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Abstract

We develop an accelerated randomized proximal coordinate gradient (APCG)
method, for solving a broad class of composite convex optimization problems.
In particular, our method achieves faster linear convergence rates for minimizing
strongly convex functions than existing randomized proximal coordinate gradi-
ent methods. We show how to apply the APCG method to solve the dual of the
regularized empirical risk minimization (ERM) problem, and devise efficient im-
plementations that avoid full-dimensional vector operations. For ill-conditioned
ERM problems, our method obtains improved convergence rates than the state-of-
the-art stochastic dual coordinate ascent (SDCA) method.

1 Introduction

Coordinate descent methods have received extensive attention in recent years due to their potential
for solving large-scale optimization problems arising from machine learning and other applications.
In this paper, we develop an accelerated proximal coordinate gradient (APCG) method for solving
convex optimization problems with the following form:

minimize
x∈RN

{

F (x)
def
= f(x) + Ψ(x)

}

, (1)

where f is differentiable on dom (Ψ), and Ψ has a block separable structure. More specifically,

Ψ(x) =
n
∑

i=1

Ψi(xi), (2)

where each xi denotes a sub-vector of x with cardinality Ni, and each Ψi : RNi → R ∪ {+∞}
is a closed convex function. We assume the collection {xi : i = 1, . . . , n} form a partition of
the components of x ∈ R

N . In addition to the capability of modeling nonsmooth regularization
terms such as Ψ(x) = λ‖x‖1, this model also includes optimization problems with block separable
constraints. More precisely, each block constraint xi ∈ Ci, where Ci is a closed convex set, can be
modeled by an indicator function defined as Ψi(xi) = 0 if xi ∈ Ci and ∞ otherwise.

At each iteration, coordinate descent methods choose one block of coordinates xi to sufficiently
reduce the objective value while keeping other blocks fixed. One common and simple approach
for choosing such a block is the cyclic scheme. The global and local convergence properties of the
cyclic coordinate descent method have been studied in, for example, [21, 11, 16, 2, 5]. Recently,
randomized strategies for choosing the block to update became more popular. In addition to its the-
oretical benefits [13, 14, 19], numerous experiments have demonstrated that randomized coordinate
descent methods are very powerful for solving large-scale machine learning problems [3, 6, 18, 19].

Inspired by the success of accelerated full gradient methods (e.g., [12, 1, 22]), several recent work
applied Nesterov’s acceleration schemes to speed up randomized coordinate descent methods. In
particular, Nesterov [13] developed an accelerated randomized coordinate gradient method for min-
imizing unconstrained smooth convex functions, which corresponds to the case of Ψ(x) ≡ 0 in (1).
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Lu and Xiao [10] gave a sharper convergence analysis of Nesterov’s method, and Lee and Sid-
ford [8] developed extensions with weighted random sampling schemes. More recently, Fercoq
and Richtárik [4] proposed an APPROX (Accelerated, Parallel and PROXimal) coordinate descent
method for solving the more general problem (1) and obtained accelerated sublinear convergence
rates, but their method cannot exploit the strong convexity to obtain accelerated linear rates.

In this paper, we develop a general APCG method that achieves accelerated linear convergence
rates when the objective function is strongly convex. Without the strong convexity assumption, our
method recovers the APPROX method [4]. Moreover, we show how to apply the APCG method to
solve the dual of the regularized empirical risk minimization (ERM) problem, and devise efficient
implementations that avoid full-dimensional vector operations. For ill-conditioned ERM problems,
our method obtains faster convergence rates than the state-of-the-art stochastic dual coordinate as-
cent (SDCA) method [19], and the improved iteration complexity matches the accelerated SDCA
method [20]. We present numerical experiments to illustrate the advantage of our method.

1.1 Notations and assumptions

For any partition of x ∈ R
N into {xi ∈ R

Ni : i = 1, . . . , n}, there is an N × N permutation
matrix U partitioned as U = [U1 · · ·Un], where Ui ∈ R

N×Ni , such that

x =

n
∑

i=1

Uixi, and xi = UT
i x, i = 1, . . . , n.

For any x ∈ R
N , the partial gradient of f with respect to xi is defined as

∇if(x) = UT
i ∇f(x), i = 1, . . . , n.

We associate each subspace R
Ni , for i = 1, . . . , n, with the standard Euclidean norm, denoted

by ‖ · ‖. We make the following assumptions which are standard in the literature on coordinate
descent methods (e.g., [13, 14]).

Assumption 1. The gradient of function f is block-wise Lipschitz continuous with constants Li, i.e.,

‖∇if(x+ Uihi)−∇if(x)‖ ≤ Li‖hi‖, ∀hi ∈ R
Ni , i = 1, . . . , n, x ∈ R

N .

For convenience, we define the following norm in the whole space R
N :

‖x‖L =

( n
∑

i=1

Li‖xi‖2
)1/2

, ∀x ∈ R
N . (3)

Assumption 2. There exists µ ≥ 0 such that for all y ∈ R
N and x ∈ dom (Ψ),

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µ

2
‖y − x‖2L.

The convexity parameter of f with respect to the norm ‖ · ‖L is the largest µ such that the above
inequality holds. Every convex function satisfies Assumption 2 with µ = 0. If µ > 0, the function f
is called strongly convex.

We note that an immediate consequence of Assumption 1 is

f(x+ Uihi) ≤ f(x) + 〈∇if(x), hi〉+
Li

2
‖hi‖2, ∀hi ∈ R

Ni , i = 1, . . . , n, x ∈ R
N . (4)

This together with Assumption 2 implies µ ≤ 1.

2 The APCG method

In this section we describe the general APCG method, and several variants that are more suitable
for implementation under different assumptions. These algorithms extend Nesterov’s accelerated
gradient methods [12, Section 2.2] to the composite and coordinate descent setting.

We first explain the notations used in our algorithms. The algorithms proceed in iterations, with k
being the iteration counter. Lower case letters x, y, z represent vectors in the full space R

N , and

x(k), y(k) and z(k) are their values at the kth iteration. Each block coordinate is indicated with a

subscript, for example, x
(k)
i represents the value of the ith block of the vector x(k). The Greek letters

α, β, γ are scalars, and αk, βk and γk represent their values at iteration k.
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Algorithm 1: the APCG method

Input: x(0) ∈ dom (Ψ) and convexity parameter µ ≥ 0.

Initialize: set z(0) = x(0) and choose 0 < γ0 ∈ [µ, 1].

Iterate: repeat for k = 0, 1, 2, . . .

1. Compute αk ∈ (0, 1
n ] from the equation

n2α2
k = (1− αk) γk + αkµ, (5)

and set
γk+1 = (1− αk)γk + αkµ, βk =

αkµ

γk+1
. (6)

2. Compute y(k) as y(k) =
1

αkγk + γk+1

(

αkγkz
(k) + γk+1x

(k)
)

. (7)

3. Choose ik ∈ {1, . . . , n} uniformly at random and compute

z(k+1) = argmin
x∈RN

{nαk

2

∥

∥x−(1−βk)z
(k)−βky

(k)
∥

∥

2

L
+〈∇ikf(y

(k)), xik〉+Ψik(xik)
}

.

4. Set x(k+1) = y(k) + nαk(z
(k+1) − z(k)) +

µ

n
(z(k) − y(k)). (8)

The general APCG method is given as Algorithm 1. At each iteration k, it chooses a random

coordinate ik ∈ {1, . . . , n} and generates y(k), x(k+1) and z(k+1). One can observe that x(k+1) and

z(k+1) depend on the realization of the random variable

ξk = {i0, i1, . . . , ik},
while y(k) is independent of ik and only depends on ξk−1. To better understand this method, we
make the following observations. For convenience, we define

z̃(k+1) = argmin
x∈RN

{nαk

2

∥

∥x− (1− βk)z
(k) − βky

(k)
∥

∥

2

L
+ 〈∇f(y(k)), x− y(k)〉+Ψ(x)

}

, (9)

which is a full-dimensional update version of Step 3. One can observe that z(k+1) is updated as

z
(k+1)
i =

{

z̃
(k+1)
i if i = ik,

(1− βk)z
(k)
i + βky

(k)
i if i 6= ik.

(10)

Notice that from (5), (6), (7) and (8) we have

x(k+1) = y(k) + nαk

(

z(k+1) − (1− βk)z
(k) − βky

(k)
)

,

which together with (10) yields

x
(k+1)
i =







y
(k)
i + nαk

(

z
(k+1)
i − z

(k)
i

)

+ µ
n

(

z
(k)
i − y

(k)
i

)

if i = ik,

y
(k)
i if i 6= ik.

(11)

That is, in Step 4, we only need to update the block coordinates x
(k+1)
ik

and set the rest to be y
(k)
i .

We now state a theorem concerning the expected rate of convergence of the APCG method, whose
proof can be found in the full report [9].

Theorem 1. Suppose Assumptions 1 and 2 hold. Let F ⋆ be the optimal value of problem (1), and
{x(k)} be the sequence generated by the APCG method. Then, for any k ≥ 0, there holds:

Eξk−1
[F (x(k))]− F ⋆ ≤ min

{

(

1−
√
µ

n

)k

,

(

2n

2n+ k
√
γ0

)2
}

(

F (x(0))− F ⋆ +
γ0
2
R2

0

)

,

where

R0
def
= min

x⋆∈X⋆

‖x(0) − x⋆‖L, (12)

and X⋆ is the set of optimal solutions of problem (1).
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Our result in Theorem 1 improves upon the convergence rates of the proximal coordinate gradient
methods in [14, 10], which have convergence rates on the order of

O
(

min
{

(

1− µ
n

)k
, n

n+k

})

.

For n = 1, our result matches exactly that of the accelerated full gradient method in [12, Section 2.2].

2.1 Two special cases

Here we give two simplified versions of the APCG method, for the special cases of µ = 0 and
µ > 0, respectively. Algorithm 2 shows the simplified version for µ = 0, which can be applied to
problems without strong convexity, or if the convexity parameter µ is unknown.

Algorithm 2: APCG with µ = 0

Input: x(0) ∈ dom (Ψ).

Initialize: set z(0) = x(0) and choose α0 ∈ (0, 1
n ].

Iterate: repeat for k = 0, 1, 2, . . .

1. Compute y(k) = (1− αk)x
(k) + αkz

(k).

2. Choose ik ∈ {1, . . . , n} uniformly at random and compute

z
(k+1)
ik

= argminx∈RN

{

nαkLik

2

∥

∥x− z
(k)
ik

∥

∥

2
+ 〈∇ikf(y

(k)), x− y
(k)
ik

〉+Ψik(x)
}

.

and set z
(k+1)
i = z

(k)
i for all i 6= ik.

3. Set x(k+1) = y(k) + nαk(z
(k+1) − z(k)).

4. Compute αk+1 = 1
2

(

√

α4
k + 4α2

k − α2
k

)

.

According to Theorem 1, Algorithm 2 has an accelerated sublinear convergence rate, that is

Eξk−1
[F (x(k))]− F ⋆ ≤

(

2n

2n+ knα0

)2 (

F (x(0))− F ⋆ +
1

2
R2

0

)

.

With the choice of α0 = 1/n, Algorithm 2 reduces to the APPROX method [4] with single block
update at each iteration (i.e., τ = 1 in their Algorithm 1).

For the strongly convex case with µ > 0, we can initialize Algorithm 1 with the parameter γ0 = µ,
which implies γk = µ and αk = βk =

√
µ/n for all k ≥ 0. This results in Algorithm 3.

Algorithm 3: APCG with γ0 = µ > 0

Input: x(0) ∈ dom (Ψ) and convexity parameter µ > 0.

Initialize: set z(0) = x(0) and and α =
√
µ

n .

Iterate: repeat for k = 0, 1, 2, . . .

1. Compute y(k) = x(k)+αz(k)

1+α .

2. Choose ik ∈ {1, . . . , n} uniformly at random and compute

z(k+1) = argmin
x∈RN

{

nα
2

∥

∥x−(1−α)z(k)−αy(k)
∥

∥

2

L
+〈∇ikf(y

(k)), xik−y
(k)
ik

〉+Ψik(xik)
}

.

3. Set x(k+1) = y(k) + nα(z(k+1) − z(k)) + nα2(z(k) − y(k)).

As a direct corollary of Theorem 1, Algorithm 3 enjoys an accelerated linear convergence rate:

Eξk−1
[F (x(k))]− F ⋆ ≤

(

1−
√
µ

n

)k
(

F (x(0))− F ⋆ +
µ

2
R2

0

)

.

To the best of our knowledge, this is the first time such an accelerated rate is obtained for solving
the general problem (1) (with strong convexity) using coordinate descent type of methods.
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2.2 Efficient implementation

The APCG methods we presented so far all need to perform full-dimensional vector operations at

each iteration. For example, y(k) is updated as a convex combination of x(k) and z(k), and this
can be very costly since in general they can be dense vectors. Moreover, for the strongly con-

vex case (Algorithms 1 and 3), all blocks of z(k+1) need to be updated at each iteration, although
only the ik-th block needs to compute the partial gradient and perform a proximal mapping. These
full-dimensional vector updates cost O(N) operations per iteration and may cause the overall com-
putational cost of APCG to be even higher than the full gradient methods (see discussions in [13]).

In order to avoid full-dimensional vector operations, Lee and Sidford [8] proposed a change of
variables scheme for accelerated coordinated descent methods for unconstrained smooth minimiza-
tion. Fercoq and Richtárik [4] devised a similar scheme for efficient implementation in the µ = 0
case for composite minimization. Here we show that such a scheme can also be developed for the
case of µ > 0 in the composite optimization setting. For simplicity, we only present an equivalent
implementation of the simplified APCG method described in Algorithm 3.

Algorithm 4: Efficient implementation of APCG with γ0 = µ > 0

Input: x(0) ∈ dom (Ψ) and convexity parameter µ > 0.

Initialize: set α =
√
µ

n and ρ = 1−α
1+α , and initialize u(0) = 0 and v(0) = x(0).

Iterate: repeat for k = 0, 1, 2, . . .

1. Choose ik ∈ {1, . . . , n} uniformly at random and compute

∆
(k)
ik

= argmin
∆∈R

Nik

{

nαLik

2 ‖∆‖2+ 〈∇ikf(ρ
k+1u(k)+v(k)),∆〉+Ψik(−ρk+1u

(k)
ik

+v
(k)
ik

+∆)
}

.

2. Let u(k+1) = u(k) and v(k+1) = v(k), and update

u
(k+1)
ik

= u
(k)
ik

− 1−nα
2ρk+1∆

(k)
ik

, v
(k+1)
ik

= v
(k)
ik

+ 1+nα
2 ∆

(k)
ik

. (13)

Output: x(k+1) = ρk+1u(k+1) + v(k+1)

The following Proposition is proved in the full report [9].

Proposition 1. The iterates of Algorithm 3 and Algorithm 4 satisfy the following relationships:

x(k) = ρku(k) + v(k), y(k) = ρk+1u(k) + v(k), z(k) = −ρku(k) + v(k). (14)

We note that in Algorithm 4, only a single block coordinate of the vectors u(k) and v(k) are updated

at each iteration, which cost O(Ni). However, computing the partial gradient ∇ikf(ρ
k+1u(k)+v(k))

may still cost O(N) in general. In the next section, we show how to further exploit structure in many
ERM problems to completely avoid full-dimensional vector operations.

3 Application to regularized empirical risk minimization (ERM)

Let A1, . . . , An be vectors in R
d, φ1, . . . , φn be a sequence of convex functions defined on R, and g

be a convex function on R
d. Regularized ERM aims to solve the following problem:

minimize
w∈Rd

P (w), with P (w) =
1

n

n
∑

i=1

φi(A
T
i w) + λg(w),

where λ > 0 is a regularization parameter. For example, given a label bi ∈ {±1} for each vector Ai,
for i = 1, . . . , n, we obtain the linear SVM problem by setting φi(z) = max{0, 1−biz} and g(w) =
(1/2)‖w‖22. Regularized logistic regression is obtained by setting φi(z) = log(1+exp(−biz)). This
formulation also includes regression problems. For example, ridge regression is obtained by setting
(1/2)φi(z) = (z − bi)

2 and g(w) = (1/2)‖w‖22, and we get Lasso if g(w) = ‖w‖1.
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Let φ∗
i be the convex conjugate of φi, that is, φ∗

i (u) = maxz∈R(zu − φi(z)). The dual of the
regularized ERM problem is (see, e.g., [19])

maximize
x∈Rn

D(x), with D(x) =
1

n

n
∑

i=1

−φ∗
i (−xi)− λg∗

(

1

λn
Ax

)

,

where A = [A1, . . . , An]. This is equivalent to minimize F (x)
def
= −D(x), that is,

minimize
x∈Rn

F (x)
def
=

1

n

n
∑

i=1

φ∗
i (−xi) + λg∗

(

1

λn
Ax

)

.

The structure of F (x) above matches the formulation in (1) and (2) with f(x) = λg∗
(

1
λnAx

)

and

Ψi(xi) = 1
nφ

∗
i (−xi), and we can apply the APCG method to minimize F (x). In order to exploit

the fast linear convergence rate, we make the following assumption.

Assumption 3. Each function φi is 1/γ smooth, and the function g has unit convexity parameter 1.

Here we slightly abuse the notation by overloading γ, which also appeared in Algorithm 1. But
in this section it solely represents the (inverse) smoothness parameter of φi. Assumption 3 implies
that each φ∗

i has strong convexity parameter γ (with respect to the local Euclidean norm) and g∗

is differentiable and ∇g∗ has Lipschitz constant 1. In the following, we split the function F (x) =
f(x) + Ψ(x) by relocating the strong convexity term as follows:

f(x) = λg∗
(

1

λn
Ax

)

+
γ

2n
‖x‖2, Ψ(x) =

1

n

n
∑

i=1

(

φ∗(−xi)−
γ

2
‖xi‖2

)

. (15)

As a result, the function f is strongly convex and each Ψi is still convex. Now we can apply the
APCG method to minimize F (x) = −D(x), and obtain the following guarantee.

Theorem 2. Suppose Assumption 3 holds and ‖Ai‖ ≤ R for all i = 1, . . . , n. In order to obtain an

expected dual optimality gap E[D⋆ −D(x(k))] ≤ ǫ by using the APCG method, it suffices to have

k ≥
(

n+
√

nR2

λγ

)

log(C/ǫ). (16)

where D⋆ = maxx∈Rn D(x) and the constant C = D⋆ −D(x(0)) + (γ/(2n))‖x(0) − x⋆‖2.

Proof. The function f(x) in (15) has coordinate Lipschitz constants Li =
‖Ai‖2

λn2 + γ
n ≤ R2+λγn

λn2

and convexity parameter γ
n with respect to the unweighted Euclidean norm. The strong convexity

parameter of f(x) with respect to the norm ‖ · ‖L defined in(3) is

µ = γ
n

/

R2+λγn
λn2 = λγn

R2+λγn .

According to Theorem 1, we have E[D⋆−D(x(0))] ≤
(

1−
√
µ

n

)k

C ≤ exp
(

−
√
µ

n k
)

C. Therefore

it suffices to have the number of iterations k to be larger than

n√
µ log(C/ǫ) = n

√

R2+λγn
λγn log(C/ǫ) =

√

n2 + nR2

λγ log(C/ǫ) ≤
(

n+
√

nR2

λγ

)

log(C/ǫ).

This finishes the proof.

Several state-of-the-art algorithms for ERM, including SDCA [19], SAG [15, 17] and SVRG [7, 23]
obtain the iteration complexity

O
((

n+ R2

λγ

)

log(1/ǫ)
)

. (17)

We note that our result in (16) can be much better for ill-conditioned problems, i.e., when the condi-

tion number R2

λγ is larger than n. This is also confirmed by our numerical experiments in Section 4.

The complexity bound in (17) for the aforementioned work is for minimizing the primal objective
P (x) or the duality gap P (x)−D(x), but our result in Theorem 2 is in terms of the dual optimality.
In the full report [9], we show that the same guarantee on accelerated primal-dual convergence can be
obtained by our method with an extra primal gradient step, without affecting the overall complexity.
The experiments in Section 4 illustrate superior performance of our algorithm on reducing the primal
objective value, even without performing the extra step.
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We note that Shalev-Shwartz and Zhang [20] recently developed an accelerated SDCA method

which achieves the same complexity O
((

n+
√

n
λγ

)

log(1/ǫ)
)

as our method. Their method calls

the SDCA method in a full-dimensional accelerated gradient method in an inner-outer iteration pro-
cedure. In contrast, our APCG method is a straightforward single loop coordinate gradient method.

3.1 Implementation details

Here we show how to exploit the structure of the regularized ERM problem to efficiently compute

the coordinate gradient ∇ikf(y
(k)), and totally avoid full-dimensional updates in Algorithm 4. We

focus on the special case g(w) = 1
2‖w‖2 and show how to compute ∇ikf(y

(k)). According to (15),

∇ikf(y
(k)) = 1

λn2A
T
i (Ay

(k)) + γ
ny

(k)
ik

.

Since we do not form y(k) in Algorithm 4, we update Ay(k) by storing and updating two vectors

in R
d: p(k) = Au(k) and q(k) = Av(k). The resulting method is detailed in Algorithm 5.

Algorithm 5: APCG for solving dual ERM

Input: x(0) ∈ dom (Ψ) and convexity parameter µ > 0.

Initialize: set α =
√
µ

n and ρ = 1−α
1+α , and let u(0) = 0, v(0) = x(0), p(0) = 0 and q(0) = Ax(0).

Iterate: repeat for k = 0, 1, 2, . . .

1. Choose ik ∈ {1, . . . , n} uniformly at random, compute the coordinate gradient

∇(k)
ik

= 1
λn2

(

ρk+1AT
ik
p(k) +AT

ik
q(k)

)

+ γ
n

(

ρk+1u
(k)
ik

+ v
(k)
ik

)

.

2. Compute coordinate increment

∆
(k)
ik

= argmin
∆∈R

Nik

{

α(‖Aik
‖2+λγn)

2λn ‖∆‖2 + 〈∇(k)
ik

,∆〉+ 1
nφ

∗
ik
(ρk+1u

(k)
ik

− v
(k)
ik

−∆)
}

.

3. Let u(k+1) = u(k) and v(k+1) = v(k), and update

u
(k+1)
ik

= u
(k)
ik

− 1−nα
2ρk+1∆

(k)
ik

, v
(k+1)
ik

= v
(k)
ik

+ 1+nα
2 ∆

(k)
ik

,

p(k+1) = p(k) − 1−nα
2ρk+1Aik∆

(k)
ik

, q(k+1) = q(k) + 1+nα
2 Aik∆

(k)
ik

. (18)

Output: approximate primal and dual solutions

w(k+1) = 1
λn

(

ρk+2p(k+1) + q(k+1)
)

, x(k+1) = ρk+1u(k+1) + v(k+1).

Each iteration of Algorithm 5 only involves the two inner products AT
ik
p(k), AT

ik
q(k) in computing

∇(k)
ik

and the two vector additions in (18). They all cost O(d) rather than O(n). When the Ai’s are
sparse (the case of most large-scale problems), these operations can be carried out very efficiently.
Basically, each iteration of Algorithm 5 only costs twice as much as that of SDCA [6, 19].

4 Experiments

In our experiments, we solve ERM problems with smoothed hinge loss for binary classification.
That is, we pre-multiply each feature vector Ai by its label bi ∈ {±1} and use the loss function

φ(a) =







0 if a ≥ 1,
1− a− γ

2 if a ≤ 1− γ,
1
2γ (1− a)2 otherwise.

The conjugate function of φ is φ∗(b) = b+ γ
2 b

2 if b ∈ [−1, 0] and ∞ otherwise. Therefore we have

Ψi(xi) =
1

n

(

φ∗(−xi)−
γ

2
‖xi‖2

)

=

{ −xi

n if xi ∈ [0, 1]
∞ otherwise.

The dataset used in our experiments are summarized in Table 1.
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Figure 1: Comparing the APCG method with SDCA and the accelerated full gradient method (AFG)

with adaptive line search. In each plot, the vertical axis is the primal objective gap P (w(k))−P ⋆, and
the horizontal axis is the number of passes through the entire dataset. The three columns correspond
to the three datasets, and each row corresponds to a particular value of the regularization parameter λ.

In our experiments, we compare the APCG method with SDCA and the accelerated full gradient
method (AFG) [12] with an additional line search procedure to improve efficiency. When the regu-
larization parameter λ is not too small (around 10−4), then APCG performs similarly as SDCA as
predicted by our complexity results, and they both outperform AFG by a substantial margin.

Figure 1 shows the results in the ill-conditioned setting, with λ varying form 10−5 to 10−8. Here
we see that APCG has superior performance in reducing the primal objective value compared with
SDCA and AFG, even though our theory only gives complexity for solving the dual ERM problem.
AFG eventually catches up for cases with very large condition number (see the plots for λ = 10−8).

datasets number of samples n number of features d sparsity

rcv1 20,242 47,236 0.16%
covtype 581,012 54 22%
news20 19,996 1,355,191 0.04%

Table 1: Characteristics of three binary classification datasets (available from the LIBSVM web
page: http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets).
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[4] O. Fercoq and P. Richtárik. Accelerated, parallel and proximal coordinate descent. Manuscript,
arXiv:1312.5799, 2013.

[5] M. Hong, X. Wang, M. Razaviyayn, and Z. Q. Luo. Iteration complexity analysis of block
coordinate descent methods. Manuscript, arXiv:1310.6957, 2013.

[6] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S.-S. Keerthi, and S. Sundararajan. A dual coordinate
descent method for large-scale linear svm. In Proceedings of the 25th International Conference
on Machine Learning (ICML), pages 408–415, 2008.

[7] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in Neural Information Processing Systems 26, pages 315–323. 2013.

[8] Y. T. Lee and A. Sidford. Efficient accelerated coordinate descent methods and faster algo-
rithms for solving linear systems. arXiv:1305.1922.

[9] Q. Lin, Z. Lu, and L. Xiao. An accelerated proximal coordinate gradient method and its
application to regularized empirical risk minimization. Technical Report MSR-TR-2014-94,
Microsoft Research, 2014. (arXiv:1407.1296).

[10] Z. Lu and L. Xiao. On the complexity analysis of randomized block-coordinate descent meth-
ods. Accepted by Mathematical Programming, Series A, 2014. (arXiv:1305.4723).

[11] Z. Q. Luo and P. Tseng. On the convergence of the coordinate descent method for convex dif-
ferentiable minimization. Journal of Optimization Theory & Applications, 72(1):7–35, 2002.

[12] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer, Boston,
2004.

[13] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.
SIAM Journal on Optimization, 22(2):341–362, 2012.
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