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Summary. The nature of charged particle - 
complex nuclei reaction cross sections suggests 
an isotope conversion accelerator in which a 
circulating beam kept at constant energy re- 
peatedly traverses a thin target. Statistical 
deviations in target energy Loss and emergent 
direction induce betatron and synchrotron 
oscillations. These Limit the number of tra- 
versals before particle loss, but to useable 
values. However, the requirements of storage 
ring injection may reduce the advantage of this 
accelerator over conventional types. 

The cross section for a charged particle - 
complex nucleus reaction taking place is appreci- 
able only if the incoming particle (p) has an 
energy of the order of the repulsive potential 
between the incoming particle and the target 
nucleus (t), the so-called Coulomb barrier,given 

by E c = (i/4-7co)zpzte2/~, R = (~p+~t) 

= Ro(A l/3+A l/3) R 
P t ' o m (L.4~.L)x10-15m, 

where R Z 
P. t’ p.t 

are the respective radii and 

charge numbers. 
The cross sections for reactions are pre- 

dicted fairly well by two complementary theories. 
The continuum theory predicts a cross section 

CT cont. w dR+d(l-U/E>, Eb > EC; ccont -. 0, 

Eb < EC, where Eb is the bombarding energy and 

U = EcR/(R+K>, E = Eb(c.m.) = (1;*/2mpa2) 
,Eb(lab.). For Eb -Ec, ocont has no simple 

analytic representation but has a smooth transi- 
tion between the other two Limiting forms. The 
compound nucleus theory predicts a cross section 
made up of a sum of Lorentzian resonances'with 
resonant energies Ei somewhat above the energy 
at which the particle reaction becomes energeti- 
cally possible. 

uco"p. = ~',Ai!r(E-Ei)*+(r./*)*], 
1 

where Ei is the i th resonant energy. For 
charged particle bombardment of complex nuclei 
at (10 < Eb < 100) MeV, r/2 _ (o.l-0.15)Eb. With 
the nuclear radius as an adjustable parameter, 
c cont. 

willrepresent essentially an average of 

"camp.' Figures 1 and 5 are classic and typical 

examples of the nature of p and & reactions on 
complex nuclei. The cross sections are seen to 
have peak values of the order of L b and are 
broad enough to be fairly constant at the peak 
value over an energy range Ei r 0.5 MeV. Fig. 5 
illustrates the possibility of obtaining a given 
nuclide in more than one way. 

Thinking of the accelerator as a machine 
for converting a given isotope into another the 
question arises, as with all machines, as to 

what the maximum attainable yield is per energy 
input. If the charged particle reaction is the 
final desired result, the maximum yield will 
occur when the bombarding energy corresponds to 
the peak value of the cross section for the pnr- 
titular reaction. The absolute minimum energy 
which can be expended is the energy of Coulomb 
interaction that is required to pass the beam 
through the target at an energy corresponding to 
the resonance energy. Letting R be the reaction 
rate (l/cm2-sfc); I,<,, no. of target nuclei (l/cm2); 
C+J, flux of incident particles (l/cm2-set); 0, pe& 
value of the cross section for the reaction (cm2); 
P, power input of the target (W/cm*-see); W,, 
weight of target atoms (g/cm2); (dE/dx), specific 
energy loss at - Er (.J/(g/cm2)); A, at. wt. (g); 
and L, Avogadro's no., R = n,~, P = Wa(dE/dx)ip 
= na(A/L)(dE/dx)y; (R/P) = g(L/A)(dE/dx)lL 

While this seems like a rather unrealistic 
criterion to measure the performance of a machine 
by inasmuch as it neglects the acceleration 
energy, ion source energy, etc., considering it 
led to the following machine concept, termed the 
recycle accelerator, illustrated in Figure 3. 
Neglecting for the moment the details of in- 
jection, pulsed beam at energy Ei+ ,$E/2 is put 
into a storage ring intercepted by a target of 
thickness CE <r/2. After passing through the 
target, the beam enters an acceleration station 
which restores AE to the surviving particles 
(the vast majority, by a factor 

- (ue/on) - (lo-l5 cr~'/lO-2~ cm') = lO':L, 

where 0, and un are typical atomic and nuclear 
interaction cross sections). These then pro- 
cede in orbit until they intercept the target 
again. A particle recycling N times will dis- 
sipate an amount of energy N&E (supplied by the 
radio frequency accelerating station), which, for 
N - (10-100) could be comparable or even greater 
than Eb. 

Coulomb scattering of the charged particle 
in the target, rather than a nuclear reaction, 
might be expected by the above argument to play 
the dominant role in determining the average 
number of traversals. Tn fact, it will be demon- 
strated that while the accelerating radio frequcn- 
cy gap can replace the mean energy loss in the 
target AE, the random angular and energy devia- 
tions which cannot be corrected for will eventual- 
ly Limit the total number of traversals by harm- 
fully perturbing the normal betatron and synchro- 
tron oscillations. In the following summary of 
useful classical Coulomb scattering results, 
(Nt,N ) are the number of tar&et nuclei and 
electzons per unit volume, (e,m,) are the 
electron charge and mass, (p,v,m,) are the 
bombarding particle's momentum, velocity, mass: 
fix is the (geometric) target thickness, 
cezt> eZ ) are the target nucleus and particle 
charge,P(b(max), b(min) are the classical maximum 
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and minimum impact parameters, I is the hydrogen 
atom ionization potential,eo is the dielectric 
constant of free space, c is the speed of light, 
(A 

z 
,At) is the particle or target nucleon number, 

an n.r. stands for "non-relativistically". Then 
it is found that the mean square of the angle by 
which a particle deviates from its original 
direction after passing through Ax is 

(a*) c=z 
N 2 2 2 2e4 

" 2 -+ +- BAx, 
(477eo) p v 

B = ln(b(max)/b(min)). 
any plane, 

The projectiqn of ? yn 

and, 
ey, has a mean square (Ey ) = f/e ! 

to a good approximation, is Gaussian distri- 
buted: 

P($,)dB 
Y 

= (qa2))-% exp (-ey2/(e2>)d6,. 

The mean energy loss is 

AE +-&)($)BAx, 

with a mean square deviation from this value of 

((&E>*) w *2 Zp2e4NeAx. 
(4noo) 

From these may be derived 

Z2 m Z 
-L=LL 

Eb mp Eb ' 
m 

(mp&E/B) ";'.2 + - 
0 

JE Eb 

P B' 
Some useful approximations are: 

2 

b(max)/b(min)) r_ 
2v me 2 nGr.4Ebme 

I[1-(v/c)21 
- (v/c) --> 

Im 
P 

where I 0 I 2 0 t' 
IO the ionization potential of 

hydrogen, Zt F= %A?, and, using "p -Ap(L837 me), 

(QL)&Wi -5.5x10-4(Zt/Ap)Eb-1. 
The value of Eb used will depend somewhat on the 
target nucleus, being at least greater than the 
Coulomb barrier Ec. Since it would seem that the 
bombarding energy would probably not be greater 
than 4Ec, a reasonable value for estimates would 
he the geometric mean between these or Eb = 2Ec; 
this representative value will be used in sub- 
sequent Calculations. Figure 2 assumes this in 
illustrating how ((a2)/-AE) changes with ~~ 
protons and alpha particles. 

for 

To consider the betatron oscillations first 
the axial and radial deviations from a point s 
on the equilibrium orbit obey equations of motion 
given to first order respectively by 

(d2z/ds2) = -[n(s>/p2(s)]z, 

which, 
(d2x/ds2) = -[(l-n(s))/p2(s)]x, 
for In(s)\ >Y, 1 can both be written as 

(d2y/ds2) = *[n(s>/p*(s)ly = c(lnl/p2)y, 
where n(s) = -(p(s)/B)(Wa~), P = (p/$3), 

q = eZ ; t: = i 1, depending upon whether the 
ParticuPlar region is focusing or not (focusing 
for axial deviations is defocusing for radial 
deviations, vv, B is the magnetic field intensity, 

y stands for either axial or radia,l deviation.The 
most general solution is y(s) = C~~cosv[cp(s)+cpo), 
with, V,@(S) and y(s) functions of the parameters 
of the magnet ring. For simplicity, assume a 
circular ring (no straight sections) with 2M mag- 
nets whose radial gradients alternate in sign but 
are of the same magnitude, with B constant over 
the (circular)equilibrium orbit. 
In\ = no, 

Then p(s) = r, 
2M = 2n(r/L), (where $, is the length of 

equilibrium orbit through a magnet), and 

\J zz (r/2,!,,)cos-L[cos(no'"-ir)cosh(no'~/r)] 

*~~~~ = &fL . 

(rj.e)kjl + (no/8)(~/~'sin(ns/d)] -y(r/v)-ti, 

v(s) 2 (s/r) + (no/n)(P,lr)3cos(~s/~) 2 (s/r), 

which expressions are valid assuming 

the periodicity of 8% is of fairly higher fre- 
quency than the argument of the cosine. These 

frequencies are in the ratio (/i?/no)(I./r)' 

= V5h2) (M2ho) and so even with n 
0 

- (loo-300), 

this can be the case; similarly the amplitude of 
the sin(nsll) term in 8, (n /r)(&/r)2 = (~?/4) x 
(no/M*) can be fairly smallgr th n 1 
0.3. 9.' 

say 0.1 to 
Then y = ym[l+(no/8)(L/r) sin(ns/t)] x 

cos(ks+qo') where y, =C(r/w)' is the average 

amplitude, being modulated so that the amplit de 
never gets larger than yam2 ym[L+(no/8)(~/r)Y] 

= y,f, with f being a sort of form factor, 

“0’ 
= "cpo+o(r~/r)3, and k w (noL/JZ r2) = (L/r). 

Choosing the zero of s so that (F; is zero, 
y zymfcosks 
modulation, 

and neglecting the higher frequency 
y' = dy/ds = -k y,fsinks. 

with y(s) = y,(s), suppose that at s = s 
Starting 

target position), y' - y'+b . 
.t (the 

5":~~';,E':~;,ytSS),~~cOmesE 

tion always oczurs 77 

:(sy = ~~~~):;8:;k;e~diLy 
v. Since these perturba- 

at t e same point in the orbit, 
they will add coherently to give after N trav- 

ersals YN = ymcosks +sink(s-st)~=l(6y)i, (6~). 1 
= (K/v)(8 >. Y 1' where ym casks represents the 
originally present betatron oscillation. The 
number of target traversals a particle makes be- 
fore being lost through collission with the beam 
pipe will be determined by its betatron oscilla- 
tion amplitude becoming so large as to become 
comparable with a dimension of the beam pipe. 

The above equation leads to the following 
physical picture (see Figure 4). Consider an xz 
plane in which the overall betatron oscillation 
amplitude is a maximum. In that plane the 
successive perturbationsof amplitude may be re- 
presented as vectors with random azimuthal angles, 
whose magnitudes are determined by the immediate- 
ly preceding value of 6 given the particle by the 
target. The components of the individual pertur- 
bations may be taken along any particular 
direction (chosen in Figure 5 to be that for 
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which the aperture of the beam pipe is smallest); 
these would correspond approximately to the (EY)~, 
and of course also add up to the magnitude of yN 
after N traversals. (They would exactly equal 
(6~)~ if yo were zero, as shown in Figure 5, 
and the xz plane in question would then be any 
such that sink(s-st) = i 1.) 

The problem of how many traversals will 
be made on the average before loss can be treat- 
ed as a 
barriers 9 

roblem in random walk with absorbing 
, and readily solved if some reasonable 

approximations are made. The (Ey)i are Gaussian 
distributed with respect to the incident particle 
direction, but it will be assumed that the distr* 
bution is Gaussian with respect to the direction 
of the equilibrium orbit at the target location. 
Then it will be assumed that the Gaussian distri- 
bution of the amplitudes (by). can-be replac d 

5% by an appropriate constant "a&e Ty = e((&y) ) , 
e = i 1 randomly. This replacement is exact if 
the absorbing barriers are at infinity,3 so it 
will be assumed a reasonable approximation here. 

The equilibrium orbit is assumed to pass 
through the zero of a y coordinate axis perpendi- 
cular to it extending from -a/2 to i-a/2 where a 
is the smallest dimension of the beam pipe. 
The interval -a/2 to +a/2 is divided into 
2j(a/2)/%': intervals ([w] meaning the greatest 
integer in w). Let $ = [ym] be the.integer 
corresponding to the interval y is in and (N(G)) 
the expected or mean number of traversals for a 
particle "located" at $ before it reaches for the 
firzt time the boundary (thus being "absorbed") 
at y(max,min) = i[(a/2)/SyJ = g/2. The relation 
between (N) for a particle at $ and one to either 
side of it is (N(Y)) = (~(N(~~+~))+B(N(~-L))+L, 
with (N(y(min))) = (N(y(max))) = 0, where@ is 
the probability of the particle at 9 taking its 
next step towards $(max), and 8 the corresponding 
probability for the step to go towards $(min), 

@-I-'b= 1. This finite difference equation has as 
solutions obeying the above boundary conditions A 

P#0 

It is consistant with the approximation 
that @ is distributed symmetrically about the 
equilibrium orbit direction rather than the 
incident direction to choose the Latter solution, 
i.e., no bias irrespective of pre 

Y 
ious dev'ation. 

$ Thus letting (y/F) -5 and ((by)-) -,(z) , 
2 2 (a/21L-y L 

(N) 
(a/2) -y 0 

beta z 
cm2 

i= 
((hY>2) * 

Here y, represents the initial displacement 
in the plane where the betatron oscillation has 
its greatest amplitude. (An average of (N)beta 

can be made over a known distribution of yo). Its 
maximum value is for y=O, i.e., a particle start- 
ing out on the equilibrium orbit. 

This solution of the random walk in one 
dimension is the solution of the real problem 
only if the aperture at right angles to the 

minimum dimension which y was chosen to repre- 
sent is infinite. This is because even if 
deviations in one direction are completely 
independent of those in the other direction 
perpendicular to it, the two random walks are 
coupled in the sense that terminating one 
automatically ends the other. The (N) found 
is thus conditional on the other walk not having 
ended. An exact treatment of the problem would 
require consideration of ttie shape of the absorb- 
ing barrier. One expects, however, the above 
solution to be a reasonable approximately if it 
is for the minimum aperture and the other dimen- 
sion is several times larger. Thus for a parti- 
cle starting out on the cquilibrum orbit 

This function is plotted in Figure 6 assum- 
ing (a/r) =0.125, i.e., 12.5 cm for an equilibriun 
orbit radius of 1 m, and Fb = 2E,, for protons 
and alpha particles, and for assumed target thick- 
nesses of 0.1 and 0.5 MeV. These latter values 
are smaller than allowed by (r/Z), being Limited 
by the likely maximum acceleration voltage per 
turn which can be achieved in practice, bearing 
in mind that the target loss must be made up 
completely before the particle enters into the 
magnetic field again, if the particle is not to 
receive too large a perturbation. 

To consider the effect of synchrotron 
oscillations: assume the particle passes through 
the target2lpsing an average energy AF with vari- 
ance ((EE) )*. With the accelerator gap in close 
proximity to the target, the particle will arrive 
at the gap with the same phase as if there were 
no energy loss variance. The second time around, 
however, there will be a phase error <=rp.tps, and 
the non-synchronous (F will oscillate about the 
synchronous 'ps according to 

(Fs/h~s2P)(d2~/dt2) - (qVm/2n)(sincp-sincps) = 0, 

I- f (a-l-y = -(ys2-l)-1 

with Es, w the synchronous orbit energy and 
angular frgquency, a the momentum compaction, 
defined below, ys = (Es+mpc2)/mpc2. If 5 is 
small, then the above becomes (d2?./dt2)+& = 0, 
Q2 m -qVmhy21cos~,/2nEs; 5 = 5,cosf&, choosing 
t=O appropriately. Causing the particle to 
deviate impulsively from Es by bE, will change 
(dcp/dt) = (dz/dt) by an amount a(dz/dt> 
= hqPfiE/E, resulting in a change of amplitude 
for 5 given by a(d</dt)/R, in a manner similar 
to the previous calculation. After N traversals 

N 

5N-50 = TN-To = siti(t-tt)(hms~/S&s)~ (6Eji 

N 
i=l,N 

= sinQ(t-tt) 
1 (W) . 1 

i=L,N 

This can be considered a random walk of the vari- 
able (p with absorbing boundaries at the limits of 
phase stability. 1,etting the acceptable limits be 



482 IEEE 'TRANSACTIONS ON NUCLEAR SCIENCE JUT-E? 

ys & AT, then as in the previous calculation, the 
average number of traversals before the particle 
is lost is 

(N) synch,,y w [(A@* - (~o-~s)2]/((6@*), 

where ((a& = (hW,r/@s)2((6E)2) = 2(hqr/@,)*x 

(me/mp)Eba/B, E = Eb. Using AE = qVmsin~s, 
S 

[h(N) synch.,cp /(A’P)2!max = (4n)-l(mp/me)Bcot&. 

The basic requirement that &E = qvmsincp, means 
that cps cannot be made arbitrarily small (as the 
above relation implies would be desirable) since 
a burden is placed on the accelerating gap to 
support a correspondingly increased V . With 
present technique, Vmsin[ps = (0.5-l.Oy MeV/turn 
is probably the maximum reasonable. In Figure 7 
it has been assumed that 'ps = n/4 (this accelera- 
tor is always operating below the transition 
e-23); the result is independent of AE because 
of the implicit approximation made above that the 
energy gained per turn remains qvmsincp, even as 
151 increases. The effect of synchrotron 
oscillations on the radial excursion can be also 
calculated similarly,starting with the definition 
of a: 

(dr/r) n n 
-1 

(6p/p) 
n&r. &1(6E/2Es), 

C(h)*) = (r/2&,)*( (6E12). 
Then (N)synch = [b2-(6r) 2]/((6r>2), where b 

is the radial*iierture, and's0 ((N)synch.,r)max 

= 2(b/r)2a2(Eb/DE)(mp/me)B. It is easily seen that 

09 synch.,r " (N) synch.,tp or (N)beta so that 

either of the latter dominate the particle loss 
process. It can be seen, however, that these are 
large enough so that isotope conversion would 
become greatly enhanced compared to a convention- 
al"single-pass"accelerator by a factor N, (or 
N/2 considering the injector represents a 
capital investment comparable to the recycle 
accelerator). 

The above calculations for (N) were carried 
out as though the processes were independent of 
one another. Even if they were, just as in the 
case of the two dimensional random walk, dis- 
cussed before, the (N) for the whole process 
must be less than that calculated separately 
for any of the contributing processes. It is 
reasonable though to take the smallest value, 
particularly if appreciably smaller, as a reason- 
able approximation. As seen in Figures 6 aqd 7, 
taking reasonable values for v, h, and (Arp) 
(say 8.75, 1, 0.5), usually gives (N) >> 1. 

In order for the full potential of the 
recycle accelerator to be realized the injector 
would have to deliver a beam with a pulse 
repetition frequency %/2Tr. Thus single turn 
injection is ruled out. 

While an initial, injection-caused betatron 
oscillation might cause the inflector septum to 
be missed the first few cycles, there is no 
net acceleration per cycle, thus no damping which 
would allow traversals after the initial few to 

miss the septum altogether as in some convention- 
al accelerators. Moreover, the high n value 
counted upon to increase (N)beta works against 

this injection possibility. The conventional 
storage ring injection scheme has a decelerat- 
ing gap with a frequency varying periodically 
(Figure 3) so that the equilibrium orbit goes 
from r to r-br adiabatically (assumes injection 
from outside the ring). One might think the 
same effect would result if the accelerating 
gap had Vm varied similarly from (AE/qsincps) to 
(E-6>lqsinrFs, causing a given particle to tend 
to spiral inward. In either case, in view of 
the sensitivity exhibited to phase error induced 
by a 6E, these last three methods could only 
work as compromises which would result in the 
injection efficiency being appreciably less than 
unity. No calculations of injection efficiencies 
have been made yet however. 

In conclusion it can be seen that provid- 
ing injection losses do not nullify the gains 
obtained by recycling of the bombarding particles 
through the target there may be an appreciably 
greater isotope yield per capital investment and 
operating cost if the recycle accelerator concept 
is employed, as (N) can be a fairly large 
compared to unity. 

We would like to thank Drs. J. W. Bittner 
and E. D. Courant for enlightening discussions. 
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