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AN ACCELERATED RANDOMIZED PROXIMAL COORDINATE
GRADIENT METHOD AND ITS APPLICATION TO
REGULARIZED EMPIRICAL RISK MINIMIZATION∗

QIHANG LIN† , ZHAOSONG LU‡ , AND LIN XIAO§

Abstract. We consider the problem of minimizing the sum of two convex functions: one is
smooth and given by a gradient oracle, and the other is separable over blocks of coordinates and has a
simple known structure over each block. We develop an accelerated randomized proximal coordinate
gradient (APCG) method for minimizing such convex composite functions. For strongly convex
functions, our method achieves faster linear convergence rates than existing randomized proximal
coordinate gradient methods. Without strong convexity, our method enjoys accelerated sublinear
convergence rates. We show how to apply the APCG method to solve the regularized empirical risk
minimization (ERM) problem and devise efficient implementations that avoid full-dimensional vector
operations. For ill-conditioned ERM problems, our method obtains improved convergence rates than
the state-of-the-art stochastic dual coordinate ascent method.
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1. Introduction. Coordinate descent methods have received extensive attention
in recent years due to their potential for solving large-scale optimization problems
arising from machine learning and other applications (e.g., [29, 10, 47, 17, 45, 30]). In
this paper, we develop an accelerated proximal coordinate gradient (APCG) method
for solving problems of the following form:

(1.1) minimize
x∈RN

{
F (x)

def
= f(x) + Ψ(x)

}
,

where f and Ψ are proper and lower semicontinuous convex functions [34, section 7].
We assume that f is differentiable on R

N and Ψ has a block separable structure, i.e.,

(1.2) Ψ(x) =

n∑
i=1

Ψi(xi),

where each xi denotes a subvector of x with cardinality Ni, and the collection {xi :
i = 1, . . . , n} forms a partition of the components of x. In addition to the capability of
modeling nonsmooth terms such as Ψ(x) = λ‖x‖1, this model includes optimization
problems with block separable constraints. More specifically, each block constraint
xi ∈ Ci, where Ci is a closed convex set, can be modeled by an indicator function
defined as Ψi(xi) = 0 if xi ∈ Ci and ∞ otherwise.
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At each iteration, coordinate descent methods choose one block of coordinates
xi to sufficiently reduce the objective value while keeping other blocks fixed. In
order to exploit the known structure of each Ψi, a proximal coordinate gradient step
can be taken [33]. To be more specific, given the current iterate x(k), we pick a
block ik ∈ {1, . . . , n} and solve a blockwise proximal subproblem in the form of

(1.3) h
(k)
ik

= argmin
h∈�Nik

{
〈∇ikf(x

(k)), h〉+ Lik

2
‖h‖2 +Ψik(x

(k)
ik

+ h)

}

and then set the next iterate as

(1.4) x
(k+1)
i =

{
x
(k)
ik

+ h
(k)
ik

if i = ik,

x
(k)
i if i �= ik,

i = 1, . . . , n.

Here∇if(x) denotes the partial gradient of f with respect to xi, and Li is the Lipschitz
constant of the partial gradient (which will be defined precisely later).

One common approach for choosing such a block is the cyclic scheme. The global
and local convergence properties of the cyclic coordinate descent method have been
studied in, e.g., [41, 22, 36, 2, 9]. Recently, randomized strategies for choosing the
block to update became more popular [38, 15, 26, 33]. In addition to its theoretical
benefits (randomized schemes are in general easier to analyze than the cyclic scheme),
numerous experiments have demonstrated that randomized coordinate descent meth-
ods are very powerful for solving large-scale machine learning problems [6, 10, 38, 40].
Their efficiency can be further improved with parallel and distributed implementa-
tions [5, 31, 32, 23, 19]. Randomized block coordinate descent methods have also been
proposed and analyzed for solving problems with coupled linear constraints [43, 24]
and a class of structured nonconvex optimization problems (e.g., [20, 28]). Coordinate
descent methods with more general schemes of choosing the block to update have also
been studied; see, e.g., [3, 44, 46].

Inspired by the success of accelerated full gradient (AFG) methods [25, 1, 42, 27],
several recent works extended Nesterov’s acceleration technique to speed up random-
ized coordinate descent methods. In particular, Nesterov [26] developed an accelerated
randomized coordinate gradient method for minimizing unconstrained smooth func-
tions, which corresponds to the case of Ψ(x) ≡ 0 in (1.1). Lu and Xiao [21] gave
a sharper convergence analysis of Nesterov’s method using a randomized estimate
sequence framework, and Lee and Sidford [14] developed extensions using weighted
random sampling schemes. Accelerated coordinate gradient methods have also been
used to speed up the solution of linear systems [14, 18]. But these work are all
restricted to the case of unconstrained smooth minimization.

Extending accelerated coordinate gradient methods to the more general compos-
ite minimization problem in (1.1) appeared to be more challenging than extending
the nonaccelerated versions as done in [33]. The key difficulty lies in handling the
nonsmooth terms Ψi(xi) coordinatewise in an accelerated framework. More recently,
Fercoq and Richtárik [8] made important progress by proposing an APPROX (acceler-
ated, parallel, and proximal) coordinate descent method for solving the more general
composite minimization problem (1.1) and obtained an accelerated sublinear conver-
gence rate. But their method cannot exploit the strong convexity of the objective
function to obtain accelerated linear rates in the composite case.

In this paper, we propose an APCG method that achieves accelerated linear con-
vergence rates when the composite objective function is strongly convex. Without
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the strong convexity assumption, our method recovers a special case of the APPROX
method [8]. Moreover, we show how to apply the APCG method to solve the regular-
ized empirical risk minimization (ERM) problem and devise efficient implementations
that avoid full-dimensional vector operations. For ill-conditioned ERM problems, our
method obtains improved convergence rates over the state-of-the-art stochastic dual
coordinate ascent (SDCA) method [40].

1.1. Outline of paper. This paper is organized as follows. The rest of this
section introduces some notation and states our main assumptions. In section 2, we
present the general APCG method and our main theorem on its convergence rate.
We also give two simplified versions of APCG depending on whether the function f is
strongly convex and explain how to exploit strong convexity in Ψ. Section 3 is devoted
to the convergence analysis that proves our main theorem. In section 4, we derive
equivalent implementations of the APCG method that can avoid full-dimensional
vector operations.

In section 5, we apply the APCG method to solve the dual of the regularized
ERM problem and give the corresponding complexity results. We also explain how to
recover primal solutions to guarantee the same rate of convergence for the primal-dual
gap. In addition, we present numerical experiments to demonstrate the performance
of the APCG method.

1.2. Notation and assumptions. For any partition of x ∈ R
N into {xi ∈ R

Ni :
i = 1, . . . , n} with

∑n
i=1 Ni = N , there is an N×N permutation matrix U partitioned

as U = [U1 · · ·Un], where Ui ∈ R
N×Ni , such that

x =

n∑
i=1

Uixi and xi = UT
i x, i = 1, . . . , n.

For any x ∈ R
N , the partial gradient of f with respect to xi is defined as

∇if(x) = UT
i ∇f(x), i = 1, . . . , n.

We associate each subspace R
Ni , for i = 1, . . . , n, with the standard Euclidean norm,

denoted ‖·‖2. We make the following assumptions, which are standard in the literature
on coordinate descent methods (e.g., [26, 33]).

Assumption 1. The gradient of the function f is blockwise Lipschitz continuous
with constants Li, i.e.,

‖∇if(x+ Uihi)−∇if(x)‖2 ≤ Li‖hi‖2 ∀hi ∈ R
Ni , i = 1, . . . , n, x ∈ R

N .

An immediate consequence of Assumption 1 is (see, e.g., [25, Lemma 1.2.3])

(1.5) f(x+ Uihi) ≤ f(x) + 〈∇if(x), hi〉+ Li

2
‖hi‖22 ∀x ∈ R

N , hi ∈ R
Ni ,

for i = 1, . . . , n. For convenience, we define a weighted norm in the whole space R
N :

‖x‖L =

( n∑
i=1

Li‖xi‖22
)1/2

∀x ∈ R
N .(1.6)

Assumption 2. There exists μ ≥ 0 such that for all y ∈ R
N and x ∈ dom (Ψ),

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ μ

2
‖y − x‖2L.
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The convexity parameter of f with respect to the norm ‖ · ‖L is the largest μ such
that the above inequality holds. Every convex function satisfies Assumption 2 with
μ = 0. If μ > 0, then the function f is called strongly convex.

Remark. Together with (1.5) and the definition of ‖ · ‖L in (1.6), Assumption 2
implies μ ≤ 1.

2. The APCG method. In this section we describe the general APCG method
(Algorithm 1) and its two simplified versions under different assumptions (whether
or not the objective function is strongly convex). This algorithm can be viewed as
a generalization of Nesterov’s accelerated gradient method [25] which simultaneously
covers the cases of block coordinate descent and composite minimization. In partic-
ular, if n = 1 (full gradient) and Ψ(x) ≡ 0, then it can be shown that Algorithm 1
is equivalent to Algorithm (2.2.8) in [25]. However, there are important differences
that are not obvious to derive in the generalization; for example, here the proximal
mapping appears in the update of z(k), instead of x(k) as done in Algorithm (2.2.19)
of [25]. We derived this method using the framework of randomized estimate sequence
developed in [21]. The convergence analysis given in section 3 is the result of further
simplification, which does not rely on randomized estimate sequence.

We first explain the notation used in Algorithm 1. The algorithm proceeds in
iterations, with k being the iteration counter. Lowercase letters x, y, z represent
vectors in the full space R

N , and x(k), y(k), and z(k) are their values at the kth

iteration. Each block coordinate is indicated with a subscript, for example, x
(k)
i

represent the value of the ith block of the vector x(k). The Greek letters α, β, γ

Algorithm 1. The APCG method.

input: x(0) ∈ dom (Ψ) and convexity parameter μ ≥ 0.

initialize: set z(0) = x(0) and choose 0 < γ0 ∈ [μ, 1].

iterate: repeat for k = 0, 1, 2, . . .

1. Compute αk ∈ (0, 1
n ] from the equation

(2.1) n2α2
k = (1− αk) γk + αkμ,

and set

(2.2) γk+1 = (1 − αk)γk + αkμ, βk =
αkμ

γk+1
.

2. Compute y(k) as

(2.3) y(k) =
1

αkγk + γk+1

(
αkγkz

(k) + γk+1x
(k)

)
.

3. Choose ik ∈ {1, . . . , n} uniformly at random and compute

z(k+1)= argmin
x∈RN

{nαk

2

∥∥x− (1− βk)z
(k) − βky

(k)
∥∥2
L
+ 〈∇ikf(y

(k)), xik 〉+Ψik(xik )
}
.

4. Set

(2.4) x(k+1) = y(k) + nαk(z
(k+1) − z(k)) +

μ

n
(z(k) − y(k)).
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are scalars, and αk, βk, and γk represent their values at iteration k. For scalars, a
superscript represents the power exponent; for example, n2, α2

k denotes the squares
of n and αk, respectively.

At each iteration k, the APCG method picks a random coordinate ik ∈ {1, . . . , n}
and generates y(k), x(k+1), and z(k+1). One can observe that x(k+1), and z(k+1) depend
on the realization of the random variable

ξk = {i0, i1, . . . , ik},
while y(k) is independent of ik and only depends on ξk−1.

To better understand this method, we make the following observations. For con-
venience, let

(2.5) z̃(k+1) = argmin
x∈RN

{nαk

2

∥∥x−(1−βk)z
(k)−βky

(k)
∥∥2
L
+〈∇f(y(k)), x−y(k)〉+Ψ(x)

}
,

which is a full-dimensional update version of step 3. One can observe that z(k+1) is
updated as

(2.6) z
(k+1)
i =

{
z̃
(k+1)
i if i = ik,

(1 − βk)z
(k)
i + βky

(k)
i if i �= ik.

Notice that from (2.1), (2.2), (2.3), and (2.4) we have

x(k+1) = y(k) + nαk

(
z(k+1) − (1− βk)z

(k) − βky
(k)

)
,

which together with (2.6) yields

(2.7) x
(k+1)
i =

⎧⎨
⎩y

(k)
i + nαk

(
z
(k+1)
i − z

(k)
i

)
+ μ

n

(
z
(k)
i − y

(k)
i

)
if i = ik,

y
(k)
i if i �= ik.

That is, in step 4, we only need to update the block coordinates x
(k+1)
ik

as in (2.7)

and set the rest to be y
(k)
i .

We now state our main result on the convergence rate of the APCG method,
concerning the expected values of the optimality gap. The proof of the following
theorem is given in section 3.

Theorem 2.1. Suppose Assumptions 1 and 2 hold. Let F � be the optimal value
of problem (1.1), and let {x(k)} be the sequence generated by the APCG method. Then,
for any k ≥ 0, there holds

Eξk−1
[F (x(k))]− F � ≤ min

{(
1−

√
μ

n

)k

,

(
2n

2n+ k
√
γ0

)2
}(

F (x(0))− F � +
γ0
2
R2

0

)
,

where

(2.8) R0
def
= min

x�∈X�
‖x(0) − x�‖L,

and X� is the set of optimal solutions of problem (1.1).
For n = 1, our results in Theorem 2.1 match exactly the convergence rates of

the AFG method in [25, section 2.2]. For n > 1, our results improve upon the
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convergence rates of the randomized proximal coordinate gradient method described
in (1.3) and (1.4). More specifically, if the block index ik ∈ {1, . . . , n} is chosen
uniformly at random, then the analysis in [33, 21] states that the convergence rate
of (1.3) and (1.4) is on the order of

O

(
min

{(
1− μ

n

)k

,
n

n+ k

})
.

Thus we obtain both the accelerated linear rate for strongly convex functions (μ > 0)
and the accelerated sublinear rate for non-strongly convex functions (μ = 0). To the
best of our knowledge, this is the first time that such an accelerated linear convergence
rate is obtained for solving the general class of problems (1.1) using the coordinate
descent type of methods.

2.1. Two special cases. For the strongly convex case with μ > 0, we can
initialize Algorithm 1 with the parameter γ0 = μ, which implies γk = μ and αk =
βk =

√
μ/n for all k ≥ 0. This results in Algorithm 2. As a direct corollary of

Theorem 2.1, Algorithm 2 enjoys an accelerated linear convergence rate:

Eξk−1
[F (x(k))]− F � ≤

(
1−

√
μ

n

)k (
F (x(0))− F � +

μ

2
‖x(0) − x�‖2L

)
,

where x� is the unique solution of (1.1) under the strong convexity assumption.
Algorithm 3 shows the simplified version for μ = 0, which can be applied to prob-

lems without strong convexity, or if the convexity parameter μ is unknown. According
to Theorem 2.1, Algorithm 3 has an accelerated sublinear convergence rate, that is,

Eξk−1
[F (x(k))]− F � ≤

(
2n

2n+ knα−1

)2 (
F (x(0))− F � +

(nα−1)
2

2
R2

0

)
.

With the choice of α−1 = 1/
√
n2 − 1, which implies α0 = 1/n, Algorithm 3 reduces

to the APPROX method [8] with single block update at each iteration (i.e., τ = 1 in
their Algorithm 1).

2.2. Exploiting strong convexity in Ψ. In this section we consider problem
(1.1) with strongly convex Ψ. We assume that f and Ψ have convexity parameters
μf ≥ 0 and μΨ > 0, both with respect to the standard Euclidean norm, denoted ‖ ·‖2.

Algorithm 2. APCG with γ0 = μ > 0.

input: x(0) ∈ dom (Ψ) and convexity parameter μ > 0.

initialize: set z(0) = x(0) and α =
√
μ

n .

iterate: repeat for k = 0, 1, 2, . . . and repeat for k = 0, 1, 2, . . .

1. Compute y(k) = x(k)+αz(k)

1+α .
2. Choose ik ∈ {1, . . . , n} uniformly at random and compute

z(k+1) = argmin
x∈RN

{nα

2

∥∥x− (1−α)z(k) −αy(k)
∥∥2
L
+ 〈∇ikf(y

(k)), xik〉+Ψik(xik)
}
.

3. Set x(k+1) = y(k) + nα(z(k+1) − z(k)) + nα2(z(k) − y(k)).
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Let x(0) ∈ dom(Ψ) and s(0) ∈ ∂Ψ(x(0)) be arbitrarily chosen, and define two
functions:

f̃(x)
def
= f(x) + Ψ(x(0)) + 〈s(0), x− x(0)〉+ μΨ

2
‖x− x(0)‖22,

Ψ̃(x)
def
= Ψ(x)−Ψ(x(0))− 〈s(0), x− x(0)〉 − μΨ

2
‖x− x(0)‖22.

One can observe that the gradient of the function f̃ is blockwise Lipschitz continuous
with constants L̃i = Li+μΨ with respect to the norm ‖ ·‖2. The convexity parameter
of f̃ with respect to the norm ‖ · ‖L̃ defined in (1.6) is

(2.9) μ :=
μf + μΨ

max
1≤i≤n

{Li + μΨ} .

In addition, Ψ̃ is a block separable convex function which can be expressed as Ψ̃(x) =∑n
i=1 Ψ̃i(xi), where

Ψ̃i(xi) = Ψi(xi)−Ψi(x
0
i )− 〈s0i , xi − x0

i 〉 −
μΨ

2
‖xi − x0

i ‖22, i = 1, . . . , n.

As a result of the above definitions, we see that problem (1.1) is equivalent to

(2.10) minimize
x∈�N

{
f̃(x) + Ψ̃(x)

}
,

which can be suitably solved by the APCG method proposed in section 2 with f ,
Ψi, and Li replaced by f̃ , Ψ̃i, and Li + μΨ, respectively. The rate of convergence
of APCG applied to problem (2.10) directly follows from Theorem 2.1, with μ given
in (2.9) and the norm ‖ · ‖L in (2.8) replaced by ‖ · ‖L̃.

3. Convergence analysis. In this section, we prove Theorem 2.1. First we
establish some useful properties of the sequences {αk}∞k=0 and {γk}∞k=0 generated in

Algorithm 1. Then in section 3.1, we construct a sequence {Ψ̂k}∞k=1 to bound the
values of Ψ(x(k)) and prove a useful property of the sequence. Finally we finish the
proof of Theorem 2.1 in section 3.2.

Lemma 3.1. Suppose γ0 > 0 and γ0 ∈ [μ, 1] and {αk}∞k=0 and {γk}∞k=0 are
generated in Algorithm 1. Then the following hold:

Algorithm 3. APCG with μ = 0.

input: x(0) ∈ dom (Ψ).

initialize: set z(0) = x(0) and choose α−1 ∈ (0, 1
n ].

iterate: repeat for k = 0, 1, 2, . . .

1. Compute αk = 1
2

(√
α4
k−1 + 4α2

k−1 − α2
k−1

)
.

2. Compute y(k) = (1 − αk)x
(k) + αkz

(k).
3. Choose ik ∈ {1, . . . , n} uniformly at random and compute

z
(k+1)
ik

= argmin
x∈R

Nik

{nαkLik

2

∥∥x− z
(k)
ik

∥∥2
2
+ 〈∇ikf(y

(k)), x− y
(k)
ik

〉+Ψik(x)
}
.

and set z
(k+1)
i = z

(k)
i for all i �= ik.

4. Set x(k+1) = y(k) + nαk(z
(k+1) − z(k)).
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(i) {αk}∞k=0 and {γk}∞k=0 are well-defined positive sequences.
(ii)

√
μ/n ≤ αk ≤ 1/n and μ ≤ γk ≤ 1 for all k ≥ 0.

(iii) {αk}∞k=0 and {γk}∞k=0 are nonincreasing.
(iv) γk = n2α2

k−1 for all k ≥ 1.
(v) With the definition of

(3.1) λk =

k−1∏
i=0

(1− αi),

we have for all k ≥ 0,

λk ≤ min

{(
1−

√
μ

n

)k

,

(
2n

2n+ k
√
γ0

)2
}
.

Proof. Due to (2.1) and (2.2), statement (iv) always holds provided that {αk}∞k=0

and {γk}∞k=0 are well-defined. We now prove statements (i) and (ii) by induction. For
convenience, let

gγ(t) = n2t2 − γ(1− t)− μt.

Since μ ≤ 1 and γ0 ∈ (0, 1], one can observe that gγ0(0) = −γ0 < 0 and

gγ0

(
1

n

)
= 1− γ0

(
1− 1

n

)
− μ

n
≥ 1− γ0 ≥ 0.

These together with continuity of gγ0 imply that there exists α0 ∈ (0, 1/n] such that
gγ0(α0) = 0, that is, α0 satisfies (2.1) and is thus well-defined. In addition, by
statement (iv) and γ0 ≥ μ, one can see α0 ≥ √

μ/n. Therefore, statements (i) and (ii)
hold for k = 0.

Suppose that statements (i) and (ii) hold for some k ≥ 0, that is, αk, γk > 0,√
μ/n ≤ αk ≤ 1/n, and μ ≤ γk ≤ 1. Using these relations and (2.2), one can see that

γk+1 is well-defined and moreover μ ≤ γk+1 ≤ 1. In addition, we have γk+1 > 0 due to
statement (iv) and αk > 0. Using the fact μ ≤ 1 (see the remark after Assumption 2),
γ0 ∈ (0, 1], and a similar argument as above, we obtain gγk

(0) < 0 and gγk
(1/n) ≥ 0,

which along with continuity of gγk
imply that there exists αk+1 ∈ (0, 1/n] such that

gγk
(αk+1) = 0, that is, αk+1 satisfies (2.1) and is thus well-defined. By statement

(iv) and γk+1 ≥ μ, one can see that αk+1 ≥ √
μ/n. This completes the induction and

hence statements (i) and (ii) hold.
Next, we show statement (iii) holds. Indeed, it follows from (2.2) that

γk+1 − γk = αk(μ− γk),

which together with γk ≥ μ and αk > 0 implies that γk+1 ≤ γk and hence {γk}∞k=0 is
nonincreasing. Notice from statement (iv) and αk > 0 that αk =

√
γk+1/n. It follows

that {αk}∞k=0 is also nonincreasing.
Statement (v) can be proved by using the same arguments in the proof of [25,

Lemma 2.2.4], and the details can be found in [21, section 4.2].

3.1. Construction and properties of Ψ̂k. Motivated by [8], we give an ex-
plicit expression of x(k) as a convex combination of the vectors z(0), . . . , z(k) and use
the coefficients to construct a sequence {Ψ̂k}∞k=1 to bound Ψ(x(k)).

Lemma 3.2. Let the sequences {αk}∞k=0, {γk}∞k=0, {x(k)}∞k=0, and {z(k)}∞k=0 be
generated by Algorithm 1. Then each x(k) is a convex combination of z(0), . . . , z(k).
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More specifically, for all k ≥ 0,

(3.2) x(k) =

k∑
l=0

θ
(k)
l z(l),

where the constants θ
(k)
0 , . . . , θ

(k)
k are nonnegative and sum to 1. Moreover, these

constants can be obtained recursively by setting θ
(0)
0 = 1, θ

(1)
0 = 1 − nα0, θ

(1)
1 = nα0

and for k ≥ 1,

(3.3) θ
(k+1)
l =

⎧⎪⎪⎨
⎪⎪⎩
nαk, l = k + 1,(
1− μ

n

) αkγk+nαk−1γk+1

αkγk+γk+1
− (1−αk)γk

nαk
, l = k,(

1− μ
n

) γk+1

αkγk+γk+1
θ
(k)
l , l = 0, . . . , k − 1.

Proof. We prove the statements by induction. First, notice that x(0) = z(0) =

θ
(0)
0 z(0). Using this relation and (2.3), we see that y(0) = z(0). From (2.4) and
y(0) = z(0), we obtain

x(1) = y(0) + nα0

(
z(1) − z(0)

)
+

μ

n

(
z(0) − y(0)

)
= z(0) + nα0

(
z(1) − z(0)

)
= (1 − nα0)z

(0) + nα0z
(1).(3.4)

Since α0 ∈ (0, 1/n] (Lemma 3.1(ii)), the vector x(1) is a convex combination of z(0)

and z(1) with the coefficients θ
(1)
0 = 1−nα0, θ

(1)
1 = nα0. For k = 1, substituting (2.3)

into (2.4) yields

x(2) = y(1) + nα1

(
z(2) − z(1)

)
+

μ

n

(
z(1) − y(1)

)
=

(
1− μ

n

) γ2
α1γ1 + γ2

x(1) +

[(
1− μ

n

) α1γ1
α1γ1 + γ2

− n2α2
1 − α1μ

nα1

]
z(1) + nα1z

(2).

Substituting (3.4) into the above equality, and using (1 − α1)γ1 = n2α2
1 − α1μ

from (2.1), we get

(3.5)

x(2)=
(
1−μ

n

)γ2(1− nα0)

α1γ1 + γ2︸ ︷︷ ︸
θ
(2)
0

z(0)+

[(
1−μ

n

)α1γ1 + nα0γ2
α1γ1 + γ2

− (1− α1)γ1
nα1

]
︸ ︷︷ ︸

θ
(2)
1

z(1)+nα1︸︷︷︸
θ
(2)
2

z(2).

From the definition of θ
(2)
1 in the above equation, we observe that

θ
(2)
1 =

(
1− μ

n

) α1γ1 + nα0γ2
α1γ1 + γ2

− (1− α1)γ1
nα1

=
(
1− μ

n

) α1γ1(1− nα0) + nα0(α1γ1 + γ2)

α1γ1 + γ2
− n2α2

1 − α1μ

nα1

=
α1γ1

α1γ1 + γ2

(
1− μ

n

)
(1− nα0) +

(
1− μ

n

)
nα0 − nα1 +

μ

n

=
α1γ1

α1γ1 + γ2

(
1− μ

n

)
(1− nα0) +

(
1− μ

n

)
n(α0 − α1) +

μ

n
(1− nα1).
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From the above expression, and using the facts μ ≤ 1, α0 ≥ α1, γk ≥ 0, and 0 ≤ αk ≤
1/n (Lemma 3.1), we conclude that θ

(2)
1 ≥ 0. Also considering the definitions of θ

(2)
0

and θ
(2)
2 in (3.5), we conclude that θ

(2)
l ≥ 0 for 0 ≤ l ≤ 2. In addition, one can observe

from (2.3), (2.4), and (3.4) that x(1) is an affine combination of z(0) and z(1), y(1) is
an affine combination of z(1) and x(1), and x(2) is an affine combination of y(1), z(1),
and z(2). It is known that substituting one affine combination into another yields a
new affine combination. Hence, the combination given in (3.5) must be affine, which

together with θ
(2)
l ≥ 0 for 0 ≤ l ≤ 2 implies that it is also a convex combination.

Now suppose the recursion (3.3) holds for some k ≥ 1. Substituting (2.3) into
(2.4), we obtain that

x(k+1)=
(
1−μ

n

) γk+1

αkγk+γk+1
x(k)+

[(
1−μ

n

) αkγk
αkγk+γk+1

− (1−αk)γk
nαk

]
z(k)+ nαkz

(k+1).

Further, substituting x(k) = nαk−1z
(k)+

∑k−1
l=0 θ

(k)
l z(l) (the induction hypothesis) into

the above equation gives

x(k+1) =

k−1∑
l=0

(
1− μ

n

) γk+1

αkγk + γk+1
θ
(k)
l︸ ︷︷ ︸

θ
(k+1)
l

z(l)

+

[(
1− μ

n

) αkγk + nαk−1γk+1

αkγk + γk+1
− (1− αk)γk

nαk

]
︸ ︷︷ ︸

θ
(k+1)
k

z(k) + nαk︸︷︷︸
θ
(k+1)
k+1

z(k+1).(3.6)

This gives the form of (3.2) and (3.3). In addition, by the induction hypothesis, x(k)

is an affine combination of z(0), . . . , z(k). Also, notice from (2.3) and (2.4) that y(k)

is an affine combination of z(k) and x(k), and x(k+1) is an affine combination of y(k),
z(k), and z(k+1). Using these facts and a similar argument as for x(2), it follows that
the combination (3.6) must be affine.

Finally, we claim θ
(k+1)
l ≥ 0 for all l. Indeed, we know from Lemma 3.1 that

μ ≤ 1, αk ≥ 0, γk ≥ 0. Also, θ
(k)
l ≥ 0 due to the induction hypothesis. It follows that

θ
(k+1)
l ≥ 0 for all l �= k. It remains to show that θ

(k+1)
k ≥ 0. To this end, we again

use (2.1) to obtain (1−αk)γk = n2α2
k − αkμ and use (3.3) and a similar argument as

for θ
(2)
1 to rewrite θ

(k+1)
k as

θ
(k+1)
k =

αkγk
αkγk + γk+1

(
1− μ

n

)
(1− nαk−1) +

(
1− μ

n

)
n(αk−1 − αk) +

μ

n
(1− nαk).

Together with μ ≤ 1, 0 ≤ αk ≤ 1/n, γk ≥ 0, and αk−1 ≥ αk, this implies that

θ
(k+1)
k ≥ 0. Therefore, x(k+1) is a convex combination of z(0), . . . , z(k+1) with the
coefficients given in (3.3).

In the following lemma, we construct the sequence {Ψ̂k}∞k=0 and prove a recursive
inequality.

Lemma 3.3. Let Ψ̂k denote the convex combination of Ψ(z(0)), . . . ,Ψ(z(k)) using
the same coefficients given in Lemma 3.2, i.e.,

Ψ̂k =
k∑

l=0

θ
(k)
l Ψ(z(l)).
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Then for all k ≥ 0, we have Ψ(x(k)) ≤ Ψ̂k and

(3.7) Eik [Ψ̂k+1] ≤ αkΨ(z̃(k+1)) + (1− αk)Ψ̂k.

Proof. The first result Ψ(x(k)) ≤ Ψ̂k follows directly from convexity of Ψ. We
now prove (3.7). First we deal with the case k = 0. Using (2.6), (3.3), and the facts
y(0) = z(0) and Ψ̂0 = Ψ(x(0)), we get

Ei0 [Ψ̂1] = Ei0

[
nα0Ψ(z(1)) + (1− nα0)Ψ(z(0))

]
= Ei0

[
nα0

(
Ψi0(z̃

(1)
i0

) +
∑

j 	=i0
Ψj(z

0
j )
)]

+ (1− nα0)Ψ(z(0))

= α0Ψ(z̃(1)) + (n− 1)α0Ψ(z(0)) + (1− nα0)Ψ(x(0))

= α0Ψ(z̃(1)) + (1− α0)Ψ(x(0))

= α0Ψ(z̃(1)) + (1− α0)Ψ̂0.

For k ≥ 1, we use (2.6) and the definition of βk in (2.2) to obtain that

Eik

[
Ψ(z(k+1))

]
= Eik

[
Ψik(z

(k+1)
ik

) +
∑
j 	=ik

Ψj(z
(k+1)
j )

]

=
1

n
Ψ(z̃(k+1)) +

(
1− 1

n

)
Ψ

(
(1− αk)γk

γk+1
z(k) +

αkμ

γk+1
y(k)

)
.(3.8)

Using (2.2) and (2.3), one can observe that

(1−αk)γk
γk+1

z(k)+
αkμ

γk+1
y(k) =

(1−αk)γk
γk+1

z(k)+
αkμ

γk+1(αkγk+γk+1)

(
αkγkz

(k)+γk+1x
(k)

)
=

(
1− αkμ

αkγk + γk+1

)
z(k) +

αkμ

αkγk + γk+1
x(k).

It follows from the above equation and convexity of Ψ that

Ψ

(
(1−αk)γk

γk+1
z(k)+

αkμ

γk+1
y(k)

)
≤

(
1− αkμ

αkγk+γk+1

)
Ψ(z(k)) +

αkμ

αkγk+γk+1
Ψ(x(k)),

which together with (3.8) yields

(3.9)

Eik

[
Ψ(z(k+1))

]
≤ 1

n
Ψ(z̃(k+1))+

(
1− 1

n

)[(
1− αkμ

αkγk+γk+1

)
Ψ(z(k))+

αkμ

αkγk+γk+1
Ψ(x(k))

]
.

In addition, from the definition of Ψ̂k and θ
(k)
k = nαk−1, we have

(3.10)

k−1∑
l=0

θ
(k)
l Ψ(z(l)) = Ψ̂k − nαk−1Ψ(z(k)).

Next, using the definition of Ψ̂k and (3.3), we obtain

Eik [Ψ̂k+1] = nαkEik

[
Ψ(z(k+1))

]
+

[(
1−μ

n

)αkγk+nαk−1γk+1

αkγk+γk+1
− (1−αk)γk

nαk

]
Ψ(z(k))

+
(
1− μ

n

) γk+1

αkγk + γk+1

k−1∑
l=0

θ
(k)
l Ψ(z(l)).(3.11)



AN ACCELERATED PROXIMAL COORDINATE GRADIENT METHOD 2255

Plugging (3.9) and (3.10) into (3.11) yields

Eik [Ψ̂k+1] ≤αkΨ(z̃(k+1))+(n−1)αk

[(
1− αkμ

αkγk+γk+1

)
Ψ(z(k))+

αkμ

αkγk+γk+1
Ψ(x(k))

]

+

[(
1− μ

n

) αkγk + nαk−1γk+1

αkγk + γk+1
− (1− αk)γk

nαk

]
Ψ(z(k))(3.12)

+
(
1− μ

n

) γk+1

αkγk + γk+1

(
Ψ̂k − nαk−1Ψ(z(k))

)

≤ αkΨ(z̃(k+1)) +
(n− 1)α2

kμ+
(
1− μ

n

)
γk+1

αkγk + γk+1︸ ︷︷ ︸
Γ

Ψ̂k

+

[
(n−1)αk

(
1− αkμ

αkγk+γk+1

)
+
(
1−μ

n

) αkγk
αkγk+γk+1

− (1−αk)γk
nαk

]
︸ ︷︷ ︸

Δ

Ψ(z(k)),(3.13)

where the second inequality is due to Ψ(x(k)) ≤ Ψ̂k. Notice that the right-hand side
of (3.9) is an affine combination of Ψ(z̃(k+1)), Ψ(z(k)), and Ψ(x(k)), and the right-
hand side of (3.11) is an affine combination of Ψ(z(0)), . . . ,Ψ(z(k+1)). In addition, all
operations in (3.12) and (3.13) preserve the affine combination property. Using these
facts, one can observe that the right-hand side of (3.13) is also an affine combination
of Ψ(z̃(k+1)), Ψ(z(k)), and Ψ̂k, namely, αk + Δ + Γ = 1, where Δ and Γ are defined
above.

We next show that Γ = 1−αk and Δ = 0. Indeed, notice that from (2.2) we have

(3.14) αkγk + γk+1 = αkμ+ γk.

Using this relation, γk+1 = n2α2
k (Lemma 3.1(iv)), and the definition of Γ in (3.13),

we get

Γ =
(n− 1)α2

kμ+
(
1− μ

n

)
γk+1

αkγk + γk+1
=

(n− 1)α2
kμ+ γk+1 − μ

nγk+1

αkγk + γk+1

=
(n− 1)α2

kμ+ γk+1 − μ
n (n

2α2
k)

αkγk + γk+1
=

γk+1 − α2
kμ

αkγk + γk+1

= 1− αk

(
αkμ+ γk

αkγk + γk+1

)
= 1− αk,

where the last equality is due to (3.14). Finally, Δ = 0 follows from Γ = 1 − αk

and αk + Δ + Γ = 1. These together with the inequality (3.13) yield the desired
result.

3.2. Proof of Theorem 2.1. We are now ready to present a proof for The-
orem 2.1. We note that the proof in this subsection can also be recast into the
framework of randomized estimate sequence developed in [21, 14], but here we give a
straightforward proof without using that machinery.

Dividing both sides of (2.1) by nαk gives

(3.15) nαk =
(1− αk)γk

nαk
+

μ

n
.
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Observe from (2.3) that

(3.16) z(k) − y(k) = − γk+1

αkγk

(
x(k) − y(k)

)
.

It follows from (2.4) and (3.15) that

x(k+1) − y(k) = nαkz
(k+1) − (1− αk)γk

nαk
z(k) − μ

n
y(k)

= nαkz
(k+1) − (1− αk)γk

nαk
(z(k) − y(k))−

(
(1− αk)γk

nαk
+

μ

n

)
y(k),

which together with (3.15), (3.16), and γk+1 = n2α2
k (Lemma 3.1(iv)) gives

x(k+1) − y(k) = nαkz
(k+1) +

(1− αk)γk+1

nα2
k

(
x(k) − y(k)

)
− nαky

(k)

= nαkz
(k+1) + n(1− αk)(x

(k) − y(k))− nαky
(k)

= n
[
αk(z

(k+1) − y(k)) + (1− αk)(x
(k) − y(k))

]
.

Using this relation, (2.7), and Assumption 1, we have

f(x(k+1)) ≤ f(y(k)) +
〈
∇ikf(y

(k)), x
(k+1)
ik

− y
(k)
ik

〉
+

Lik

2

∥∥∥x(k+1)
ik

− y
(k)
ik

∥∥∥2
2

= f(y(k)) + n

〈
∇ikf(y

(k)),
[
αk(z

(k+1) − y(k)) + (1 − αk)(x
(k) − y(k))

]
ik

〉

+
n2Lik

2

∥∥∥∥[αk(z
(k+1) − y(k)) + (1− αk)(x

(k) − y(k))
]
ik

∥∥∥∥2
2

= (1− αk)
[
f(y(k)) + n

〈
∇ikf(y

(k)), (x
(k)
ik

− y
(k)
ik

)
〉]

+ αk

[
f(y(k)) + n

〈
∇ikf(y

(k)), (z
(k+1)
ik

− y
(k)
ik

)
〉]

+
n2Lik

2

∥∥∥∥[αk(z
(k+1) − y(k)) + (1− αk)(x

(k) − y(k))
]
ik

∥∥∥∥2
2

.

Taking expectation on both sides of the above inequality with respect to ik, and

noticing that z
(k+1)
ik

= z̃
(k+1)
ik

, we get

Eik

[
f(x(k+1))

]
≤ (1− αk)

[
f(y(k)) +

〈
∇f(y(k)), (x(k) − y(k))

〉]
+ αk

[
f(y(k)) +

〈
∇f(y(k)), (z̃(k+1) − y(k))

〉]
+

n

2

∥∥∥αk(z̃
(k+1) − y(k)) + (1− αk)(x

(k) − y(k))
∥∥∥2
L

≤ (1− αk)f(x
(k)) + αk

[
f(y(k)) +

〈
∇f(y(k)), (z̃(k+1) − y(k))

〉]
+

n

2

∥∥∥αk(z̃
(k+1) − y(k)) + (1− αk)(x

(k) − y(k))
∥∥∥2
L
,(3.17)

where the second inequality follows from the convexity of f .
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In addition, by (2.2), (3.16), and γk+1 = n2α2
k (Lemma 3.1(iv)), we have

n

2

∥∥∥αk(z̃
(k+1) − y(k)) + (1− αk)(x

(k) − y(k))
∥∥∥2
L

=
n

2

∥∥∥∥αk(z̃
(k+1) − y(k))− αk(1− αk)γk

γk+1
(z(k) − y(k))

∥∥∥∥2

L

=
nα2

k

2

∥∥∥∥z̃(k+1) − y(k) − (1 − αk)γk
γk+1

(z(k) − y(k))

∥∥∥∥2
L

=
γk+1

2n

∥∥∥∥z̃(k+1) − (1− αk)γk
γk+1

z(k) − αkμ

γk+1
y(k)

∥∥∥∥2
L

,(3.18)

where the first equality is due to (3.16), the third one is due to (2.1) and (2.2), and
γk+1 = n2α2

k. This equation together with (3.17) yields

Eik

[
f(x(k+1))

]
≤ (1− αk)f(x

(k)) + αk

[
f(y(k)) +

〈
∇f(y(k)), z̃(k+1) − y(k)

〉

+
γk+1

2nαk

∥∥∥∥z̃(k+1) − (1− αk)γk
γk+1

z(k) − αkμ

γk+1
y(k)

∥∥∥∥2
L

]
.

Using Lemma 3.3, we have

Eik

[
f(x(k+1)) + Ψ̂k+1

]
≤ Eik [f(x

(k+1))] + αkΨ(z̃(k+1)) + (1− αk)Ψ̂k.

Combining the above two inequalities, one can obtain that

Eik

[
f(x(k+1)) + Ψ̂k+1

]
≤ (1− αk)

(
f(x(k)) + Ψ̂k

)
+ αkV (z̃(k+1)),(3.19)

where

V (x) = f(y(k))+
〈
∇f(y(k)), x−y(k)

〉
+

γk+1

2nαk

∥∥∥∥x− (1−αk)γk
γk+1

z(k) − αkμ

γk+1
y(k)

∥∥∥∥2
L

+Ψ(x).

Comparing with the definition of z̃(k+1) in (2.5), we see that

(3.20) z̃(k+1) = argmin
x∈�N

V (x).

Notice that V has convexity parameter γk+1

nαk
= nαk with respect to ‖ · ‖L. By the

optimality condition of (3.20), we have that for any x� ∈ X∗,

V (x�) ≥ V (z̃(k+1)) +
γk+1

2nαk
‖x� − z̃(k+1)‖2L.

Using the above inequality and the definition of V , we obtain

V (z̃(k+1)) ≤ V (x�)− γk+1

2nαk
‖x� − z̃(k+1)‖2L

= f(y(k))+
〈
∇f(y(k)), x�−y(k)

〉
+

γk+1

2nαk

∥∥∥∥x�− (1−αk)γk
γk+1

z(k)− αkμ

γk+1
y(k)

∥∥∥∥2
L

+ Ψ(x�)− γk+1

2nαk
‖x� − z̃(k+1)‖2L.
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Now using the assumption that f has convexity parameter μ with respect to ‖ · ‖L,
we have

V (z̃(k+1)) ≤ f(x�)− μ

2
‖x�−y(k)‖2L +

γk+1

2nαk

∥∥∥∥x�− (1−αk)γk
γk+1

z(k)− αkμ

γk+1
y(k)

∥∥∥∥2
L

+Ψ(x�)

− γk+1

2nαk
‖x� − z̃(k+1)‖2L.

Combining this inequality with (3.19), one sees that

(3.21)

Eik

[
f(x(k+1))+Ψ̂k+1

]
≤ (1−αk)

(
f(x(k))+Ψ̂k

)
+αkF

� − αkμ

2
‖x�−y(k)‖2L

+
γk+1

2n

∥∥∥∥x�− (1−αk)γk
γk+1

z(k)− αkμ

γk+1
y(k)

∥∥∥∥2
L

− γk+1

2n
‖x� − z̃(k+1)‖2L.

In addition, it follows from (2.2) and the convexity of ‖ · ‖2L that

(3.22)∥∥∥∥x� − (1 − αk)γk
γk+1

z(k) − αkμ

γk+1
y(k)

∥∥∥∥2
L

≤ (1− αk)γk
γk+1

‖x� − z(k)‖2L +
αkμ

γk+1
‖x� − y(k)‖2L.

Using this relation and (2.6), we observe that

Eik

[γk+1

2
‖x� − z(k+1)‖2L

]
=

γk+1

2

[
n− 1

n

∥∥∥∥x� − (1− αk)γk
γk+1

z(k) − αkμ

γk+1
y(k)

∥∥∥∥2
L

+
1

n
‖x� − z̃(k+1)‖2L

]

=
γk+1(n− 1)

2n

∥∥∥∥x� − (1− αk)γk
γk+1

z(k) − αkμ

γk+1
y(k)

∥∥∥∥2
L

+
γk+1

2n
‖x� − z̃(k+1)‖2L

=
γk+1

2

∥∥∥∥x� − (1− αk)γk
γk+1

z(k) − αkμ

γk+1
y(k)

∥∥∥∥2
L

− γk+1

2n

∥∥∥∥x� − (1− αk)γk
γk+1

z(k) − αkμ

γk+1
y(k)

∥∥∥∥2
L

+
γk+1

2n
‖x� − z̃(k+1)‖2L

≤ (1− αk)γk
2

‖x� − z(k)‖2L +
αkμ

2
‖x� − y(k)‖2L

− γk+1

2n

∥∥∥∥x� − (1− αk)γk
γk+1

z(k) − αkμ

γk+1
y(k)

∥∥∥∥2
L

+
γk+1

2n
‖x� − z̃(k+1)‖2L,

where the inequality follows from (3.22). Summing up this inequality and (3.21) gives

Eik

[
f(x(k+1)) + Ψ̂k+1 +

γk+1

2
‖x� − z(k+1)‖2L

]
≤ (1− αk)

(
f(x(k)) + Ψ̂k +

γk
2
‖x� − z(k)‖2L

)
+ αkF

�.

Subtracting F � from both sides and taking expectation with respect to ξk−1 yields

Eξk

[
f(x(k+1)) + Ψ̂k+1 − F � +

γk+1

2
‖x� − z(k+1)‖2L

]
≤ (1− αk)Eξk−1

[
f(x(k)) + Ψ̂k − F � +

γk
2
‖x� − z(k)‖2L

]
,
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which together with Ψ̂0 = Ψ(x(0)), z(0) = x(0), and λk = Πk−1
i=0 (1− αi) gives

Eξk−1

[
f(x(k))+Ψ̂k−F � +

γk
2
‖x�−z(k)‖2L

]
≤ λk

[
F (x(0))− F � +

γ0
2
‖x�−x(0)‖2L

]
.

The conclusion of Theorem 2.1 immediately follows from F (x(k)) ≤ f(x(k)) + Ψ̂k,
Lemma 3.1(v), the arbitrariness of x�, and the definition of R0.

4. Efficient implementation. The APCG methods we presented in section 2
all need to perform full-dimensional vector operations at each iteration. In particular,
y(k) is updated as a convex combination of x(k) and z(k), and this can be very costly
since in general they are dense vectors in R

N . Moreover, in the strongly convex case
(Algorithms 1 and 2), all blocks of z(k+1) also need to be updated at each iteration,
although only the ikth block needs to compute the partial gradient and perform an
proximal mapping of Ψik . These full-dimensional vector updates costO(N) operations
per iteration and may cause the overall computational cost of APCG to be comparable
or even higher than the full gradient methods (see discussions in [26]).

In order to avoid full-dimensional vector operations, Lee and Sidford [14] proposed
a change of variables scheme for accelerated coordinated gradient methods for uncon-
strained smooth minimization. Fercoq and Richtárik [8] devised a similar scheme for
efficient implementation in the non-strongly convex case (μ = 0) for composite mini-
mization. Here we show that full vector operations can also be avoided in the strongly
convex case for minimizing composite functions. For simplicity, we only present an
efficient implementation of the simplified APCG method with μ > 0 (Algorithm 2),
which is given as Algorithm 4.

Proposition 4.1. The iterates of Algorithms 2 and 4 satisfy the following rela-
tionships:

x(k) = ρku(k) + v(k),

y(k) = ρk+1u(k) + v(k),(4.1)

z(k) = −ρku(k) + v(k)

for all k ≥ 0. That is, these two algorithms are equivalent.
Proof. We prove by induction. Notice that Algorithm 2 is initialized with z(0) =

x(0), and its first step implies y(0) = x(0)+αz(0)

1+α = x(0); Algorithm 4 is initialized with

Algorithm 4. Efficient implementation of APCG with γ0 = μ > 0.

input: x(0) ∈ dom (Ψ) and convexity parameter μ > 0.

initialize: set α =
√
μ

n and ρ = 1−α
1+α , and initialize u(0) = 0 and v(0) = x(0).

iterate: repeat for k = 0, 1, 2, . . .
1. Choose ik ∈ {1, . . . , n} uniformly at random and compute

h
(k)
ik

= argmin
h∈R

Nik

{
nαLik

2
‖h‖22+

〈
∇ikf(ρ

k+1u(k)+v(k)), h
〉
+Ψik

(
−ρk+1u(k)

ik
+v

(k)
ik

+h
)}

.

2. Let u(k+1) = u(k) and v(k+1) = v(k), and update

(4.2) u
(k+1)
ik

= u
(k)
ik

− 1− nα

2ρk+1
h
(k)
ik

, v
(k+1)
ik

= v
(k)
ik

+
1 + nα

2
h
(k)
ik

.

output: x(k+1) = ρk+1u(k+1) + v(k+1)
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u(0) = 0 and v(0) = x(0). Therefore we have

x(0) = ρ0u(0) + v(0), y(0) = ρ1u(0) + v(0), z(0) = −ρ0u(0) + v(0),

which means that (4.1) holds for k = 0. Now suppose it holds for some k ≥ 0; then

(1− α)z(k) + αy(k) = (1− α)
(
−ρku(k) + v(k)

)
+ α

(
ρk+1u(k) + v(k)

)
= −ρk ((1 − α)− αρ)u(k) + (1− α)v(k) + αv(k)

= −ρk+1u(k) + v(k).(4.3)

So h
(k)
ik

in Algorithm 4 can be written as

h
(k)
ik

= argmin
h∈R

Nik

{
nαLik

2
‖h‖22 + 〈∇ikf(y

(k)), h〉+Ψik

(
(1− α)z

(k)
ik

+ αy
(k)
ik

+ h
)}

.

Comparing with (2.5), and using βk = α, we obtain

h
(k)
ik

= z̃
(k+1)
ik

− (
(1− α)z

(k)
ik

+ αy
(k)
ik

)
.

In terms of the full-dimensional vectors, using (2.6) and (4.3), we have

z(k+1) = (1− α)z(k) + αy(k) + Uikh
(k)
ik

= − ρk+1u(k) + v(k) + Uikh
(k)
ik

= −ρk+1u(k) + v(k) +
1− nα

2
Uikh

(k)
ik

+
1 + nα

2
Uikh

(k)
ik

= −ρk+1

(
u(k) − 1− nα

2ρk+1
Uikh

(k)
ik

)
+

(
v(k) +

1 + nα

2
Uikh

(k)
ik

)
= −ρk+1u(k+1) + v(k+1).

Using step 3 of Algorithm 2, we get

x(k+1) = y(k) + nα(z(k+1) − z(k)) + nα2(z(k) − y(k))

= y(k) + nα
(
z(k+1) − (

(1− α)z(k) + αy(k)
))

= y(k) + nαUikh
(k)
ik

,

where the last step used (2.6). Using the induction hypothesis y(k) = ρk+1u(k) + v(k),
we have

x(k+1) = ρk+1u(k) + v(k) +
1− nα

2
Uikh

(k)
ik

+
1 + nα

2
Uikh

(k)
ik

= ρk+1

(
u(k) − 1− nα

2ρk+1
Uikh

(k)
ik

)
+

(
v(k) +

1 + nα

2
Uikh

(k)
ik

)
= ρk+1u(k+1) + v(k+1).

Finally,

y(k+1) =
1

1 + α

(
x(k+1) + αz(k+1)

)
=

1

1 + α

(
ρk+1u(k+1) + v(k+1)

)
+

α

1 + α

(
−ρk+1u(k+1) + v(k+1)

)
=

1− α

1 + α
ρk+1u(k+1) +

1 + α

1 + α
v(k+1) = ρk+2u(k+1) + v(k+1).

We just showed that (4.1) also holds for k + 1. This finishes the induction.
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We note that in Algorithm 4, only single block coordinates of the vectors u(k)

and v(k) are updated at each iteration, which costs O(Nik ). However, computing the
partial gradient∇ikf(ρ

k+1u(k)+v(k)) may still costO(N) in general. In section 5.2, we
show how to further exploit the problem structure in regularized ERM to completely
avoid full-dimensional vector operations.

5. Application to regularized ERM. In this section, we show how to apply
the APCG method to solve the regularized ERM problems associated with linear
predictors.

Let A1, . . . , An be vectors in R
d, φ1, . . . , φn be a sequence of convex functions

defined on R, and g be a convex function defined on R
d. The goal of regularized ERM

with linear predictors is to solve the following (convex) optimization problem:

(5.1) minimize
w∈Rd

{
P (w)

def
=

1

n

n∑
i=1

φi(A
T
i w) + λg(w)

}
,

where λ > 0 is a regularization parameter. For binary classification, given a label
bi ∈ {±1} for each vector Ai, for i = 1, . . . , n, we obtain the linear support vector
machine (SVM) problem by setting φi(z) = max{0, 1 − biz} and g(w) = (1/2)‖w‖22.
Regularized logistic regression is obtained by setting φi(z) = log(1 + exp(−biz)).
This formulation also includes regression problems. For example, ridge regression is
obtained by setting φi(z) = (1/2)(z − bi)

2 and g(w) = (1/2)‖w‖22, and we get the
lasso if g(w) = ‖w‖1. Our method can also be extended to cases where each Ai is a
matrix, thus covering multiclass classification problems as well (see, e.g., [39]).

For each i = 1, . . . , n, let φ∗
i be the convex conjugate of φi, that is,

φ∗
i (u) = max

z∈R

{zu− φi(z)}.

The dual of the regularized ERM problem (5.1), which we call the primal, is to solve
the problem (see, e.g., [40])

(5.2) maximize
x∈Rn

{
D(x)

def
=

1

n

n∑
i=1

−φ∗
i (−xi)− λg∗

(
1

λn
Ax

)}
,

where A = [A1, . . . , An]. This is equivalent to minimizing F (x)
def
= −D(x), that is,

(5.3) minimize
x∈Rn

{
F (x)

def
=

1

n

n∑
i=1

φ∗
i (−xi) + λg∗

(
1

λn
Ax

)}
.

The structure of F (x) above matches our general formulation of minimizing composite
convex functions in (1.1) and (1.2) with

(5.4) f(x) = λg∗
(

1

λn
Ax

)
, Ψ(x) =

1

n

n∑
i=1

φ∗
i (−xi).

Therefore, we can directly apply the APCG method to solve problem (5.3), i.e., to
solve the dual of the regularized ERM problem. Here we assume that the proximal
mappings of the conjugate functions φ∗

i can be computed efficiently, which is indeed
the case for many regularized ERM problems (see, e.g., [40, 39]).
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In order to obtain accelerated linear convergence rates, we make the following
assumption.

Assumption 3. Each function φi is 1/γ smooth, and the function g has unit
convexity parameter 1.

Here we slightly abuse the notation by overloading γ and λ, which appeared in
sections 2 and 3. In this section γ represents the (inverse) smoothness parameter of
φi, and λ denotes the regularization parameter on g. Assumption 3 implies that each
φ∗
i has strong convexity parameter γ (with respect to the local Euclidean norm) and

g∗ is differentiable and ∇g∗ has Lipschitz constant 1.
We note that in the linear SVM problem, the hinge loss φi(z) = max{0, 1 −

biz} is not differentiable; thus it does not satisfy Assumption 3 and F (x) is not
strongly convex. In this case, we can apply APCG with μ = 0 (Algorithm 3) to
obtain accelerated sublinear rates, which is better than the convergence rate of SDCA
under the same assumption [40]. In this section, we focus on problems that satisfy
Assumption 3, which enjoy accelerated linear convergence rates. In order to apply
these results, a standard trick in machine learning is to replace the hingle loss with a
smoothed approximation; see section 5.3 and more examples in [39, section 5.1]. On
the other hand, in the Lasso formulation we have g(w) = ‖w‖1, which is not strongly
convex. In this case, a common scheme in practice is to combine it with a small ‖w‖22
regularization; see [39, section 5.2] for further details.

In order to match the condition in Assumption 2, i.e., f(x) needs to be strongly
convex, we can apply the technique in section 2.2 to relocate the strong convexity
from Ψ to f . Without loss of generality, we can use the following splitting of the
composite function F (x) = f(x) + Ψ(x):

(5.5) f(x) = λg∗
(

1

λn
Ax

)
+

γ

2n
‖x‖22, Ψ(x) =

1

n

n∑
i=1

(
φ∗
i (−xi)− γ

2
‖xi‖22

)
.

Under Assumption 3, the function f is smooth and strongly convex and each Ψi, for
i = 1, . . . , n, is still convex. As a result, we have the following complexity guarantee
when applying the APCG method to minimize the function F (x) = −D(x).

Theorem 5.1. Suppose Assumption 3 holds and ‖Ai‖2 ≤ R for all i = 1, . . . , n.
In order to obtain an expected dual optimality gap E[D� − D(x(k))] ≤ ε using the
APCG method, it suffices to have

(5.6) k ≥
(
n+

√
nR2

λγ

)
log(C/ε),

where D� = maxx∈Rn D(x) and

(5.7) C = D� −D(x(0)) +
γ

2n
‖x(0) − x�‖22.

Proof. First, we notice that the function f(x) defined in (5.5) is differentiable.
Moreover, for any x ∈ R

n and hi ∈ R,

‖∇if(x+Uihi)−∇if(x)‖2 =

∥∥∥∥ 1nAT
i

[
∇g∗

(
1

λn
A(x+Uihi)

)
−∇g∗

(
1

λn
Ax

)]
+
γ

n
hi

∥∥∥∥
2

≤ ‖Ai‖2
n

∥∥∥∥∇g∗
(

1

λn
A(x+Uihi)

)
−∇g∗

(
1

λn
Ax

)∥∥∥∥
2

+
γ

n
‖hi‖2

≤ ‖Ai‖2
n

∥∥∥∥ 1

λn
Aihi

∥∥∥∥
2

+
γ

n
‖hi‖2 ≤

(‖Ai‖22
λn2

+
γ

n

)
‖hi‖2,
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where the second inequality used the assumption that g has convexity parameter 1
and thus ∇g∗ has Lipschitz constant 1. The coordinatewise Lipschitz constants as
defined in Assumption 1 are

Li =
‖Ai‖22
λn2

+
γ

n
≤ R2 + λγn

λn2
, i = 1, . . . , n.

The function f has convexity parameter γ
n with respect to the Euclidean norm ‖ · ‖2.

Let μ be its convexity parameter with respect to the norm ‖ · ‖L defined in (1.6).
Then

μ ≥ γ

n

/R2 + λγn

λn2
=

λγn

R2 + λγn
.

According to Theorem 2.1, the APCG method converges geometrically:

E
[
D� −D(x(k))

]
≤

(
1−

√
μ

n

)k

C ≤ exp

(
−
√
μ

n
k

)
C,

where the constant C is given in (5.7). Therefore, in order to haveE[D�−D(x(k))] ≤ ε,
it suffices to have the number of iterations k be larger than

n√
μ
log

(C
ε

)
≤ n

√
R2+λγn

λγn
log

(C
ε

)
=

√
n2+

nR2

λγ
log

(C
ε

)
≤

(
n+

√
nR2

λγ

)
log

(C
ε

)
.

This finishes the proof.
Let us compare the result in Theorem 5.1 with the complexity of solving the dual

problem (5.3) using the AFG method of Nesterov [27]. Using the splitting in (5.4) and

under Assumption 3, the gradient ∇f(x) has Lipschitz constant
‖A‖2

2

λn2 , where ‖A‖2
denotes the spectral norm of A, and Ψ(x) has convexity parameter γ

n with respect to
‖ · ‖2. So the condition number of the problem is

κ =
‖A‖22
λn2

/
γ

n
=

‖A‖22
λγn

.

Suppose each iteration of the AFG method costs as much as n times the APCG
method (as we will see in section 5.2); then the complexity of the AFG method [27,
Theorem 6] measured in terms of number of coordinate gradient steps is

O
(
n
√
κ log(1/ε)

)
= O

(√
n‖A‖22
λγ

log(1/ε)

)
≤ O

(√
n2R2

λγ
log(1/ε)

)
.

The inequality above is due to ‖A‖22 ≤ ‖A‖2F ≤ nR2. Therefore in the ill-conditioned

case (assuming n ≤ R2

λγ ), the complexity of AFG can be a factor of
√
n worse than

that of APCG.
Several state-of-the-art algorithms for regularized ERM, including SDCA [40],

SAG [35, 37], and SVRG [11, 48], have the iteration complexity

O

((
n+

R2

λγ

)
log(1/ε)

)
.
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Here the ratio R2

λγ can be interpreted as the condition number of the regularized ERM

problem (5.1) and its dual (5.2). We note that our result in (5.6) can be much better

for ill-conditioned problems, i.e., when the condition number R2

λγ is much larger than n.

Most recently, Shalev-Shwartz and Zhang [39] developed an accelerated SDCA

method which achieves the same complexity O((n +
√

n
λγ ) log(1/ε)) as our method.

Their method is an inner-outer iteration procedure, where the outer loop is a full-
dimensional accelerated gradient method in the primal space w ∈ R

d. At each itera-
tion of the outer loop, the SDCA method [40] is called to solve the dual problem (5.2)
with customized regularization parameter and precision. In contrast, our APCG
method is a straightforward single loop coordinate gradient method.

We note that the complexity bounds for the aforementioned work are either for the
primal optimality P (w(k))−P � (SAG and SVRG) or for the primal-dual gap P (w(k))−
D(x(k)) (SDCA and accelerated SDCA). Our results in Theorem 5.1 are in terms of the
dual optimality D�−D(x(k)). In section 5.1, we show how to recover primal solutions
with the same order of convergence rate. In section 5.2, we show how to exploit the
problem structure of regularized ERM to compute the partial gradient ∇if(x), which
together with the efficient implementation proposed in section 4 completely avoids
full-dimensional vector operations. The experiments in section 5.3 illustrate that our
method has superior performance in reducing both the primal objective value and the
primal-dual gap.

5.1. Recovering the primal solution. Under Assumption 3, the primal prob-
lem (5.1) and dual problem (5.2) each have a unique solution, say, w� and x�, respec-
tively. Moreover, we have P (w�) = D(x�). With the definition

(5.8) ω(x) = ∇g∗
(

1

λn
Ax

)
,

we have w� = ω(x�). When applying the APCG method to solve the dual regular-
ized ERM problem, which generates a dual sequence x(k), we can obtain a primal
sequence w(k) = ω(x(k)). Here we discuss the relationship between the primal-dual
gap P (w(k))−D(x(k)) and the dual optimality D� −D(x(k)).

Let a = (a1, . . . , an) be a vector in R
n. We consider the saddle-point problem

(5.9) max
x

min
a,w

{
Φ(x, a, w)

def
=

1

n

n∑
i=1

φi(ai) + λg(w) − 1

n

n∑
i=1

xi(A
T
i w − ai)

}
,

so that

D(x) = min
a,w

Φ(x, a, w).

Given an approximate dual solution x(k) (generated by the APCG method), we can
find a pair of primal solutions (a(k), w(k)) = argmina,w Φ(x(k), a, w), or more specifi-
cally,

a
(k)
i = argmax

ai

{
−x

(k)
i ai − φi(ai)

}
∈ ∂φ∗

i (−x
(k)
i ), i = 1, . . . , n,(5.10)

w(k) = argmax
w

{
wT

(
1

λn
Ax(k)

)
− g(w)

}
= ∇g∗

(
1

λn
Ax(k)

)
.(5.11)
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As a result, we obtain a subgradient of D at x(k), denoted D′(x(k)), and

‖D′(x(k))‖22 =
1

n2

n∑
i=1

(
AT

i w
(k) − a

(k)
i

)2

.(5.12)

We note that ‖D′(x(k))‖22 is not only a measure of the dual optimality of x(k) but
also a measure of the primal feasibility of (a(k), w(k)). In fact, it can also bound the
primal-dual gap, which is the result of the following lemma.

Lemma 5.2. Given any dual solution x(k), let (a(k), w(k)) be defined as in (5.10)
and (5.11). Then

P (w(k))−D(x(k)) ≤ 1

2nγ

n∑
i=1

(
AT

i w
(k) − a

(k)
i

)2

=
n

2γ
‖D′(x(k))‖22.

Proof. Because of (5.10), we have ∇φi(a
(k)
i ) = −x

(k)
i . The 1/γ-smoothness of

φi(a) implies

P (w(k)) =
1

n

n∑
i=1

φi(A
T
i w

(k)) + λg(w(k))

≤ 1

n

n∑
i=1

(
φi(a

(k)
i )+∇φi(a

(k)
i )T

(
AT

iw
(k)−a

(k)
i

)
+

1

2γ

(
AT

iw
(k)−a

(k)
i

)2)
+λg(w(k))

=
1

n

n∑
i=1

(
φi(a

(k)
i )−(

x
(k)
i

)T(
AT

iw
(k)−a

(k)
i

)
+

1

2γ

(
AT

i w
(k)−a

(k)
i

)2)
+λg(w(k))

= Φ(x(k), a(k), w(k)) +
1

2nγ

n∑
i=1

(
AT

i w
(k) − a

(k)
i

)2

= D(x(k)) +
1

2nγ

n∑
i=1

(AT
i w

(k) − a
(k)
i )2,

which leads to the inequality in the conclusion. The equality in the conclusion is due
to (5.12).

The following theorem states that under a stronger assumption than Assump-
tion 3, the primal-dual gap can be bounded directly by the dual optimality gap;
hence they share the same order of convergence rate.

Theorem 5.3. Suppose g is 1-strongly convex and each φi is 1/γ-smooth and
also 1/η-strongly convex (all with respect to the Euclidean norm ‖·‖2). Given any dual
point x(k), let the primal correspondence be w(k) = ω(x(k)), i.e., generated from (5.11).
Then we have

(5.13) P (w(k))−D(x(k)) ≤ ληn+ ‖A‖22
λγn

(
D� −D(x(k))

)
,

where ‖A‖2 denotes the spectral norm of A.
Proof. Since g(w) is 1-strongly convex, the function f(x) = λg∗

(
Ax
λn

)
is differen-

tiable and ∇f(x) has Lipschitz constant
‖A‖2

2

λn2 . Similarly, since each φi is 1/η strongly
convex, the function Ψ(x) = 1

n

∑n
i=1 φ

∗
i (−xi) is differentiable and ∇Ψ(x) has Lips-

chitz constant η
n . Therefore, the function −D(x) = f(x) + Ψ(x) is smooth and its

gradient has Lipschitz constant

‖A‖22
λn2

+
η

n
=

ληn+ ‖A‖22
λn2

.
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It is known that (e.g., [25, Theorem 2.1.5]) if a function F (x) is convex and L-smooth,
then

F (y) ≥ F (x) +∇F (x)T (y − x) +
1

2L
‖∇F (x)−∇F (y)‖22

for all x, y ∈ R
n. Applying the above inequality to F (x) = −D(x), we get for all x

and y,

(5.14) −D(y) ≥ −D(x)−∇D(x)T (y − x) +
λn2

2(ληn+ ‖A‖22)
‖∇D(x) −∇D(y)‖22.

Under our assumptions, the saddle-point problem (5.9) has a unique solution
(x�, a�, w�), where w� and x� are the solutions to the primal and dual problems (5.1)
and (5.2), respectively. Moreover, they satisfy the optimality conditions

AT
i w

� − a�i = 0, a�i = ∇φ∗
i (−x�

i ), w� = ∇g∗
(

1

λn
Ax�

)
.

Since D is differentiable in this case, we have D′(x) = ∇D(x) and ∇D(x�) = 0. Now
we choose x and y in (5.14) to be x� and x(k), respectively. This leads to

‖∇D(x(k))‖22 = ‖∇D(x(k))−∇D(x�)‖22 ≤ 2(ληn+ ‖A‖22)
λn2

(D(x�)−D(x(k))).

Then the conclusion can be derived from Lemma 5.2.
The assumption that each φi is 1/γ-smooth and 1/η-strongly convex implies that

γ ≤ η. Therefore the coefficient on the right-hand side of (5.13) satisfies
ληn+‖A‖2

2

λγn > 1.

This is consistent with the fact that for any pair of primal and dual points w(k) and
x(k), we always have P (w(k))−D(x(k)) ≥ D� −D(x(k)).

Corollary 5.4. Under the assumptions of Theorem 5.3, in order to obtain
an expected primal-dual gap E

[
P (w(k))−D(x(k))

] ≤ ε using the APCG method, it
suffices to have

k ≥
(
n+

√
nR2

λγ

)
log

(
(ληn+ ‖A‖22)

λγn

C

ε

)
,

where the constant C is defined in (5.7).
The above results require that each φi be both smooth and strongly convex. One

example that satisfies such assumptions is ridge regression, where φi(ai) =
1
2 (ai− bi)

2

and g(w) = 1
2‖w‖22. For problems that only satisfy Assumption 3, we may add a small

strongly convex term 1
2ηa

2
i to each loss φi(ai) and obtain that the primal-dual gap

(of a slightly perturbed problem) shares the same accelerated linear convergence rate
as the dual optimality gap. Alternatively, we can obtain the same guarantee with
the extra cost of a proximal full gradient step. This is summarized in the following
theorem.

Theorem 5.5. Suppose Assumption 3 holds. Given any dual point x(k), define

(5.15) T (x(k)) = arg min
x∈Rn

{
〈∇f(x(k)), x〉 + ‖A‖22

2λn2
‖x− x(k)‖22 +Ψ(x)

}
,

where f and Ψ are defined in the simple splitting (5.4). Let

(5.16) w(k) = ω(T (x(k))) = ∇g∗
(

1

λn
AT (x(k))

)
.
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Then we have

(5.17) P (w(k))−D(T (x(k))) ≤ 4‖A‖22
λγn

(
D(x�)−D(x(k))

)
.

Proof. Notice that the Lipschitz constant of ∇f(x) is Lf =
‖A‖2

2

λn2 , which is used

in calculating T (x(k)). The corresponding gradient mapping [27] at x(k) is

G(x(k)) = Lf

(
x(k) − T (x(k))

)
=

‖A‖22
λn2

(
x(k) − T (x(k))

)
.

Applying [27, Theorem 1] to F (x) = −D(x), we have for any x ∈ domF ,

〈−D′(T (x(k))
)
, x− T (x(k))〉 ≥ −2

∥∥∥G(x(k))
∥∥∥
2
·
∥∥∥x− T (x(k))

∥∥∥
2
.

Letting x = T (x(k))+D′(T (x(k))
)
, we have

∥∥D′(T (x(k))
)∥∥

2
≤ 2

∥∥G(x(k))
∥∥
2
. Another

consequence of [27, Theorem 1] is

∥∥∥G(x(k))
∥∥∥2
2
≤ 2Lf

(
F (x(k))− F

(
T (x(k))

))
≤ 2Lf

(
F (x(k))− F (x�)

)
= 2Lf

(
D(x�)−D(x(k))

)
.

Combining these two inequalities yields

∥∥∥D′(T (x(k))
)∥∥∥2

2
≤ 4

∥∥∥G(x(k))
∥∥∥2
2
≤ 8Lf

(
D(x�)−D(x(k))

)
=

8‖A‖22
λn2

(
D(x�)−D(x(k))

)
.

The conclusion can then be derived from Lemma 5.2.

Here the coefficient in the right-hand side of (5.17),
4‖A‖2

2

λγn , can be less than 1.
This does not contradict the fact that the primal-dual gap should be no less than the
dual optimality gap, because the primal-dual gap on the left-hand side of (5.17) is
measured at T (x(k)) rather than x(k).

Corollary 5.6. Suppose Assumption 3 holds. In order to obtain a primal-
dual pair w(k) and x(k) such that E

[
P (w(k))−D(T (x(k)))

] ≤ ε, it suffices to run the
APCG method for

k ≥
(
n+

√
nR2

λγ

)
log

(
4‖A‖22
λγn

C

ε

)

steps and follow with a proximal full gradient step (5.15) and (5.16), where C is
defined in (5.7).

We note that the computational cost of the proximal full gradient step (5.15) is
comparable with n proximal coordinate gradient steps. Therefore the overall complex-
ity of this scheme is on the same order as necessary for the expected dual optimality
gap to reach ε. Actually the numerical experiments in section 5.3 show that running
the APCG method alone without the final full gradient step is sufficient to reduce the
primal-dual gap at a very fast rate.
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Algorithm 5. APCG for solving regularized ERM with μ > 0.

input: x(0) ∈ dom (Ψ) and convexity parameter μ = λγn
R2+λγn .

initialize: set α =
√
μ

n and ρ = 1−α
1+α , and let u(0) = 0, v(0) = x(0), p(0) = 0, and

q(0) = Ax(0).

iterate: repeat for k = 0, 1, 2, . . .
1. Choose ik ∈ {1, . . . , n} uniformly at random, compute the coordinate gradient

∇(k)
ik

=
1

λn2

(
ρk+1AT

ik
p(k) +AT

ik
q(k)

)
+

γ

n

(
ρk+1u

(k)
ik

+ v
(k)
ik

)
.

2. Compute coordinate increment
(5.18)

h
(k)
ik

= argmin
h∈R

Nik

{
α(‖Aik‖2+λγn)

2λn
‖h‖22 + 〈∇(k)

ik
, h〉+Ψik

(
−ρk+1u

(k)
ik

+v
(k)
ik

+h
)}

.

3. Let u(k+1) = u(k) and v(k+1) = v(k), and update

(5.19)

u
(k+1)
ik

= u
(k)
ik

− 1− nα

2ρk+1
h
(k)
ik

, v
(k+1)
ik

= v
(k)
ik

+
1 + nα

2
h
(k)
ik

,

p(k+1) = p(k) − 1− nα

2ρk+1
Aikh

(k)
ik

, q(k+1) = q(k) +
1 + nα

2
Aikh

(k)
ik

.

output: approximate dual and primal solutions

x(k+1) = ρk+1u(k+1) + v(k+1), w(k+1) =
1

λn

(
ρk+1p(k+1) + q(k+1)

)
.

5.2. Implementation details. Here we show how to exploit the structure of the
regularized ERM problem to efficiently compute the coordinate gradient ∇ikf(y

(k))
and totally avoid full-dimensional updates in Algorithm 4.

We focus on the special case g(w) = 1
2‖w‖22 and show how to compute ∇ikf(y

(k)).
In this case, g∗(v) = 1

2‖v‖22 and ∇g∗(·) is the identity map. According to (5.5),

∇ikf(y
(k)) =

1

λn2
AT

ik
(Ay(k)) +

γ

n
y
(k)
ik

.

Notice that we do not form y(k) in Algorithm 4. By Proposition 4.1, we have

y(k) = ρk+1u(k) + v(k).

So we can store and update the two vectors

p(k) = Au(k), q(k) = Av(k)

and obtain

Ay(k) = ρk+1p(k) + q(k).

Since the update of both u(k) and v(k) at each iteration involves only the single
coordinate ik, we can update p(k) and q(k) by adding or subtracting a scaled column
Aik , as given in (5.19). The resulting method is detailed in Algorithm 5.
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Table 1

Characteristics of three binary classification datasets obtained from [7].

Dataset Source Number of samples n Number of features d Sparsity
RCV1 [16] 20,242 47,236 0.16%
covtype [4] 581,012 54 22%
News20 [12, 13] 19,996 1,355,191 0.04%

In Algorithm 5, we use ∇(k)
ik

to represent ∇ikf(y
(k)) to reflect the fact that we

never form y(k) explicitly. The function Ψi in (5.18) is the one given in (5.5), i.e.,

Ψi(xi) =
1

n
φ∗
i (−xi)− γ

2n
‖xi‖22.

Each iteration of Algorithm 5 involves only the two inner products AT
ik
p(k) and AT

ik
q(k)

in computing ∇(k)
ik

and the two vector additions in (5.19). They all cost O(d) rather
than O(n). When the Ai’s are sparse (the case of most large-scale problems), these
operations can be carried out very efficiently. Basically, each iteration of Algorithm 5
only costs twice as much as that of SDCA [10, 40].

In step 3 of Algorithm 5, the division by ρk+1 in updating u(k) and p(k) may cause
numerical problems because ρk+1 → 0 as the number of iterations k gets large. To
fix this issue, we notice that u(k) and p(k) are always accessed in Algorithm 5 in the
forms of ρk+1u(k) and ρk+1p(k). So we can replace u(k) and p(k) by

ū(k) = ρk+1u(k), p̄(k) = ρk+1p(k),

which can be updated without numerical problems. To see this, we have

ū(k+1) = ρk+2u(k+1) = ρk+2

(
u(k) − 1− nα

2ρk+1
Uikh

(k)
ik

)
= ρ

(
ū(k) − 1− nα

2
Uikh

(k)
ik

)
.

Similarly, we have

p̄(k+1) = ρ

(
p̄(k) − 1− nα

2
Aikh

(k)
ik

)
.

5.3. Numerical experiments. In our experiments, we solve the regularized
ERM problem (5.1) with a smoothed hinge loss for binary classification. Specifically,
we premultiply each feature vector Ai by its label bi ∈ {±1} and let

φi(a) =

⎧⎨
⎩

0 if a ≥ 1,
1− a− γ

2 if a ≤ 1− γ,
1
2γ (1− a)2 otherwise,

i = 1, . . . , n.

This smoothed hinge loss is obtained by adding a strong convex perturbation to the
conjugate function of the hinge loss (e.g., [40]). The resulting conjugate function of
φi is φ

∗
i (b) = b+ γ

2 b
2 if b ∈ [−1, 0] and ∞ otherwise. Therefore we have

Ψi(xi) =
1

n

(
φ∗
i (−xi)− γ

2
‖xi‖22

)
=

{ −xi

n if xi ∈ [0, 1],
∞ otherwise.

For the regularization term, we use g(w) = 1
2‖w‖22. We used three publicly available

datasets obtained from [7]. Their characteristics are summarized in Table 1.
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In our experiments, we comparing the APCG method (Algorithm 5) with SDCA
[40] and the AFG method [25] with an additional line search procedure to improve
efficiency. For AFG, each iteration involves a single pass over the whole dataset.
When the regularization parameter λ is not too small (around 10−4), then APCG
performs similarly to SDCA, as predicted by our complexity results, and they both
outperform AFG by a substantial margin.

Figure 1 shows the reduction of primal optimality P (w(k)) − P � by the three
methods in the ill-conditioned setting, with λ varying from 10−5 to 10−8. For APCG,
the primal points w(k) are generated simply as w(k) = ω(x(k)) defined in (5.8). Here
we see that APCG has superior performance in reducing the primal objective value
compared with SDCA and AFG, even without performing the final proximal full
gradient step described in Theorem 5.5.

Figure 2 shows the reduction of primal-dual gap P (w(k)) − D(x(k)) by the two
methods APCG and SDCA. We can see that in the ill-conditioned setting, the APCG
method is more effective in reducing the primal-dual gap as well.
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Fig. 1. Comparing the APCG method with SDCA and the AFG method. In each plot, the
vertical axis is the primal objective value gap, i.e., P (w(k)) − P �, and the horizontal axis is the
number of passes through the entire dataset. The three columns correspond to the three datasets,
and each row corresponds to a particular value of λ.
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λ RCV1 covertype News20
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Fig. 2. Comparing the primal-dual objective gap produced by APCG and SDCA. In each plot,
the vertical axis is the primal-dual objective value gap, i.e., P (w(k)) −D(x(k)), and the horizontal
axis is the number of passes through the entire dataset. The three columns correspond to the three
datasets, and each row corresponds to a particular value of λ.
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[8] O. Fercoq and P. Richtárik, Accelerated, parallel, and proximal coordinate descent. SIAM
J. Optim., 25 (2015), pp. 1997–2023.

[9] M. Hong, X. Wang, M. Razaviyayn, and Z. Q. Luo, Iteration complexity analysis of block
coordinate descent methods, arXiv:1310.6957, 2013.

[10] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan, A dual coor-
dinate descent method for large-scale linear svm, in Proceedings of the 25th International
Conference on Machine Learning (ICML), 2008, pp. 408–415.

[11] R. Johnson and T. Zhang, Accelerating stochastic gradient descent using predictive variance
reduction, in Advances in Neural Information Processing Systems 26, MIT Press, Cam-
bridge, MA, 2013, pp. 315–323.

[12] S. S. Keerthi and D. DeCoste, A modified finite Newton method for fast solution of large
scale linear svms, J. Mach. Learn. Res., 6 (2005), pp. 341–361.

[13] K. Lang, Newsweeder: Learning to filter netnews, in Proceedings of the 12th International
Conference on Machine Learning (ICML), 1995, pp. 331–339.

[14] Y. T. Lee and A. Sidford, Efficient accelerated coordinate descent methods and faster al-
gorithms for solving linear systems, in Proceedings of IEEE 54th Annual Symposium on
Foundations of Computer Science (FOCS), Berkeley, CA, 2013, pp. 147–156.

[15] D. Leventhal and A. S. Lewis, Randomized methods for linear constraints: Convergence
rates and conditioning, Math. Oper. Res., 35 (2010), pp. 641–654.

[16] D. D. Lewis, Y. Yang, T. Rose, and F. Li, RCV1: A new benchmark collection for text
categorization research, J. Mach. Learn. Res., 5 (2004), pp. 361–397.

[17] Y. Li and S. Osher, Coordinate descent optimization for �1 minimization with application to
compressed sensing: A greedy algorithm, Inverse Probl. Imaging, 3 (2009), pp. 487–503.

[18] J. Liu and S. J. Wright, An accelerated randomized Kacamarz algorithm, Math. Comp., 85
(2016), pp. 153–178.
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