topic in recent years [1],

[2]. Point cloud registration, in particular, is a fundamental

problem in computer vision and remote sensing [3]–[10]. It is

the basis of various works, including surface alignment [11],

[12], pose estimation [13], [14], 3D reconstruction [15]–[17],

object recognition [18], and Simultaneous Localization And

Mapping (SLAM) [19]. The aim of point cloud registration is

to obtain an optimal matching that transforms point sets from

various views into one global coordinate.

Iterative Closest Point (ICP), a widely used method, cast

the point cloud registration as an iterative transformation

process [20]. The original ICP algorithm took every point

to point distance into consideration for estimating rigid

The associate editor coordinating the review of this manuscript and

approving it for publication was Daniel Grosu .

transformations, which was suitable for aligning two closely

positioned and similarly shaped point clouds. Chen and

Medioni gave another version of ICP algorithm, which uti-

lized a nonlinear process by calculating the point to plane

distances in order to accelerate the convergence [21]. Besides,

the generalized ICP (GICP) [22] considered the registration

model into a probabilistic distribution framework, and used

nonlinear optimization instead of the closed form solutions

in transformation estimation. As a result, this plane-to-plane

ICP method is more stable and robust for measurement noise.

In general, as mentioned in [23], ICP and its variants perform

well in ideal cases [24]–[26].

Unfortunately, noise is inevitable due to acquisition instru-

ments, lighting, reflection, outliers or occlusion in the scene.

Thus, point cloud processing usually includes the noise

smoothing and trimming procedures [27], [28]. In general,

the noise in point clouds can be classified as perturbation
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noise, missing points, and outliers. These noise types bring

the uncertainty for registration, and also contribute to the low

overlap ratio of the point clouds.

To reduce noise, some widely used filtering algo-

rithms have been proposed for point clouds, including

statistical-based filtering techniques [28]–[31]. These tech-

niques adjust the location of each point via different pro-

jection strategies to filter point cloud, and determine the

filtered position using similarity measures between a point

and its neighbors. However, these kinds of noise smoothing

algorithms cannot solve the low overlap ratio problem caused

by missing points and outliers.

Thus, partial registration, i.e., the registration of point

clouds that are overlapped partially, is challenging caused by

occlusion, missing points, outliers and measurement noise.

The state-of-the-art partial registration methods are mainly

based on the randomized alignment or overlap ratio estima-

tion [7]. Widely used randomized alignment based partial

registration methods include 4-point congruent sets (4PCS)

and Super4PCS [32] [33]. These methods use the invariance

of the ratio between the lines formed by four coplanar points,

and avoid the calculation of complex geometric features.

Hence, 4PCS based algorithms are relatively robust to partial

registration. On the other hand, the trimmed ICP method

is introduced via overlap ratio estimation [34]–[37], which

can trim outliers and makes the algorithm suitable for the

relatively low overlap ratio (under 50%). However, the initial

transformation and additional coarse registration procedure

are still necessary, when the overlap ratio is low or the noise

level is high.

More specifically, the coarse registration algorithm can

estimate a rough transformation under harsh conditions, thus

providing a good initial transformation for the fine registra-

tion. Besides the aforementioned randomized aligning meth-

ods, the principal component analysis (PCA) [38] is often

used to obtain several principal axes of two point sets. Then,

these global matching methods align the centers and their

principal axes for the coarse transformation, while they fail

if these two point clouds are under the low overlap ratio.

Furthermore, some coarse registrations are between different

scanning resolutions [39]. Han et al. proposed a hierarchical

searching scheme for multi-resolution data to improve the

robustness with respect to the local minimum [40]. Recently,

a coarse-to-fine GICP algorithm combines the plane-to-plane

and point-to-point trimmed ICP, which balances the stability

and accuracy by changing the neighborhood search range

from wide-base to narrow-base in each iteration [37]. How-

ever, this adaptive strategy still fails under the low overlap

ratio.

This article introduces a coarse-to-fine trimmed strategy to

solve the low overlap problem. In the coarse trimmed stage,

we trim the majority of non-informative points and estimate

the initial overlap area via parallel point feature histogram

(PFH) descriptors matching, in which the neighborhood

based bilateral filter smoothes noise since the PFH feature

estimation is sensitive to noise [41], [42]. Furthermore, a fine

registration procedure is conducted by a parallel modified

trimmed ICP based on the initial overlap ratio and corre-

sponding transformation. Finally, most parts of our coarse-

to-fine workflow are accelerated under the GPU parallel

execution mode for improving efficiency.

This article is organized as follows. In section II we intro-

duce the preliminary of our coarse trimmed stage, such as

the classical PFH descriptor estimation and bilateral filter.

Section III describes the details of our coarse-to-fine regis-

tration method, including the GPU parallel implementation.

Section IV shows the experiments and analysis. Section V

concludes the paper.

II. PRELIMINARY

Asmentioned in Introduction, neither the globalmatching nor

the hierarchical searching schemes are suitable for partial reg-

istration, since these coarse matching methods are sensitive

to the low overlap problem [32] [33], [38] [39], [40]. Thus,

as the first step, some geometric descriptor based matching

methods are introduced for the coarse partial registration.

As we know, the choice of descriptor is the key for feature

alignment. A good feature descriptor should be robust to

noise and invariant with the position and orientation of point

cloud [43]. For example, Rusu et al. designed the PFH [44]

and Fast PFH in [45], based on the spatial relationship of a

point with its nearest neighbor.

In this section, we give some preparation for our new

coarse trim strategy. The traditional PFH is presented in

section II-A, and the bilateral filter preprocessing for reduc-

ing the noise is introduced in section II-B.

A. POINT FEATURE HISTOGRAM

The PFH descriptor is computed as a histogram of geo-

metric description between all point pairs in the neighbor-

hood. Firstly, PFH characterizes the relationships between the

k-neighborhood points ps and pt via their estimated normal

vectors ns and nt , i.e.,














u = ns

v = u×
(pt − ps)

‖pt − ps‖2
w = u× v















α = v · nt

φ = u ·
(pt − ps)

‖pt − ps‖2
θ = arctan(w · nt , u · nt )

(1)

where α, φ and θ constitute a triplet (α, φ, θ ) in the

k-neighborhood (Figure 1).

FIGURE 1. Local coordinate system {u, v, w} of point ps.

All triplets are then binned into a histogram, as shown

in Figure 2. The binning process separates each feature
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FIGURE 2. PFH descriptors for different points.

value range into some subdivisions (125 subdivisions in our

algorithm), and counts the number of occurrences in each

subdivision.

Moreover, PFH descriptor estimation has a high complex-

ity of O(mk2), where m is the number of points involved

in the PFH computation, and k is the number of the nearest

neighbors of each point. In this article, the parallel implemen-

tation methods will be proposed to reduce the complexity.

B. BILATERAL FILTER

The bilateral filter is relatively efficient for denoising [28],

although it is time-consuming for large point cloud data. [42]

proposed its accelerated version using OpenMP [46].

The bilateral filter [41] allows an offset correction for each

point along its normal vector. Assume that p is the candi-

date point for denoising, and np is the corresponding normal

vector. Let pi be the neighbors of p for i = 1, · · · ,N1, and

ωs(x) = e−x
2/2σ 2s , ωc(x) = e−x

2/2σ 2c be two Gaussians with

variances σs and σc, respectively. Then, the offset correction

is

δp =

N1
∑

i=1

ωs(‖ p− pi ‖)ωc(〈np, pi − p〉)〈np, pi − p〉

N1
∑

i=1

ωs(‖ p− pi ‖)ωc(〈np, pi − p〉)

. (2)

The new position of p is p̂ = p+ δpnp. This is the same as

projecting a point on the weighted regression plane with the

neighboring weights ω(pi) =
1
W
ωs(‖p−pi‖)ωc(〈np, pi−p〉),

where W is a normalization factor. The offset correction

ensures that, to denoise a point near the edge, only points

lying on the same facet will contribute. The bilateral filter

for a given point p ∈ P is summarized in Algorithm 1.

III. THE PROPOSED METHOD

Some notations used in our algorithm are listed here. The

source point cloud (red) is P = {pm,m = 1, . . . ,M} and the

target point cloud (blue) is Q = {ql, l = 1, . . . ,L}. The goal

is to find the best transformation T̂ from P toQ. We conduct

T̂ = T ∗ ·T0, where T0 represents the transformation of coarse

registration, and T ∗ represents the best transformation of fine

registration. The flow chart is given in Figure 3.

The coarse trimmed block (the yellow block) gives a good

initial transformation and coarse overlap estimation, which is

Algorithm 1 bilateral(p,N1, σs, σc)

Require: A point p ∈ P , search range N1, σs, σc.

1: SN1
(p)← neighbors of p

2: Compute the unit normal vectornp to the regression plane

from SN1
(p)

3: sum = 0, normalizer = 0

4: for pi ∈ SN1
(p) do

5: ds = ‖pi − p‖

6: dc = 〈pi − p,np〉

7: w′ = exp (−
d2s
2σ 2s

) · exp (−
d2c
2σ 2c

)

8: sum += w′ · dc
9: normalizer += w′

10: end for

11: p̂← p+ sum
normalizer

np

FIGURE 3. Flow chart of the parallel coarse-to-fine registration.

used to smooth the noise and trim most of outliers. On the

other hand, the fine registration algorithm (the brown block)

computes the fine transformation T ∗. To make our accel-

eration strategies clear, we give some parallel computation

procedure details in section III-C. Firstly, we give a detailed

representation of our coarse trimmed strategy.

A. COARSE TRIMMED STRATEGY FOR PARTIAL

REGISTRATION

The coarse trimmed strategy, the key step of the coarse-to-fine

partial registration, is used to estimate the coarse overlap area

and the initial transformation. In particular, a parallel bilateral

denoising method (section III-A1) and parallel point feature

histogram (PPFH) aligning between key point pairs are used

to eliminate the majority of non-overlap information.

1) PARALLEL BILATERAL FILTER DENOISING

The key point and PFH descriptor extraction are easily per-

turbed by noise, as they heavily depend on the point positions

and their corresponding normal vectors. Therefore, we add a

bilateral filter to denoise the noisy point cloud, and refer to the

parallel implementation of point cloud bilateral filter in [42].

This algorithm could be summarized in Algorithm 2, and the

bilateral function is shown in section II-B.
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Algorithm 2 Parallelization of the Bilateral Filter

Require: Input point cloud P stored into an octree ψ , a

search range N1, and two variances σs, σc of Gaussian

distribution.

1: for each node child C in parallel do

2: for p ∈ C do

3: p̂← bilateral(p,N1, σs, σc) ⊲ reference to Alg. 1

4: Update octree node Ĉ where p̂ is located

5: end for

6: end for

2) PARALLEL KEY POINTS SELECTION

For saving the computation cost of extracting the key points

from the original data, in the beginning, we define

γ (p) =

N2
∑

i=1

|n · ni|

N2
=

N2
∑

i=1

| cos〈n,ni〉|

N2
(3)

as the local curvature descriptor [47], where N2 is the neigh-

borhood search range, and i is the index of neighborhood

search result of each point p.

We keep the point with the smallest γ value among its

neighbors, i.e., keeping the local region edge or corner points.

The key point sets are marked as P ′ = {p′ : p′ ∈ P} and

Q′ = {q′ : q′ ∈ Q}. Figure 4 illustrates the key point selection

for point clouds P and Q.

FIGURE 4. Key point sets (yellow points) P ′ and Q′ on P and Q

respectively.

3) PARALLEL PFH DESCRIPTOR COMPUTATION FOR KEY

POINTS

We propose a parallel implementation of PFH for key point

sets P ′ and Q′ in Figure 5. The PPFH computation mainly

consists of parallel kd-tree searching and parallel normal

vector estimation. Please refer to sections III for parallel

implementation details.

FIGURE 5. Details of PPFH descriptor implementation.

4) COARSE ALIGNING

Here, with PFH feature, we search the most similar corre-

spondent key point using the parallel brute force. We denote

the set of key point pairs by

M = {(p′′, q′′) : p′′ ∈ P ′′ ⊆ P ′, q′′ ∈ Q′′ ⊆ Q′}.

Figure 6(a) illustrates the correspondence of key point pairs.

On the one hand, the correspondence of key point pairs

M = {(p′′, q′′)} is used to identify the coarse overlap area and

overlap ratio. Specifically, we utilize the parallel neighbor-

hood search on Q for the key point center q = 1
|Q′′|

∑

q′′i ∈Q
′′

q′′i

to get the coarse overlap area Q0, where | · | means the

number of points. The searching range is about 1.1 times

of the size of partial (source) point cloud P . Figure 6(b)

illustrates the overlap area (red)Q0. The coarse overlap ratio

r0 is estimated by r0 =
|Q0|
|Q|

.

FIGURE 6. The correspondence of key point pairs M and the overlap
area Q0.

On the other hand, the correspondence of key point pairs

M can be used to identify the coarse transformation T 0 =

{R0, t0} [38], as summarized in Algorithm 3:

Algorithm 3 Generation of Transformation T 0

Require: Key point pairM = {(p′′, q′′)}.

1: Find the barycenters p = 1
|P ′′|

∑

i

p′′i and q =
1
|Q′′|

∑

i

q′′i ,

2: Transform key point sets P̄′′ = {p̄′′i |p̄
′′
i = p′′i − p} and

Q̄′′ = {q̄′′i |q̄
′′
i = q′′i − q}

3: Construct the covariance matrix H =
∑

i

p̄′′i q̄
′′T
i

4: Conduct SVD on H = U3V T

5: The rotation R0 = VUT and translation t0 = q− R0p.

B. PARALLEL TRIMMED ICP FOR FINE PARTIAL

REGISTRATION

With the coarse overlap area Q0 and initial rigid transfor-

mation T 0, we conduct the fine registration based on the

parallel trimmed ICP method under Q0 and the source point

cloud P . Denoting the transformation by T η = {Rη, tη} in

the current η-th iteration, the transformation can consist of

rotation Rη, translation tη. For the current η-th iteration, the

parallel trimmed ICP registration is conducted as follows:

1) UPDATE CORRESPONDENCES

For each point pi in the source partial point cloud, find its

correspondence qcηi
via parallel implementation of the nearest
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point searching. The index of point in Q that matches point

pi is denoted by c
η

i :

c
η

i = argmin
j
‖T η−1 · pi − qj‖

2, i = 1 . . .M . (4)

2) UPDATE OVERLAP RATIO

Having the correspondences {(pi, qcηi
)}Mi=1 fixed, parallelly

compute the squared distances {(d
η

i )
2}Mi=1 as

(d
η

i )
2 =

(

T η−1 · pi − qcηi

)⊤ (

T η−1 · pi − qcηi

)

, (5)

and sort {(d
η

i )
2}Mi=1 with the ascending order; then parallelly

calculate the overlap ratio according to

rη = argmin
r

M×r
∑

i=1

(d
η

i )
2

eλ
η
·M · rλ

η , (6)

where λη = λη−1 − δ is the parameter of trimmed strat-

egy, and the positive constants λ0, δ are defined in advance.

Besides, we parallelly pick up the first Mr = ⌊M × rη⌋

corresponding point pairs, and define the error

εη =

Mr
∑

i=1

(d
η

i )
2/Mr (7)

as the Trimmed Squared Distance (TSD).

3) UPDATE TRANSFORMATION

T η = argmin
T

Mr
∑

i=1

‖T η−1 · pi − qci‖
2. (8)

Repeat the above steps until the stopping criteria are sat-

isfied. In our algorithm, the iteration stops when any of the

following three conditions hold.

1) The maximum iteration number τ has reached;

2) The TSD error εη is sufficiently small;

3) |εη − εη−1| is sufficiently small.

C. PARALLEL IMPLEMENTATION

Point cloud registration, especially for high-resolution data,

usually suffers from themassive size problem, leading to long

execution time. Some parallel implementation methods have

been proposed to deal with this problem. In 2007, Nüchter

proposed the parallel implementation of classical ICP with

OpenMP and utilized this method in GraphSLAM [48].

In this decade, the GPU parallel mode began to be applied

on ICP and EM-ICP [49], [50].

With the GPU development, the new generation GPU cores

could handle massive point size in parallel mode. Based

on this, we give the parallel execution introduction of our

trimmed ICP method in Figure 7, which illustrates that most

parts of the algorithm are implemented in the parallel mode,

except for the simple computation such as the update of

transformation matrix. The parallel implementation of bilat-

eral filter is described in section III-A1. The fine registration

could be divided into three main parts, among which the

FIGURE 7. Parallel implementation of our algorithm.

correspondence and overlap ratio update are implemented in

CUDA Thrust [51].

Comparing with the nearest neighbor search (NNS) based

parallel ICP method [49], [50], our contributions in parallel

registration lie in: 1) we provide GPU parallelization for all

modules (not limited to NNS) of the point cloud registration;

2) we implement the parallel trimmed ICP algorithm, which

improves the robustness by adding the parallel overlap ratio

estimation in each iteration; and 3) we use the high-level

Thrust library (https://thrust.github.io/) in our parallel imple-

mentation, which strengthens the reliability of our algorithm.

Most of the parallel coarse-to-fine registration implemen-

tation is based on the parallel kd-tree search, which consists of

two parts: tree construction in section III-C1 and the nearest

point search in section III-C2.

We first elaborate the parallel kd-tree search implementa-

tion.

1) PARALLEL TREE CONSTRUCTION

Given L points for tree construction, and restrict each leaf

node containing maximum one point, the complexity of

sequential kd-tree construction is O(kL log2 L) [52], where

k is the dimension of kd-tree. If each leaf node contains

maximum κ points (1 < κ ≪ L), there are approximately

⌊L
κ
⌋ leaf nodes and the tree depth is (log2⌊

L
κ
⌋). Therefore,

the number of nodes is 1 + 2 + 4 + · · · + ⌊L
κ
⌋ = 2⌊L

κ
⌋ − 1,

and there are ⌊L
κ
⌋ − 1 node splitting operations in serial

processing.

In contrast, for the parallel mode, every thread in GPU

manipulates one parent node and its corresponding left and

right child nodes, i.e., all node splitting procedures in the

same level of a kd-tree are executed parallelly. Hence the

parallel processing needs log2⌊
L
κ
⌋ splitting operations. As a
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result, the parallel tree construction is about
⌊ L
κ
⌋−1

log2⌊
L
κ
⌋
times

faster than the sequential implementation.

2) NEAREST POINT SEARCH

After parallelly constructing the tree structure in section III-

C1, every query point finds its nearest point in the tree

structure. The serial computation simply searches the nearest

neighbor point by point, while in parallel mode GPU can

easily schedule millions of threads under specific hetero-

geneous computing architecture to manipulate each point

concurrently. For the point cloud of size M , the complex-

ity of scale situations decreases from O(M log2⌊
L
κ
⌋) to

O(log2⌊
L
κ
⌋), where log2⌊

L
κ
⌋ is the tree depth.

3) DYNAMIC PARALLELISM

Dynamic parallelism, as a programming structure template,

is extensively used in our parallel normal vector estimation,

key points selection, PFH descriptors estimation, and PFH

descriptor alignment for key point pairs. In Figure 8, each

thread in our parent GPU thread block manipulates some

specific data, and each parent thread could create another

GPU thread block, marked as ‘child’, which also executes

under the parallel mode.

FIGURE 8. Dynamic parallelism programming structure.

4) NORMAL VECTOR ESTIMATION

The normal vector estimation, based on the NNS results in

section III-C2, is implemented via the dynamic parallelism

mode. Each thread in the parent thread block manipulates a

point p in the point cloud, and each thread in the child thread

block computes the dot product p3×1 ·q1×3, where q is one of

the nearest points of p. The parallelism of child thread block

reduces the complexity from O(N0) to O(1), where N0 is the

neighborhood search range. The dot product results are added

up by the parent thread in parallel, and the complexity of

parallel adding up isO(log2 N0) [53]. Hence we get the 3×3

covariance matrix Xcov. In the end, the parent thread utilizes

the eigenvalue decomposition on Xcov to get the unit normal

vector of each point.

5) KEY POINT SELECTION

As mentioned in section III-A2, the key point selection is

based on the normal vector estimation and the neighborhood

search. We utilize the dynamic parallelism mode for the key

point selection. Given M points for key point selection, each

thread in the parent thread block manipulates one point, and

schedules a corresponding child thread block for computing

γ (p) parallelly. Assuming that the nearest point range is N2,

the child thread block reduces the complexity of computing

γ (p) from O(N2) to O(log2 N2), and the entire dynamic par-

allelism reduces the complexity fromO(MN2) toO(log2 N2).

6) PARALLEL PFH DESCRIPTOR COMPUTATION

We propose a parallel implementation of PFH descriptor

based on parallel kd-tree searching, normal vector estimation

and key point selection.

In terms of constructing the histogram of features, we also

utilize the dynamical parallelism mode. In the parent thread

block of GPU, each thread manipulates the 3D point position

coordinates and its corresponding normal vector of key point

set, which means that the thread number of parent thread

block is equal to the number of key points. In the child thread

block, each threadmanipulates the nearest indices of each key

point inherited from its parent thread. Then each child thread

computes the triplet (α, φ, θ) between each key point and one

of its neighborhood points. This parallel mode reduces the

complexity from O(L ′N 2
3 ) to O(1), where L ′ is the size of

key point set, and N3 is the nearest search range. The final

statistic histogram of the point feature is implemented with

the CUDA command atomicAdd in the sequential mode to

avoid the multi-thread memory access conflict.

7) KEY POINT PFH DESCRIPTOR ALIGNING

In the key point pair feature correspondence search part, each

key point feature is a 125 dimensional vector. The kd-tree

search method, however, is not suitable for the high dimen-

sional feature correspondence search [54]. We utilize the par-

allel brute force search method, i.e., each thread in the parent

GPU thread block manipulates one 125 dimensional feature

vector for a key point; each thread creates another ‘child’

GPU thread block, and then searches for the most similar

feature in another point cloud under the parallel mode. Given

M ′ key points, the complexity of parallel implementation for

PFH descriptor aligning could be reduced fromO(125·M ′) to

O(1). After successfully finding the aligned key point pairs,

our algorithm obtains the initial overlap ratio r0 and the initial

transformation T 0.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

Our experiment is verified in terms of accuracy and runtime.

The sequential program is written in C++ with Point Cloud

Library (PCL) [55], and the parallel program is written in

CUDA C/C++ [56]. All experiments are running on Intelr

CoreTM i7-8750H CPU @2.20GHz and NVIDIAr GeForce

GTX 1060.

The data used in the experiments are Bunny, Dragon

and Happy Buddha (Figure 9) from the Stanford 3D

Scanning Repository (http://graphics.stanford.

edu/data/3Dscanrep/). We also test our algorithm on
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FIGURE 9. Point cloud data Bunny, Dragon, Buddha, Ship and Volcano.

remote sensing point clouds, for example, the volcano point

cloud acquired by LiDAR over Mount St. Helens and the ship

data acquired from a LiDAR point cloud of a harbor scene.

A. EXPERIMENT DESIGN

Given a source 3D point cloud P and a target point cloud Q,

we conduct a predetermined random transformation T on P .

Here the transformation includes rotation, translation and

scaling. As a result, a data pair (P,Q) is obtained with the

ground truth of transformation T .

The goal of the algorithm is to find the best transformation

T̂ from P to Q. We compare T̂ = T ∗ · T0 under various

conditions such as missing points, noise, outlier and isotropic

scaling. The better the registration performs, the closer the

transformation to the ground truth T . We show both the visu-

alization and the numerical results. All the quantity results

include the average accuracy and runtime of 15 different

sample pairs.

We compare our coarse-to-fine registration algorithm with

the Super4PCS coarse algorithm [33], the robust trimmed ICP

[35], [36], and the coarse-to-fine adaptive generalized-ICP

algorithm (AGICP) [37] in various situations, includingmiss-

ing data, outliers and perturbation noise. For missing data,

the source point cloud P sizes are 10,098, 11,449, 17,212,

76,395, 10,110; the target cloud Q sizes are 40,097, 41,841,

54,353, 244,996, 30,554; the corresponding overlap ratios are

25.18%, 27.36%, 31.67%, 31.18% and 33.09% for bunny,

dragon, buddha, ship and volcano, respectively.

We measure the error by the average of point-to-point

distances, marked as TSD, on the overlap area of P and Q.

Meanwhile, the stopping values of the trimmed ICP, AGICP

and our fine registration method are: 1) The maximum iter-

ation number τ = 200; 2) The TSD error εη < e−10; and

3) |εη − εη−1| < e−10, respectively.

B. MISSING POINTS

Figure 10 shows the results of missing points case, compared

with the Super4PCS, original trimmed ICP and AGICP. The

PPFH features of the key points match well on the overlap

area. Figure 11 shows the zoom-in results of coarse and fine

registrations, respectively.

Table 1 displays the detailed numerical results, indi-

cating that our PPFH based coarse-to-fine registration

method outperforms the original trimmed ICP, AGICP and

Super4PCS methods in terms of the registration average

accuracy and runtime. Note that even our coarse registration

outperforms the trimmed ICP, AGICP and Super4PCS in

terms of accuracy. Of course, our coarse-to-fine registration

method outperforms our own coarse trimmed module, which

is also shown in the table. It indicates that our fine trimmed

module further improves the accuracy. Our method sets the

neighborhood rangeN0 = 8 for the point cloud normal vector

estimation, and N3 = 32 for the PFH descriptor computation

in both P and Q.

Table 1 also shows the runtime of coarse and fine regis-

trations of parallel implementation. Owing to the accurate

coarse registration transformation result, the iterations of fine

registration are less than directly using trimmed ICP and

AGICP. It verifies again the importance of coarse registration.

Besides, the fine registration utilizes the GPU parallel mode

to reduce the runtime in each iteration, which has significant

improvement in accuracy and runtime. Particularly, we down-

sample the ship data for AGICP, since this algorithm requires

a large amount of memory and cannot be executed for full

size data.

C. OUTLIERS

For comparing our method under different outlier levels,

we add additional 10% to 40% outlier points on the missing

data. Then, the actual overlap ratio becomes 19.2% to 24.9%.

Figure 12 illustrates the comparison under different outlier

levels, and the numerical results are given in Table 2.

Comparing to the other three methods, our PPFH

based coarse-to-fine algorithm has much higher registration

accuracy; owing to the accurate coarse estimation, the fine

registration converges faster. In order to obtain similar PPFH

features of the key points correctly, we need to reduce N3 in

KNN search to avoid capturing more random outlier informa-

tion. Hence, the search region is about 3/4 of that in the raw

data experiment.

D. PERTURBATION NOISE

Furthermore, we verify our algorithm under the perturbation

noise. The results are shown in Figure 13 and Table 3. We

compare the registration performance with seven different

methods:
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FIGURE 10. Comparison results for missing data. The circled areas in the fine registration column are enlarged in Figure 11.

FIGURE 11. Enlarged local areas of Figure 10. The first row is the zoom-in of the coarse registration result, and the second row is that of the fine
registration.

1) Super4PCS [33],

2) our coarse trimmed module without denoising (named

coarse w/o denoising),

3) our coarse trimmed module (named our coarse method),

4) the trimmed ICP [35],

5) AGICP [37],

6) our coarse-to-fine registrationwithout denoising (named

our method w/o denoising),
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TABLE 1. Ablation analysis on accuracy and runtime (ms) under the low overlap caused by missing points.

FIGURE 12. Comparison results under different levels of outliers. In the first row, the outlier is 10% of point cloud size, the second one is 20%, and the
last row is 40%.

TABLE 2. Ablation analysis on accuracy and runtime (ms) under different levels of outliers.

7) our coarse-to-fine registration method.

In Figure 13, the first row is the data contaminated by

noise N (0, 0.0003), and the second row is contaminated by

N (0, 0.0007). Super4PCS, Trimmed ICP, AGICP and coarse

w/o denoising suffer significantly from noisy and missing

data.

Table 3 shows the registration accuracy and runtime on

the different noise levels. Comparing the coarse registrations

with and without denoising, the bilateral filter efficiently

reduces the noise influence on PPFH feature. Using trimmed

ICP directly suffers from the low overlap ratio problem, lead-

ing to more iteration steps or wrong transformation results.

Although the runtime slightly increases with the bilateral

filter in our method, the registration accuracy is much better

than not using it. This outcome benefits from not only the

parallel execution mode but also the denoising procedure,

which reduces the iteration steps in the modified trimmed

ICP.

E. SCALING

In this part, we give the extension of our coarse-to-fine

trimmed partial registration method to the isotropic scaling

case. To register in the scaling case successfully, we need

to estimate the scale s0 in the coarse trimmed module too.
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FIGURE 13. Comparison results under different noise levels. The noise levels are N(0, 0.0003) and N(0, 0.0007) in the first and second row, respectively.

TABLE 3. Ablation analysis on accuracy and runtime (ms) under different noise levels.

Then, we conduct the trimmed scale ICP [36] in GPU parallel

model:

T̂ = argmin ‖s · R · P + t −Q‖2. (9)

The detail could be summarized in Algorithm 4.

Algorithm 4 Partial Registration for Isotropic Scaling

Require: Point clouds P and Q.

1: Estimate the correspondence and coarse overlap area

referred in section III-A4.

2: Estimate the coarse transformation {s0,R0, t0} by SVD

3: for each iteration η in fine registration do

4: Find the nearest points of P in Q with parallel mode:

Cη = argmin ‖sη−1Rη−1P + tη−1 −Q‖2.

5: Update the overlap ratio via (6).

6: Compute the barycenters P and Q of the overlap area.

7: Update the scale, rotation and translation:

[sη,Rη, tη] = argmin ‖s · R · P + t −Q‖2.

Estimate the scale sη via the division of the singular

values of SVD (P · P
T
) and SVD (Q ·Q

T
).

Compute the rotation Rη via Algorithm 3

and translation tη = q− sη · Rη · p

8: Repeat the above steps until the stopping criteria are

satisfied.

9: end for

In order to reduce the possibility of scale degeneration in

non-rigid transformation, we set the upper and lower scale

constraints [sL , sU ] for each iteration.

To verify the proposed method under scaling for real data,

we conduct different methods on the Ship and Volcano data.

Super4PCS is not suitable for scaling situation due to its

reliance on point distance. Experimental results are shown

in Figures 14 and 16.

Figure 14 shows that directly conducting the trimmed ICP

easily fails for the low overlap ratio and the scale 2:1. In con-

trast, PPFH based coarse registration provides a reasonable

coarse transformation including rotation, translation and scal-

ing. This can be taken as a good initial transformation for the

fine registration.

Notice that the PPFH based coarse registration gives an

accurate transformation estimation, as shown in Table 4,

which is better than directly conducting the trimmed ICP

and AGICP. Besides, with the help of coarse registration, the

fine registration converges faster than directly conducting the

trimmed ICP and AGICP.

Figure 16 provides the comparison for partial registration

with outliers (10%) under the scale 2:1. Obviously, PPFH

based coarse registration gives a reasonable coarse trans-

formation. Figure 17 shows the zoom-in result of our fine

registration algorithm. In particular, we only downsample the

ship data for AGICP, since this algorithm requires a large

amount of memory and cannot be executed for full size

data.

Table 5 further verifies that the PPFH based coarse-to-fine

registration algorithm is also suitable for data with outliers

(additional 10%) under the scale 2:1.
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FIGURE 14. Comparison results under the scale 2 : 1. The circled areas in the fine registration column are enlarged in Figure 15.

FIGURE 15. Enlarged areas of Figure 14.

TABLE 4. Ablation analysis on accuracy and runtime (ms) of low overlap ratio registration under the scale 2:1.

F. TIME CONSUMING ANALYSIS OF PARALLEL

IMPLEMENTATION

We compare the runtime of normal vector estimation, PFH

computation and tree construction in parallel and sequen-

tial implementations, respectively. The results are shown in

Figure 18 and Table 6.

In Figure 18(a), the blue and orange bars represent the

sequential runtime of the normal vector estimation and PFH

estimation, respectively. Similarly, the purple bar represents

the parallel PFH computation time, and the faint yellow

‘PNormal’ means the parallel normal vector estimation.

Notice that the key point size significantly influences the
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FIGURE 16. Comparison results for data with outliers (10%) under the scale 2:1. The circled areas in the fine registration column are enlarged
in Figure 17.

FIGURE 17. Enlarged local areas of Figure 16.

TABLE 5. Ablation analysis on accuracy and runtime (ms) under low overlap situation with outliers (10%) under the scale 2:1.

runtime of sequential implemented PFH and normal vector

estimation, but influences the parallel execution less.

Figure 18(b) compares the time of tree construction. The

sequential tree construction time increases while the parallel

one is very low and almost remains constant as the point size

increases.

Table 6 illustrates the different stages of coarse-to-fine

registration for data bunny, buddha and dragon. Although
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FIGURE 18. Time comparison of normal vector estimation, PFH feature computation and tree construction.

TABLE 6. Parallel runtime (ms) table of different stages in the entire registration.

the PFH computation still occupies the main part of the

registration time, the entire runtime decreases compared with

the sequential mode.

V. CONCLUSION

We have proposed an accurate and robust coarse-to-fine

partial registration algorithm for two point clouds with the

low overlap ratio. In methodology, this algorithm utilizes the

noise robust PPFHmatching to trim the outliers coarsely, esti-

mates the overlap area and computes the coarse transforma-

tion in the coarse trimmedmodule. Then, the parallel trimmed

ICP algorithm could be successfully conducted based on the

coarse registration results. Moreover, This framework can be

extended to isotropic scaling registration. In implementation,

most part of the procedure is accelerated by CUDA and

OpenMP.
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