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As a modi	ed-gravity proposal to handle the dark matter problem on galactic scales, Modi	ed Newtonian Dynamics (MOND)
has shown a great success. However, the �-body MOND simulation is quite challenged by its computation complexity, which
appeals to acceleration of the simulation calculation. In this paper, we present a highly integrated accelerating solution for �-
body MOND simulations. By using the FPGA-SoC, which integrates both FPGA and SoC (system on chip) in one chip, our
solution exhibits potentials for better performance, higher integration, and lower power consumption. To handle the calculation
bottleneck of potential summation, on one hand, we develop a strategy to simplify the pipeline, in which the square calculation task
is conducted by the DSP48E1 of Xilinx 7 series FPGAs, so as to reduce the logic resource utilization of each pipeline; on the other
hand, advantages of particle-mesh scheme are taken to overcome the bottleneck on bandwidth. Our experiment results show that 2
more pipelines can be integrated in Zynq-7020 FPGA-SoC with the simpli	ed pipeline, and the bandwidth requirement is reduced
signi	cantly. Furthermore, our accelerating solution has a full range of advantages over di�erent processors. Compared with GPU,
our work is about 10 times better in performance per watt and 50% better in performance per cost.

1. Introduction

Modi	ed Newtonian Dynamics (MOND) is an alternative
proposal to popular dark matter (DM) theory, accounting
for the missing mass problem in astrophysics. To study the
outskirts of disk galaxies, �-body MOND simulation is an
essential task, namely, to simulate the dynamic evolution
of an astronomical system consisting of multiple celestial
objects (denoted as �-body), where the interacting philos-
ophy of each pair object obeys the MOND proposal.

Gravitational �-body problem is traditionally explored
with computer simulations, which involves massive nonlin-
ear calculations for the MOND potentials. Yet it has been
limited due to both the nonlinearity and the large �-scale
in a long time. In 2010, Mordehai Milgrom proposed a

new formulation of MOND, named quasi-linear MOND
(QUMOND) [1]. Based on the QUMOND formulation, the
calculation of MOND potential contains 3 steps: the 	rst
and the last are potential calculations similar to classical
gravity calculations, whereas the second step is to calculate
the phantom dark matter (PDM) distribution. �e drawback
of nonlinearity is ameliorated by QUMOND, while the large�-scale is still a big challenge, which brings a tremendous

computation complexity O(�2). Besides the development
of algorithms optimizing the computation complexity, the
hardware acceleration of the arithmetic calculation unit is
another e�ective solution to accelerate the �-body MOND
simulation and thus is the subject of the present paper.

Hardware accelerators for �-body MOND simulation
abound. In early 1990s, based on the methodology of
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application speci	c integrated circuit (ASIC), a series of spe-
ci	c processors, named GRAPE (GRAvity PipE), were pro-
posed for the calculation of particle-particle interaction in the�-body problem. From 1991 to 2012, GRAPE experienced a
development fromversion 1 to version 8 [2]. A singleGRAPE-
8 chip integrates 48 pipeline processors and provides a peak
performance of 480G�ops (12000Mpairs/s) in total. Besides
ASIC like GRAPE, FPGA and GPU are also popular choices
to accelerate the �-body simulation. Similar with ASIC,
the main idea of FPGA-based accelerators is to customize
parallel pipelines utilizing programmable gate arrays; nev-
ertheless GPU-based accelerators implement a calculating
parallelization through thousands of cores. In 2006, Kawai
and Fukushige proposed two FPGA-based add-in cards [3],
whichwere applied to astrophysical�-body simulations with
the hierarchical tree algorithm; they achieved a performance
of 80.9G�ops (2128Mpairs/s) with 16 133MHz pipelines
being used. In 2007, Portegies Zwart et al. proposed a GPU

accelerator for O(�2) gravitational �-body simulations [4];
their results indicated that the GeForce 8800GTXGPU had a
10-time speedup compared to Intel Xeon CPUs.

During the simulation, parameters of these� objects are
correlated. �erefore in most situations where ASIC, FPGA,
or GPU is utilized, the accelerator is implemented as an add-
in card, relying on a host computer to deal with the data dis-
patching. However, the potential calculation consumes most
of the simulation time, which means that processors in the
host computer aremostly idle during the simulation.Wang et
al. provided statistical results of a CPU-GPU hybrid parallel
strategy for an O(� log�) cosmological simulation; they
revealed that, in nearly 75 percents of the total time, CPUs
were in a waiting state [5]. Moreover, this card-host structure
usually requires extra energy and spaces, which leads to a
big waste in energy, money, and space. Especially, in�-body
MOND simulation, the two-step potential calculation brings
a double waste with the same simulation scale. �ese disad-
vantages motivate us to turn to FPGA-SoC, which combines
the embedded low-power processor and FPGA, exhibiting a
high integration.

In this paper, by utilizing the FPGA-SoC, we propose a
highly integrated accelerating solution for �-body MOND
simulations. Besides data dispatching, the embedded proces-
sor is also responsible for the PDM distribution calculation
in the 2nd step. Considering that the number of pipelines an
FPGA integrates directly a�ects the accelerator performance,
a modi	cation is made to the typical potential summation
pipeline, that is, to make full use of the DSP48E1 in Xilinx
7 series FPGA, so as to reduce the logic resource occupa-
tion of each pipeline. What is more, we optimize the data
�ow from memory to pipelines based on the particle-mesh
scheme, which contributes to a reduction of the bandwidth
requirement and improves the performance of our solution
signi	cantly. At last, we test our solution in the low-cost
Zynq-7020 all programmable SoC.

�e rest of this paper is organized as follows. �e
background of MOND and �-body MOND simulation
is brie�y introduced in the next section. We discuss our
motivation and contribution in Section 3. �en we describe
the particle-mesh scheme and make an illustration of the

systemarchitecture of our solution in Section 4. Experimental
results are presented in Section 5. Finally, we conclude this
paper in Section 6.

2. �-Body MOND Simulation

2.1. Modi
ed Newtonian Dynamics. Modi	ed Newtonian
Dynamics (MOND) can be interpreted as a modi	cation to
the law of gravity. It is an alternative proposal to popular dark
matter (DM) theory, accounting for the missing mass prob-
lem in astrophysics. Both MOND and DM elegantly 	t the
rotation curve of spiral galaxies. However, there exist some
challenges for the DM-based model; the biggest one is that
the tight scaling relations cannot be understood [6], while
MOND provides a good explanation to it, as well as details
of the rotation curve [7].

Modi	ed Newtonian Dynamics (MOND) was 	rstly
proposed by Milgrom in 1983 [7]. �e Milgrom proposal is
as follows: the acceleration � is Newtonian �� in the strong
gravity 	eld but begins to deviate from it around a critical
acceleration �0 and converges to the weak 	eld limit:

� = √���0 when � ≪ �0. (1)

Here �0 ≅ 10−10m/s2 is Milgromian characteristic
acceleration constant,�denotes theMilgromian gravitational
acceleration, and �� indicates the Newtonian one.

In conventional Newtonian dynamics, we have the classi-
cal Poisson equation:

∇2	 (
) = 4��� (
) , (2)

where	(
) is theNewtonian potential and�(
) is the density
distribution of baryonic matters including the star and the
gas. Linear equation (2) can be calculated by a typical Poisson
solver. However, when describing MOND in this form, it
leads to nonlinear generalization of the Newtonian Poisson
equation [8]:

∇[�(|∇Φ (
)|�0 )∇Φ (
)] = 4��� (
) , (3)

where Φ(
) is the distribution of MOND potential and the�-function is an interpolating function, representing the
MOND gravity in the transitional zone from Newtonian to
the weak 	eld limit, and is usually adopted as follows:

� (�) = √1 + 4/�
2 − 1. (4)

Equation (3) is hard to solve due to its nonlinearity.
�erefore, in the weak 	eld limit, we have the so-called

quasi-linear MOND (QUMOND) [1], as written in

∇2Φ (
) = 4��� (
) + ∇ ⋅ [�(����∇	�����0 )∇	 (
)] . (5)

Here 	(
) indicates the Newtonian potential.
For simpli	cation, denote

ph (
) = ∇ ⋅ [� (����∇	���� /�0) ∇	 (
)]
4�� , (6)
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and (5) can be rewritten as

∇2Φ (
) = 4�� (� (
) + ph (
)) . (7)

Analogous to dark matter, the so-called phantom dark
matter (PDM) is introduced, and ph(
) can be interpreted as
its density distribution [9]. MOND potential (7) has a similar
formulation like (2), and it can be regarded as a modi	cation
to the Newtonian potential. Both MOND potential (7) and
Newtonian potential (2) can be solved by existing Poisson
solvers.

2.2. �-Body MOND Simulation. An �-body simulation
problem is to study the interactions of each pair object and
further simulate the dynamic evolution of an astronomical
system, which consists of multiple celestial objects (denoted
as �-body). �-body MOND simulation is to calculate the
changes of particle properties in a galaxy with time under
MOND; namely, the interacting philosophy of each pair
object obeys the MOND proposal. �ese properties include
potential, velocity, and position, to name but a few. In this
paper, we focus on the potential distribution Φ(
) at a 	xed
time, with the known baryonic matter distribution �(
). By
using the evaluated Φ(
), the current acceleration can be
worked out according to � = −∇Φ. Particle properties at next
time can be further calculated. For an individual particle, the
MOND potential calculation comprises three steps:

(1) with the known baryonic matter distribution �(
),
calculating Newtonian potential according to (2);

(2) calculating the phantom darkmatter (PDM) distribu-
tion with (6);

(3) solving modi	ed Poisson equation (7) to get the 	nal
MOND potential.

�e �-body MOND simulation has a double potential
computation compared to the typical Newtonian simulation,
which challenges the performance of accelerators. Noticing
that the formulation of (2) is similar to that of (7), thus the
	rst and third steps can be conducted by the same accelerator.

3. Motivation and Contribution

Table 1 provides the practical time cost of MOND calculation
on the Intel i5 processor; the calculation is conducted through
3 steps described in Section 2. With the increase of the simu-
lation scale �, the computation time of MOND simulation
reveals a quadratical increase. �us it is both crucial and
necessary to accelerate�-body MOND simulations. What is
more, Table 1 shows that the time consumption of the 2nd step
is just a minority, while the bottleneck of MOND simulation
is the potential calculation, bothNewtonian andMOND.�is
fact enables our keystone that accelerations are only applied
to potential calculations of steps (1) and (3), whereas the 2nd
step is conducted by the common processor, other than an
speci	c accelerator.

Besides pursuing a high calculation speed, there also exist
other essential considerations, like the power consumption,
the economic cost, and so on. Most existing accelerating
solutions utilize a card-host scheme; the accelerator is imple-
mented as an add-in card, relying on external host processors

Table 1: Time cost of MOND calculation on Intel i5 processor.

Number of
particles

Time cost of
Newtonian
potential (s)

Time cost of
PDM

distribution (s)

Time cost of
MOND

potential (s)

10000 2.062 0.001 2.065

20000 8.551 0.003 8.536

50000 55.09 0.012 55.68

to deal with the data dispatching. However, as mentioned
in Section 1, external host processors are mostly idle during
the simulation. Hence this card-host scheme would lead to
a big waste in CPU resources, electrical energies, economic
consumptions, and even space occupations. �is motivates
us to propose a highly integrated and low-power accelerating
solution for�-body simulations, by utilizing the FPGA-SoC,
which integrates both embedded low-power processors and
FPGA.

�e calculation speed of an FPGA-based accelerator is
mainly decided twofold: one is the number of pipelines the
FPGA integrates and the other is the throughput of each
pipeline; here the pipeline throughput is limited by two
factors, the data bandwidth and the frequency pipelines work
on. To obtain a high calculation speed, we are motivated
to analyze the physical model of potential calculation and
optimize the pipeline design, thus to pursue less logic
resource occupations, lower data bandwidth demands, and
higher operating frequencies.

In this paper, we focus on a highly integrated accelerating
solution for �-body simulation in MOND. Our contribu-
tions are as follows.

(1) �e utilization of FPGA-SoC makes the solution
highly integrated.

(2) We propose optimized summation pipelines for the
calculation of Newtonian and MOND potentials,
in which the square term is conducted by three
DSP48E1s inXilinx 7 series FPGAs, such that the logic
resource occupation of each pipeline is reduced and
more pipelines are implemented.

(3) Based on the particle-mesh scheme, the data �ow
from memory to pipelines is optimized: the space
coordinates of each object are automatically calcu-
lated out, other than being transferred, which bene	ts
the reduction of data bandwidth.

(4) We conduct extensive experiments to test our pro-
posed solution. �e results show that 9 optimized
pipelines can be implemented in an Zynq-7020
FPGA; if we utilize the typical pipeline, the number
of pipelines that can be implemented in the same
FPGA is 7, and theHLS (high level synthesis) tool only
produces 4 pipelines.

4. System Design

4.1. Physical Model. We choose the nearest grid point (NGP)
scheme, one of the particle-mesh strategies, as our basic
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Figure 1: Illustration of the discretization scheme in the 
-� plane.

physical model. Based on the NGP scheme, particles in the
galaxy object are interpolated onto a mesh, and each particle
is approximatively supposed to be located at the closest point
in the mesh, as depicted in Figure 1.

In the particle-mesh scheme, the baryonic matter dis-
tribution � is right equivalent to the mass "� for each
particle # in the mesh. Under these circumstances, (2) can
be directly solved by calculating the potential summation of
every particle-pair like the following equation:

	 ( ⃗%�) = "�∑
� ̸=�

"� ('2�� + 1.5*2)
('2�� + *2)(3/2) , (8)

where * is a proportional constant for adjusting the result at
small radii and '�� indicates the Euclidean distance between
a pair of particles:

'2�� = ( ⃗%� − ⃗%�)2
= (
� − 
�)2 + (�� − ��)2 + (-� − -�)2 .

(9)

With the particle-mesh scheme described in Figure 1, the
distribution of PDM (6) can be approximatively calculated by
	nite di�erence, as written in [1, 9]

���
ph

= 14��ℎ [��� (∇	)�� ,	 − �
� (∇	)
�,	
+ ��� (∇	)�� ,� − �
� (∇	)
� ,� + ��� (∇	)�� ,�
− �
� (∇	)
� ,�] .

(10)

Here (∇	)
�,	 is the 
-component of ∇	 at point 8	. When
we write � as"�, ph can be written as Δ"�.

In �-body MOND simulations, astronomers care about
both the overall movement trend of a galaxy and the details of
the inner galaxy. �e former indicates that the mesh should
handle a full coverage of the MOND gravity 	eld, while the

latter means that we need to reduce the greed size so as to
obtain a higher spatial resolution and simulate more objects
in the galaxy. If we set the resolution too high, it may lead
to memory over�ow and unacceptable time consumption.
To address this problem, multistage particle-mesh scheme is
optional. It is possible to change the resolution because, at
a point far away from the galaxy, the galaxy can be seen as
one particle with the total mass of the galaxy (Figure 2).�us
we can apply a higher resolution when it comes to the inner
galaxy and a lower resolution for the outer space.

In this paper, for simpli	cation, we set a 	xed resolution.
Technically, the computation �ow is as follows:

(1) building a mesh with a coverage of the galaxy and its
outskirts as shown in Figure 1; themesh is divided into
multiple grids according to the 	xed resolution, with
particles attached to grid nodes;

(2) solving Newtonian potential, PDM distribution, and
the 	nal MOND potential through the three steps in
Section 2.

4.2. Architecture of Accelerating Solution. Figure 3 provides
the architecture of our accelerating solution, which consists
of 8 parts: the embedded ARM Cortex-A9 processor, the
DDR controller, the command and state bus, the data bus,
registers, DMA-FIFO groups, the pipeline local controller,
and potential calculation pipelines. All units are integrated in
one chip.

Di�erent from conventional accelerating solutions, we
utilize the embedded ARM processor to deal with the data
dispatching. Besides, the ARM processor also conducts all
the lightweight computing tasks, including initializing the
particle-mesh scheme, monitoring the status of DMA and
pipelines, and calculating the PDMdistribution. Tomaximize
the bandwidth between memory and accelerating pipelines,
the control stream and the data stream are splitted. A 32-
bit AXI bus is implemented to transfer commands and
states, and the data is transferred through a 64-bit AXI high
performance bus and two DMA-FIFO groups. Each pipeline
is concentrated to deal with one 	xed particle. �e potential
of the 	xed particle is actually the summation of � − 1
potential components; a potential component indicates the
potential caused by another particle in this system. �us the
responsibility of the pipeline is to conduct the potential com-
ponent calculation and the accumulation of these�−1poten-
tial components. To prevent from calculating the invalid
or meaningless potential component, namely, the potential
caused by the 	xed particle itself, in the local controller, a
transfer counter and several register groups are coordinated.
Each register group stores the information of the 	xed par-
ticle for corresponding pipeline. �e transfer counter is used
to count the data transferred to exclude the self-calculations
(Figure 4).

�e issue of calculation bottleneck arises mainly in the
potential summation. To handle this problem, we make
endeavours 3-fold: pipeline stage splitting, pipeline simpli	-
cation, and bandwidth reducing.
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Figure 2: Illustration of multistage particle-mesh scheme.
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Figure 3: System architecture.

(1) Pipeline Stage Splitting.When splitting stages for a pipeline,
it is important to ensure that every stage of the pipeline has
the same latency cycle. If computation units in the same stage
di�er in latency, designers can either introduce additional
registers to bu�er results of lower latency units or reduce
the higher latency cycle. �is usually means a waste in the
logic resource or frequency. As to our pipelines, �oating
calculation units are generated with the Xilinx �oating-point
IP generator. Due to the complexity of di�erent calculations,
the addition, subtraction, and multiplication units are set to
the same latency cycle, while the division and square root
units are set to another latency cycle. To make sure that
every stage of the pipeline has the same latency cycle, (8) is
transformed as follows:

	 ( ⃗%�) = "�∑
� ̸=�

"� ('2�� + 1.5*2)
('2�� + *2)(3/2)

= "�∑
� ̸=�

"�'2�� + *2 ∗
'2�� + 1.5*2
√'2�� + *2

= "�∑
� ̸=�

"�'2�� + *2 ∗
'2�� + 1.5*2
'2�� + *2 ∗ √'2�� + *2

= "�∑
� ̸=�

"�'2�� + *2 ∗ √'2�� + *2 ∗ ( 0.5*2'2�� + *2 + 1) .
(11)

(2) Pipeline Simpli
cation. �e upper part of Figure 5 shows
the potential summation pipeline using the typical method
like that presented in [2, 10].When implementing the pipeline
on Xilinx 7 series FPGAs, to make full use of the resource
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of FPGA, we modify the pipeline as shown in the lower part
of Figure 5. Take the 
-dimension as an example; the square

term (
� − 
�)2 can be equivalently rewritten as

(
� − 
�)2 = 
2� + 
2� − 2
�
� = 
2� + 
� (
� − 2
�) . (12)

It is right conform to the calculation format (? − 8)@ + A
of DSP48E1. Motivated by this fact, we apply 3 DSP48E1s to
calculate the squared Euclidean distance.�en, the result will
be transferred to �oating point, adapting to the remainder

parts of the pipeline, which are kept the same with the typical
method as shown in Figure 5.

(3) Bandwidth Reducing. Based on the particle-mesh scheme,
we can reduce the bandwidth frommemory to pipelines.�e-
oretically, for each particle, we need three dimensional coor-
dinates and the mass to calculate the potential component.
Note that, in particle-mesh scheme, the coordinates of each
particle are indicated as (0, 0, 0), (0, 0, 1), . . . , (0, 0, Bmax),(0, 1, 0), . . . , (Cmax, Dmax, Bmax). �e pipeline conducts � − 1
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Figure 6: Flow chart of MOND simulation.

potential component calculation in a particular order. �us,
with the upper limitsCmax, Dmax, and Bmax, the pipeline con-
troller can automatically calculate the coordinates. �rough
this optimization, the data needed to be transferred is only
the particle mass, so the bandwidth requirement can be
signi	cantly reduced.

4.3. Working Flow. �e working �ow of �-body MOND
simulation with our accelerating solution is as described in
Figure 6. Firstly, parameters of every particle in the particle-
mesh scheme are initialized through the ARM processor,
including the coordinates and mass. Secondly, data are trans-
ferred to the accelerator to calculate the Newtonian potential.
�en, results of the previous step are used to calculate
the PDM distribution ph(
). In particle-mesh, ph(
) is
discontinuous and can be described as Δ"� for an individual
particle #. Note that there does not really exist Δ"�, and it is
only an intermediate to assist calculating of MOND potential
in a form similar to the typical Newtonian formula. Next,"�
is updated with Δ"�. Finally, modi	ed data are transferred
to the accelerator for the MOND potential calculation. �e
dashed line box in Figure 6 shows the detailed work �ow of
the potential calculation.

In our solution, we de	ne a structure to store the infor-
mation of every particle, named grid, which is described in
Algorithm 1. �e 
, �, and - coordinates and mass of baryon
are decided by physics model, and the rest variables need to
be solved by the processor and accelerator. In our solution,
the grid structure will be initialized by the ARM processor.

Grid[0]

Grid[1]

Grid[n]

x
y
z

mb
mp
pn
pp

accp
vc

Package 
header

Mass[0]

Mass[n]

Copy

mb for Newtonian
potential

(mb + mp) for MOND
potential

Xmax
Ymax
Zmax

...
...

Figure 7: Illustration of memory copy operation.

However, this structure is not e�cient when transferring data
from memory to pipelines, since the data to be transferred is
not consecutive. To avoid this problem, data to be transferred
are copied to a 	xed consecutive space before starting the
potential calculation, as shown in Figure 7. A package header
which containsCmax,Dmax, andBmax will be transferred at the
beginning of each operation.

5. Experiment and Result

5.1. Experiment Setup. To test our accelerating solution,
we choose the Zedboard as the experiment platform. �e
Zedboard utilizes a Zynq-7020 FPGA-SoC, which consists
of a dual-core ARM Cortex-A9 processor as the processing
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typedef struct{
int x; //x coordinate
int y; //y coordinate
int z; //z coordinate
�oat mb; //mass of baryon
�oat mp; //mass of phantom dark matter
�oat pn; //potential of Newton
�oat pp; //potential of phantom dark matter
�oat accp; //acceleration of phantom dark matter
�oat vc; //circular velocity}Grid;

Algorithm 1

Table 2: Zynq-7020 resource utilization.

Entity LUTs Registers DSP48E1s

Pipeline (simpli	ed) 3826 (7%) 7467 (7%) 15 (7%)

Pipeline (typical) 4417 (8%) 7761 (7%) 24 (11%)

Pipeline (HLS) 7014 (13%) 12132 (11%) 24 (11%)

Accelerator (9
simpli	ed pipelines)

45014 (85%) 80403 (76%) 171 (78%)

Accelerator (7 typical
pipelines)

39616 (74%) 64777 (61%) 196 (89%)

system (PS) and a Xilinx 7-series FPGA including 220
DSP48E1s as the programmable logic (PL). �e maximum
frequency of AXI bus between PS and PL is 250MHz.What is
more, 512MB DDR3 with 32-bit interface is included on the
Zedboard.

5.2. Resource Utilization. Table 2 makes a comparison
between the typical pipeline and modi	ed pipeline as shown
in Figure 5, on resource utilization and the maximum
frequency. We also use HLS (high level synthesis) tool to
generate the pipeline and give the result in Table 2. All results
are generated by Vivado 2015.2 with default options. Notice
that as it is di�cult to generate the accumulator by HLS tool,
all the results of pipeline do not contain the accumulator. In
addition, we give the total resource utilization result of an
accelerator with 9 simpli	ed pipelines or 7 typical pipelines.

From Table 2, we can get that the typical pipeline needs
extra 15% LUTs and 60% DSP48E1s than the simpli	ed
pipeline. Furthermore, compared with the typical one, our
simpli	ed pipeline has achieved a more balanced utilization
between di�erent logic resources, especially in Zynq-7020. As
a result, 2 more pipelines can be integrated when using sim-
pli	ed pipeline.Moreover, when using pipelines generated by
HLS, only 4 pipelines can be implemented.

5.3. Comparison and Discussion. Suppose that an astronom-
ical system contains 32 × 32 × 32 particles that is right
interpreted in a 32×32×32 particle-mesh. Using the particle-
particle algorithm, we calculate the MOND potential distri-
bution of this system through di�erent hardware platforms
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Figure 8: Comparison on performance per watt.

including CPU, GPU, and Zynq-7020, record the practical
run time, and further make a comparison.

�e same C source code is running in di�erent types of
CPUs without multicore parallelization, so the results only
re�ect the performance of a single core. We also run a well-
optimized CUDA code in both embedded GPU and high
performanceGPU. For the accelerator proposed in this paper,
we test two schemes. Both are running at 142MHz, with 9
pipelines integrated; the di�erence is that one scheme utilizes
the bandwidth reducing method mentioned in Section 4,
while the other does not. All results are given in Table 3.
Besides, we also give the power consumption for each device.
As most power consumption parameters are from product
manuals, these items are only for qualitative reference. �e
comparison on performance per watt is provided in Figure 8,
with the vertical axis using a logarithmic scale.

FromTable 3we can evaluate the contributions of o�oad-
ing the coordinate calculation to the FPGA logic. Without
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Table 3: Calculating the potential in 32 × 32 × 32 particle-mesh with di�erent devices.

Computing unit Type
Frequency
(MHz)

�e number of
processor cores or
CUDA cores or

pipelines

s/frame Mpairs/s Power (watt) Speedup

ARM Cortex-A9 Embedded CPU 667 2 345.7 3.106 1.5 1

ARM Cortex-A15 Embedded CPU 2300 4 32.24 33.30 ≈5 10.7

Intel i5-2476m CPU 1600 2 26.97 39.81 17 12.8

Intel Xeon E5-2660 CPU 2200 8 15.75 68.17 95 21.9

Tegra Kepler Embedded GPU 950 192 5.592 192.0 <2 61.8

Tesla K80 GPU 562 2 ∗ 2496 0.1701 6312 ≈100 2032.2

Zynq-7020 (normal) FPGA 142.8 9 1.107 970.0 1.3 312.3

Zynq-7020 (bandwidth
reduced)

FPGA 142.8 9 0.853 1200.5 1.3 386.5

this optimization, the actual performance is 970Mpairs/s
with 9 pipelines, while the theoretical performance is
1285.2Mpairs/s when the frequency is 142.8MHz.�e bottle-
neck is the bandwidth betweenmemory and pipelines, which
is 1724MB/s under this situation. It is corresponding to the
result of paper [11], in which Sadri et al. demonstrated that the
full duplex throughput between memory and programmable
logic of Zynq-7020 was about 1708.5MB/s. However, by
o�oading the coordinate calculation to the FPGA logic,
the actual test performance rises to 1200Mpairs/s, close to
the theoretical value. �is optimization is also bene	cial in
reducing the requirement of memory space, as only mass
instead of mass and coordinates needs to be stored in
memory.

What ismore, by analyzingTable 3 andFigure 8, twomore
points can be concluded. Firstly, compared with CPUs, our
accelerating solution is better in both performance and per-
formance per watt. Secondly, our solution exhibits a higher
competitiveness than GPU in both performance per watt and
performance per cost. For performance per watt, our solution
is about 10 times better thanGPUs likeTeslaK80.�is result is
similar to the result presented in 2009 [10]. However, another
conclusion in paper [10] is that GPU shows about 26 times
better than FPGA in performance per cost. In our test, the
Tesla K80 is about $4000, a Tegra K1 board with 192 Kepler
cores is about $200, and the FPGA board is $395. �is means
that our solution shows about 50% higher than GPU in
performance per cost.

6. Conclusion

In this paper, we propose a highly integrated accelerating
solution based on FPGA-SoC for �-body MOND simu-
lation. �rough making full use of DSP48E1 in Xilinx 7
series FPGA, we simplify the classical potential summation
pipeline to reduce the utilization of logic resources. Twomore
pipelines can be integrated in Zynq-7020 with our simpli	ed
pipeline. What is more, we reduce the bandwidth require-
ment between memory and pipelines based on the char-
acteristics of particle-mesh scheme, which can also reduce
the requirement on memory space signi	cantly. �e exper-
imental results indicate that the performance of our solution

is close to the theoretical value. It also shows that our
accelerator ismuch better thanCPU in both performance and
performance per watt, about 10 times better in performance
per watt when comparedwithGPUTesla K80, and about 50%
better than a GPU-based solution in performance per cost.
Future work in this area involves formatting and testing the
performance of an accelerating cluster combined with several
FPGA-SoCs.
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