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ABSTRACT: Design and Access Path Data Models are 
presented to form an integrated framework for log- 
ical and physical database design in a heterogene- 
ous database environment. This paper focuses on 
the physical design process. First, a physical 
design is specified in terms of general properties 
of access paths, independent of implementation 
details. Then, a design is realized by mapping the 
specification into the storage structures of a 
particular database system. Algorithms for assign- 
ing the properties to logical access paths and for 
realizing a CODASYL 7b DBTG schema are given. 

1. Introduction 

As the trend towards distributed database systems 
continues to gain in momentum, the problem. of 
database design in a heterogeneous environment is 
becoming crucial. We view a distributed database 
system as being built on top of existing systems 
available at the local sites of a computer net- 
work. If a distributed database is to evolve 
naturally, there must be support for extending it 
to the underlying heterogeneous systems. 

Database design is complicated by the diffi- 
culty in designing physical databases for a 
variety of storage structures supported by the 
underlying systems. We follow [CARD751 in parti- 
tioning the physical design process into its 
implementation oriented (access path selection) 
and implementation dependent (storage structure 
choice) aspects. A physical design is specified 
in terms of basic properties of storage structure 
without making a commitment to an actual implemen- 
tation. A design is “realized” by mapping the sys- 
tem independent specification into the storage 
structures available in a particular database 
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system. Analytic methods, such as [CARD73, GOTL74, 
CARD75, YA075, SILE76, DUHN?S, SCHK78], can be 
used in the latter step. Our contribution is to 
provide an integrated framework for logical and 
physical design, and to provide design tools with 
a high degree of independence from the underlying 
data models and systems. 

In this paper, we propose the concept of an 
access path data model for physical design. The 
access path model has grown out of the attempts to 
extend our work with the Design Model [WONG79] to 
problems of physical database design. The term 
“data model” is used in a generic sense to mean a 
collection of data object types, such as attri- 
butes and relations in the relational model. 
riSchemall is used to mean a specific choice of data 
objects to represent a database, such as a choice 
of specific relations and associated attributes. 

The access path model can be viewed as an 
interface between the logical view of data and the 
access methods and storage structures chosen to 
support that view. In terms of the language of the 
ANSI/X3/SPARC report [TSIC77], it mediates between 
the conceptual and internal schemas. 

We are not the first to exploit the useful- 
ness of an access path model. The DIAM (Data 
Independent Access Model) framework [SENK73] is 
structured into four levels consisting of entity 
set, string, encoding, and physical device models. 
The string model is most closely associated with 
our notion of access path model. Although the DIAH 
model is a significant contribution, we believe 
that our formulation of access path is more 
natural and easy to understand. In addition, the 
access path schema is oriented towards the problem 
of physical design, rather than a general model of 
data management systems. 

The paper is organized as follows. A semantic 
data model is presented which is the basis for our 
approach to database design. Logical access paths 
are represented by functional interrelationships 
between objects. The access path model is defined 
to capture those functions which can be used to 
efficiently access objects in the physical reali- 
zation of the database. A methodology for specify- 
ing an inplementation oriented physical design is 
given which is based on assigning the highest 
level support for the most frequently traversed 
access paths. A simple-minded approach for mapping 
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a design specification into the storage structures 
of CODASYL DBTG systems is included. We conclude 
the paper with a discussion on future directions. 

2. The Design Model 

The design model is the starting point for 
our approach to database design. It has been for- 
mulated to capture the kinds of integrity con- 
straints supported by the relational and DBTG 
models, yet remains independent of them. The model 
is based on a variation of the entity-relationship 
model [CHEN76] and has been influenced by the 
semantic data model of CSCHM751. A more complete 
discussion of the design model and its application 
to logical design and schema conversion can be 
found in [WONG79]. 

For each instance of time t, let E,(t), 
E (t), . . . E (t) be n distinct sets, which are 
c&led entit; s%ts. A propertv of an entity set 
E(t) is a one-parameter family of functions ft, 
mapping at each t E(t) into a set V of values. 
Eecause f is defined for every element of the 
domain, i+! is a total function. As an example, 
consider the following entity sets and properties: 

entity sets properties 
em ename,birthyr 
dept dname,location 
job title,status,salary 

A relationship R among entity sets E (t), 
E (t), E (t) il 
pgoduct ‘E’(t’) XnE 

a subset of the cart Sian .A 
(t) 

t. Proper ies of 1. Q 
X . . . X E (t) at each time 

elationships r;hay be defined in 
an analogous way to properties of entity sets. 
Relationships are assumed to be independent, i.e. 
not derivable from other relationships, and 
indecomposible, i.e. not equal to the join of 
their projections into subrelationships. For 
example, the following two relationships specify 
the employees qualified to hold each job, and the 
jobs allocated to a given department. Ig Number 
allocated” may be specified as a property of 
llallocationl’: 

relationshiPs pronerties 
qualified( job,emp) --es 
allocation(dept,job) number 

We further distinguish the types of relation- 
ships recognized by the design model. A binary 
relationshin R. on entity sets E.(t) and E,.(t) is 
single-valued tin E (t) -if each’ entity of E (t) 
occurs in at most ode instance of R,. Intuitiv ly, k 
we may think of R as representing % function from 
E (t) into E (t),$ecause each entity in E (t) can 
be related ?o no more than one entity 1 -d E (t). 
‘If- each entity in E,(t) occurs in exactly2 one 
instance of R R ib called an association. We 
mav think of d’ ast representing a total function. 
Single-valued Relationships which are not associa- 
tions can be thought of as partial functions, 
because at a given point in time, the function 
need not be defined over all entities in E (t). 
Associations are used to model the situatio& in 
tihich the domain object can exist only if it is 
related to some range object. If an object in the 
range of an association is deleted, then the 
objects in the domain no longer occur in an 
instance of R . 
to maintain t k 

Therefore, they must be deleted 
e totality of the function. Examples 

of associations include: 

works-in (emp,dept) 
assignment (emp, job) 

which represent the facts that an employee must 
work-in some department at all times and must be 
assigned to some job at all times. An example of a 
single-valued relationship which is not an associ- 
ation is: 

q gr (dept,emP) 

which associates a managing employee with a 
department, although a department can exist 
without a manager. 

Explicit provisions for value set definitions 
have been omitted in our model. A subsystem such 
as that proposed in [MCLE76] could be included, 
but existing systems do not support sophisticated 
domain definition. A simpler approach is to use 
the primitive data types supported by most systems 
for the domain definition (e.g., integer, 
char(lO), etc.). 

Our design model can be reformulated to 
represent logical access paths in terms of total 
and partial functions between objects. This is 
similar to the approach taken in the functional 
data models of [BUNE79] and [SHIP80]. The objects 
of the schema are the value sets, entity sets, and 
relationships. Single-valued relationships are 
partial functions, while associations and proper- 
ties are total functions. In addition, total func- 
tions can be defined to map a relationship object 
into the entity set objects over which it is 
defined. 

The above example is reproduced here in terms 
of the functional viewpoint (some abbreviation has 
taken place): 

total functions 
ename : emp --> char(20) 
title: job --> char(l5) 
birthyr: emp --> integer 
salary: job --> integer 
dname: dept --> char(l0) 
works-in: emp -4 dept 
location: dept --> char(20) 
assignment: emp --> job 
qual-emp: qua1 -4 emp 
qual-job: qua1 -4 job 
allot-dept: allot --> dept 
allot-job: allot --> job 
number: allot --> integer 

partial functions. 
mgr: dept --> emp 

A design schema can be represented graphi- 
cally. Let I = (V,E) be a directed graph with set 
V of vertices and set E of edges. For each object 
in the schema, there is a vertex in V. For each 
function from object to object , there is a 
directed edge from thle vertex for2 object to the 
vertex for object . Value objects are replesented 
hv black vertice , G non-value objects by white. 
-.s -- 

The graphical representation ‘of the example schema 
is shown in figure 1. 

1. The Access Path Model 

The functions of the design model represent 
logical access paths that can be used to navigate 
among the.obj_eqts of the schema. For example, 
WORKS-IN(ENAME (vfred”)) gives us the department 
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figure 1 - Graphical Representation 
of Schema 

that Fred works in. The access path schema is con- 
cerned with those functions and inverses that are 
“supported” for efficient access by the underlying 
database system. “Support” is used in an opera- 
tional sense to mean that the time to perform a 
supported access is less than the time to perform 
an unsupported one. 

When used to access objects, logical access 
paths are called access mappings. An access map- 
ping may be defined for either a function or its 
inverse. To make it possible to compose access 
mappings, we extend the definition to allow them 
to be applied to sets of domain objects. An 
access mapping is suvported in the storage struc- 
ture if the database system can efficiently per- 
form the desired access, i.e., the time to access 
an object via a supported access map is less than 
the time to scan the object set exhaustively for 
the desired object(s). If an access mapping is not 
supported, it is an unsuDoorted access mapping. 
Supported access mapping is our terminology for 
the usual notion of access path. 

An access path schema consists of the objects 
of the design schema and the supported access map- 
pings. A graphical representation similar to the 
one proposed in the previous section can be used 
to represent an access path schema. The schema 
must continue to represent all logical interrela- 
tionships, whether or not they are efficiently 
supported. For example, WORKS-IN associates with 
each employee a single department. If WORKS-IN is 
not supported, we must still be able to access the 
associated department, albeit not as efficiently 
as if the mapping had been supported. To accom- 
plish this, we introduce the concept of identif- 
a. An identifier is a l-to-l property of an 
entity set which is used to uniquely represent 
each entity in the set. An unsupported access 
mapping between employees and departments can be 
represented instead as an access mapping between 
employees and the identifier value set of depart- 
ment . 

(supported) WORKS-IN: emp --> dept 
(unsupported) WORKS-IN: 

emp --> identifiers of dept 

The access path schema, together with the 
assigned storage structure properties (introduced 
in section 4.1), captures the effects of storage 
structure support without committing the schema to 
a particular implementation and without sacrific- 
ing any of the interrelationships of the design 
schema. WORKS-IN can be used to navigate directly 
between employees and departments only if the map- 
ping is supported by the underlying system. It is 
immaterial whether this support is furnished by a 
physical pointer between employee records and 
department records, an index that maps employee 
identifiers into department records, or some other 
technique. 

4. Physical Database Design 

The access path schema provides a useful 
interface between the user’s logical view of the 
data and its physical implementation. In this sec- 
tion, we will describe an implementation oriented 
physical design methodology nhich is largely 
independent of the specific database system and 
data model. The implementation dependent aspects 
will be discussed in section 5. 

The approach is to generate designs which 
provide the best possible support for the most 
travelled access paths, without conflicting with 
the support for other paths. A specification of 
the user’s expected access patterns is used to 
direct the design process. A system specific map- 
ping is then invoked to implement the access path 
schema by choosing storage structures supported by 
the target system. 

3.1 Algebraic Structure for Physical Design 

For the purposes of implementation oriented 
design, we shall use the logical access paths of 
the design schema. An access path schema may be 
used to represent those paths actually chosen for 
support. Properties of an access mapping can be 
formulated to capture desirable characteristics of 
traversing the mapping in either the functional or 
inverse functional direction. Consider the schema 
function f: A --> B. The following properties of 
the mapping can be defined: 

(1) 

(2) 

(3) 

(4) 

Evaluated : given a in A, f(a) can be found 
without an exhaustive scan of B, i.e., the 
cost to access f(a) is less than the cost to 
access every element of B. 

: Indexed given b in B, f”(b) can be found . 
without an exhaustive scan of A. 

Clustered : the elements of f”(b) are in 
close proximity, i.e., the cost to access the 
elements in the inverse is less than the cost 
to access an arbitrary subset of the same 
cardinality. 

Placed : Well a and f(a) are stored in close 
proximity, I .e., the cost to access both is 
less than the cost to access them separately. 

We make the critical assumption that each 
object of the schema, be it a value, an entity, or 
a relationship instance, is assigned to a single 
stored record. Replication, e.g., the replication 
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of data item values to record instances, will be 
made explicit by introducing new objects into the 
schema. The usual concept of Vecord” can be 
represented as a concatenation of the stored 
records of the values that make up the fields of 
the record. Our approach does not preclude the 
record segmentation and allocation techniques 
described in [SCHK78]. Given this assumption, 
certain implication rules can be formulated: 

(i) well DlaCed z=> evaluated 

By placing f(a) near a, a fast way to get from the 
domain to the range is automatically provided. It 
is no longer necessary to scan the entire set of 
range objects to find the desired one. 

(ii) clustered ==> indexed 

By placing elements of f-‘(b) together, an exhaus- 
tive scan of all the domain objects of f is not 
necessary. The scan is considerably speeded up by 
placing the objects together. 

(iii) well placed ==> clustered 

Let b = f(a). Well placed means that a and b are 
stored together. Since there is one record for 
each b instance, all A objects with b in the range 
of f will be placed near b and hence near each 
other. Thus clustering is achieved. 

For systems without index storage structures, 
it is possible to have a mapping which is 
evaluated but not indexed. For example, an 
employee’s name may be stored in the record that 
represents the employee, with no storage struc- 
tures available to access the record via an 
employee name. The opposite is possible as well. 
Some inverted file systems allow access to a 
record through a value that is not stored in that 
record. For example, an employee’s name may not be 
stored with the record that represents the 
employee, but an index on employee name is avail- 
able. Thus evaluated need not imply indexed and 
vice versa. 

The implication rules can be used to impose a 
partial ordering among the properties: 

b w-4 
A 

W>C>I 

T 

E W>E 

10 

A u is an assignment of properties to an edge 
of the integrity schema. There are six distinct 
labels: W, <C,E>, <I,E>, C, I, and E. Our algo- 
rithm will generate schemas with maximally sup- 
ported access paths. We assume that all access 
paths are at least evaluated. Therefore we deal 
only with the first three labels, denoted as VP, 
“C”, and IrP. A labellinq is an assignment of a 
label to each edge of the schema, denoted as an 
n-tuple (1 1 . . . 
of edges id ‘thz’schema). 

1 ) where n is the number 
l%e assignment is subject 

to constraints which are shown below. The partial 
‘ordering among properties induces a partial order- 
ing among labels as well: UW’l > llP1 > l’I1’. A par- 
tiai ordering can be defined for labellings. Let 
L, and L be two labellings over the same schema. 
We say zh g’L.$ at L if for each edge in the 
schema, L,‘s a signe label is the same as L ‘s 
assigned label. We say that L > L if for e ch E 
edge in the schema, either L 
the same as L2’s or L2’s 

,e2s asslgned label is 
lab 1 > L, s, and L, f 

L . Note that under this definition, some label- 
lzngs are incomparable, e.g. L, = (18W”,t’C”) and L 
= (WC” , “W”) . 2 

An obvious approach to achieving a maximal 
labelling is to assign “WV’, the label that 
represents the highest degree of support, to each 
edge. Unfortunately, certain labellings represent 
a choice of properties which can not be supported 
simultaneously within a schema. There are four 
constraints which conflict-a labellings must 
meet : 

(i) cluster constraint: it is not possible to 

It is not possible to partition the domain on more 

label,more than one outedge of 
a node with a V’ or nWgr. 
Clustering places together all 
domain objects which are 
mapped into the same range 
object . 

than one function and still achieve this advanta- 
geous placement. Note that l-to-l properties do 
not cause a conflict because a l-to-l function 
partitions the doaiain objects into clusters of 
size one. This can always be supported regardless 
of additional clustering. 

(ii) placement constraint: it is not possible to 
label more than one inedge of 

~1acZfZt $tes ‘Zster% 
domain objects with a common 
range object near that range 

object. It is not possible to achieve this advan- 
tageous placement simultaneously for domain 
objects from more than one function. 

(iii) placement-cluster constraint: it is not pos- 
sible to simultaneously label 

t$-& 
an inedge of a node ltWtl while 
labelling an outedge V”. The 
placement of X object clusters 
near their 

associated Y ,objects destroys the advantageous 
clustering of the Y objects. l-to-l functions do 
not cause the constraint to be violated. 

(iv) imDlied constraints: Certain compositions of 
‘CM functions and their properties 

“w’ 

c 

result in the violation of one 
of the above constraints. For 
example, this schema would 

Hc’ cause a violation 
of an implied cluster constraint. 

The above constraints are conservative in the 
sense that the desirable properties of placement 
and clustering can be achievedi even if the con- 
straints are violated. However, this tends to be 
sensitive to the parameters of a particular sys- 
tem. For example, in constraint (ii), if clusters 
from both domain object sets can fit on the same 
page, then simultaneous well placement can be 
achieved. 

The degree of a schema IS the number of vio- 
lations of placement or cluster constraints that 
may be made during, the labelling process. Each of 
these violations can be resolved if we introduce 
the replication of objects. Assume that the 
schema is labelled as in (i). A confliot is a vio- 
lation of a cluster or placement constraint. A 
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cluster conflict can be resolved by one of the 
following methods: 

(A) A “I” A’ (B) A “C” AC 

In (A), a copy of the domain ob jeot is made, and 
both the original and the copy are clustered on 
the appropriate ranges. In (B) , a copy of the 
range is made and placed in one-to-one correspon- 
dence with the original domain object. To illus- 
trate this, consider the entity set employees and 
the value set integers, interrelated by the pro- 
perty function age. Schematically, the following 
situation can arise: 

employees integers 

The effect of type (B) cluster resolution is to 
replicate the age values so there is one age value 
per employee : 

emplovees emp-ints integers 

A placement conflict is resolved in an analo- 
gous way: 
(A) A “1” A’ (B) A “W” AC 

The degree of a schema is a measure of the 
amount of replication we are willing to tolerate 
during the labelling process. Replicated informa- 
tion introduces increased costs for storage and 
update while reducing retrieval costs. A degree 
of 0 insures that no replication will result, 
i.e., the cluster and placement constraints are 
never violated; a degree of n > 0 will allow up to 
n replicated objects to be created. 

A maximal labelling is a labelling L for 
which there exists no labelling L’ such that L’ > 
L. Our objective is to generate maximal 
conflict-free labellings. Because not all label- 
lings are comparable, it is possible to generate 
many such labellings for the same schema. Rather 
than generate all the possible labellings for a 
given schema, usage information can be use to res- 
trict the enumeration to those that best support 
the expected usage patterns of the database. 

A.zA Labellinsr Alnorithm 

In this subsection, we present an algorithm 
for generating a max’imal labelling that specifies 
superior support for the access paths most heavily 
travelled. Assume that the degree of replication 
is n. This means that up to n placement or cluster 

conflicts will be tolerated while labelling the 
schema. These conflicts will later be resolved 
using the techniques of the previous subsection. 

The input to the algorithm is a schema to be 
labelled and a ranking of the edges (access map- 
pings) according to frequency of traversal. The 
algorithm only enforces cluster and placement con- 
straints. Initially all edges are labelled llI1’. 
We begin by assigning the next most favorable 
label (*IF) to the heaviest used edge. We continue 
assigning labels’ in this manner until either n 
cluster conflicts have been detected or all edges 
have been examined. Then we assign the most favor- 
able label (VIWIV) to the most heavily used edge 
that is already labelled aC1l. We continue until a 
total of n cluster or placement cos@icts are 
detected. The edge that causes the n+l conflict 
is not relabelled. The algorithm to assign labels 
is given in figure 2. When all edges have been 
assigned a label, resolution is performed for each 
vertex which does not meet the placement and clus- 
ter constraints. Type (A) placement resolution is 
chosen for conflicts involving association and 
single-valued relationship edges and type (B) for 
conflicts involving property edges. ._ 

The algorithm’ can be illustrated with an 
example. Consider the sample schema: 

S(SNO,SNAME) 
P(PNO,PNAME) 
SP(S,P,QTY) 

Consider the following ranking of 
from most to least heavily used. 

1) s-SP 
2) SNO 
3) P-SP 
4) QTY 
5) PNO 
6) PNAME 
7) SNAME 

access mappings, 

Algorithm LabelSchema 
#conflicts <- 0 
for each edge do label edge rtI1l 
for each edge 

(in frequency of access order) do 
label edge V” 
if cluster conflict then 

[ 

if #conflicts = n 
then relabel edge “1” 

else #conflicts <- #conflicts + 1 
for each edge labelled “C” 

if #conflicts = n 
then relabel edge Y? 

else #conflicts <- #conflicts + 1 

figure 2 - Labelling Algorithm 

26 



This ranking could have been derived from a set of 
user queries in conjunction with an indication of 
relative frequency, or simply specified by the 
designer. For a degree of replication = 1, the 
algorithm proceeds as follows: 

initial labelling: all edges labelled "1" 

s-labelling: 
STEP 1: label S-SP with IrV1 

STEP 2: label SNO with I'C" 

STEP 3: P-SP can not be labelled llC1' without a 
conflict. Label it llC1l. No additional 

STEP 4: 

STEP 5: 

STEP 6: 

STEP 7: 

conflicts are allowed. 

QTY can not be labelled llC1l without a con- 
flict. 

label PNO with "CtV 

label PNAME with V" (does not conflict 
with PNO) 

label SNAME with "Cn (does not conflict 
with SNO) 

H-labellinq: all edges labelled II Cl, can be 
labelled lVW1' without conflict. 

The resulting labelling is: 

Placement resolution must be performed for SP. The 
more frequently used edge will eminate from the 
original SP while the less frequently used edge 
will eminate from the replicated SP'. Type (A) 
resolution is used because the conflicting edge, 
P-SP, involves non-value vertices: 

We note that fully constrained labelling can 
be formulated in terms of an integer linear pro- 
gram with an objective function that maximizes the 
sum of the frequencies of the edges labelled "W" 
and VtCt'. Further details can be found in [KATZ8G]. 

5. Implementing a Schema 
Up to this point, the ,design has been 

independent of the actual data model and system. 
In this section we briefly discuss the considera- 
tions involved in mapping a labelled schema into 
DBTG storage structures. 

The quality of the mapping depends on the 
detail of usage information specified. In the fol- 
lowing, we assume that information has been speci- 
fied at the level of the previous section. All 

property mappings are "evaluatedtl supported by 
placing the range value in the record that 
represents the entity or relationship instance. 

In the new CODASYL proposal [CODA78], many 
aspects of the physical database design have been 
removed from the schema DDL and localized in data 
storage definition. The DSDL provides facilities 
for the specification of the pagination of the 
storage media, schema to storage record mapping, 
record pointer implementation, 'set representation, 
and storage record placement. We do not deal with 
the specification of the storage media, and assume 
that all sets are represented by chains with 
direct pointers. Additional usage information 
could be used to make a more sophisticated choice 
for these parameters. 

. 

The DSDL provides three choices for the 
record placement strategy. A record may be calc'd 
(hashed) on a key specified in the DDL, clustered 
by set membership and optionally placed near the 
owner, or stored in sequential sorted order. 
Indexes can be specified separately for keys 
specified in the DDL. 

At most one non-identifier outedge of a node 
can be labelled "W" or' V'. This edge should be 
used to determine the primary structure of the 
record type if its traversal frequency exceeds 
that of the identifier outedge. Otherwise, the 
identifer outedge (which can always be labelled 
"W" ) should be used. In the latter case, the 
record type is calc'd on the related key data 
item. In the former, if the outedge is a property, 
then the record type is stored sequentially and 
sorted and indexed on the appropriate data item. 
Otherwise the outedge represents an association or 
single-valued relationship, and the record type is 
clustered on the associated set. If "W" is speci- 
fied, the records are placed near their owners. 
Indexes are created for data items whose associ- 
ated property mappings are labelled "S'. The algo- 
rithm of figure 3 can be used to determine the 
record type's structure. 

The DSDL also provides facilities to allow a 
single schema record to be represented by multiple 
stored records. This corresponds closely to our 
formulation of replication. Consider the following 
degree 1 labelling and its associated CODASYL 
schema: 
record tvoes sets 
S(SNO,SNAME) S-SP, Owner S, hQmber SP 
P(PNO;PNAME) P-SP; Owner P, Member SP 
SP(QTY) 

The DSDL specification for the schema would be: 
MAPPING FOR S 

STORAGE RECORD IS S 

MAPPING FOR P 
STORAGE RECORD IS P 

MAPPING FOR SP 
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Algorithm CodasylPhvsicalDesinn 

FOR EACH non-value node DO 
IF node is entity set THEN 

i <- identifier_outedge 
j <- other outedge labelled lrWn or llCgl 
IF fi > f 

j 
THEN calo on key data item 
ELSE 

IF j is association or 
S.V. relationship 

TBEN cluster on set membership 
IF label = llWtl 

TH$N place near owner 
ELSE /* property outedge s/ 

sort 6 index on data item 
FOR EACH property edge labelled 1111' DO 

index on data item 
ELSE /*relationship */ 

j <- outedge labelled "WI1 or "Cn 
IF association 

THEN cluster on set membership 
IF label = trWtf 

THEN place near owner 
ELSE sort & index on data item 

FOR EACH property edge labelled IfI" DO 
index on data item 

figure 3 - CODASYL Design 

STORAGE RECORDS ARE SP,SP' 

STORAGE RECORD NAME IS S 
PLACEMENT IS SEQUENTIAL ASCENDING SNAME 
SET S-SP ALLOCATION IS STATIC 

POINTER FOR FIRST, LAST RECORD SP 
IS TO SP 

STORAGE RECORD NAME IS P 
PLACEMENT IS SEQUENTIAL ASCENDING PNAME 
SET P-SP ALLOCATION IS STATIC 

POINTER FOR FIRST, LAST RECORD SP 
IS TO SP' 

STORAGE RECORD NAME IS SP 
LINK TO SP' 
PLACEMENT IS CLUSTERED 

VIA SET S-SP NEAR OWNER S 
SET S-SP ALLOCATION IS STATIC 

POINTER FOR NEXT, PRIOR 
POINTER FOR OWNER 

STORAGE RECORD NAME IS SP' 
LINK TO SP 
PLACEMENT IS CLUSTERED 

VIA SET P-SP NEAR OWNER P 
SET P-SP ALLOCATION IS STATIC 

POINTER FOR NEXT, PRIOR 
POINTER FOR OWNER 

plus specification for INDEXES for each data item 
not covered in the above. The access schema for 
the above is: 

All access mappings are maximally supported. Usage 
information may indicate that certain paths are 
not worth the overhead of supporting them. 

5. Conclusions and Future Work 
In this paper ne have proposed an access path 

model for physical database design as an extension 
of our original work with a semantic model for 
logical database design and schema conversion. The 
properties of access paths were discussed and a 
methodology which generates maximally supported 
schemas was proposed and illustrated with exam- 
ples. We believe that this approach to qualita- 
tive physical design is new and unique. 

We have briefly discussed the applications of 
our methodology for designing CODASYL physical 
databases. More work is required on usage specifi- 
cation in order to improve the quality of the 
design. 

The aooess path model also has applications 
to problems of program translation. A generalized 
query processing algorithm can be formulated to 
%ompiletl non-procedural queries, e.g., relational 
calculus, into the access paths supported in the 
access schema. Primitive operations on the access 
schema can be defined in a way that facilitates 
implementing these operations in terms of CODASYL 
DML. In addition, we have been investigating how 
to reverse the process, i.e., lldecompilingn pro- 
grams that access data at the level of DML into 
non-procedural queries, with the aid of the access 
schema. These problems are further explored in 
[KATZ80]. 
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