
An Access Path Model
for Physical Database Design

R. H. Katz and E. Wong
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, CA. 94720

ABSTRACT: Design and Access Path Data Models are
presented to form an integrated framework for log-
ical and physical database design in a heterogene-
ous database environment. This paper focuses on
the physical design process. First, a physical
design is specified in terms of general properties
of access paths, independent of implementation
details. Then, a design is realized by mapping the
specification into the storage structures of a
particular database system. Algorithms for assign-
ing the properties to logical access paths and for
realizing a CODASYL 7b DBTG schema are given.

1. Introduction

As the trend towards distributed database systems
continues to gain in momentum, the problem. of
database design in a heterogeneous environment is
becoming crucial. We view a distributed database
system as being built on top of existing systems
available at the local sites of a computer net-
work. If a distributed database is to evolve
naturally, there must be support for extending it
to the underlying heterogeneous systems.

Database design is complicated by the diffi-
culty in designing physical databases for a
variety of storage structures supported by the
underlying systems. We follow [CARD751 in parti-
tioning the physical design process into its
implementation oriented (access path selection)
and implementation dependent (storage structure
choice) aspects. A physical design is specified
in terms of basic properties of storage structure
without making a commitment to an actual implemen-
tation. A design is “realized” by mapping the sys-
tem independent specification into the storage
structures available in a particular database

Research supported by the U.S. Army Research
Office Grant DAAG-76-6-0245, the U.S. Air Force
Office of Scientific Research Grant 78-3596, the
Honeywell Corporation, and an I.B.M. Fellowship
for the first author.
Permission to copy without fee all or part of thii material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
pexmission of the Association for Computing Machinery. To copy

otherwise, or to republish, requires a fee and/or specific permission.

system. Analytic methods, such as [CARD73, GOTL74,
CARD75, YA075, SILE76, DUHN?S, SCHK78], can be
used in the latter step. Our contribution is to
provide an integrated framework for logical and
physical design, and to provide design tools with
a high degree of independence from the underlying
data models and systems.

In this paper, we propose the concept of an
access path data model for physical design. The
access path model has grown out of the attempts to
extend our work with the Design Model [WONG79] to
problems of physical database design. The term
“data model” is used in a generic sense to mean a
collection of data object types, such as attri-
butes and relations in the relational model.
riSchemall is used to mean a specific choice of data
objects to represent a database, such as a choice
of specific relations and associated attributes.

The access path model can be viewed as an
interface between the logical view of data and the
access methods and storage structures chosen to
support that view. In terms of the language of the
ANSI/X3/SPARC report [TSIC77], it mediates between
the conceptual and internal schemas.

We are not the first to exploit the useful-
ness of an access path model. The DIAM (Data
Independent Access Model) framework [SENK73] is
structured into four levels consisting of entity
set, string, encoding, and physical device models.
The string model is most closely associated with
our notion of access path model. Although the DIAH
model is a significant contribution, we believe
that our formulation of access path is more
natural and easy to understand. In addition, the
access path schema is oriented towards the problem
of physical design, rather than a general model of
data management systems.

The paper is organized as follows. A semantic
data model is presented which is the basis for our
approach to database design. Logical access paths
are represented by functional interrelationships
between objects. The access path model is defined
to capture those functions which can be used to
efficiently access objects in the physical reali-
zation of the database. A methodology for specify-
ing an inplementation oriented physical design is
given which is based on assigning the highest
level support for the most frequently traversed
access paths. A simple-minded approach for mapping

Q 1980 ACM 0-89791-O%4/80/0500/0022 $00.75

22

a design specification into the storage structures
of CODASYL DBTG systems is included. We conclude
the paper with a discussion on future directions.

2. The Design Model

The design model is the starting point for
our approach to database design. It has been for-
mulated to capture the kinds of integrity con-
straints supported by the relational and DBTG
models, yet remains independent of them. The model
is based on a variation of the entity-relationship
model [CHEN76] and has been influenced by the
semantic data model of CSCHM751. A more complete
discussion of the design model and its application
to logical design and schema conversion can be
found in [WONG79].

For each instance of time t, let E,(t),
E (t), . . . E (t) be n distinct sets, which are
c&led entit; s%ts. A propertv of an entity set
E(t) is a one-parameter family of functions ft,
mapping at each t E(t) into a set V of values.
Eecause f is defined for every element of the
domain, i+! is a total function. As an example,
consider the following entity sets and properties:

entity sets properties
em ename,birthyr
dept dname,location
job title,status,salary

A relationship R among entity sets E (t),
E (t), E (t) il
pgoduct ‘E’(t’) XnE

a subset of the cart Sian .A
(t)

t. Proper ies of 1. Q
X . . . X E (t) at each time

elationships r;hay be defined in
an analogous way to properties of entity sets.
Relationships are assumed to be independent, i.e.
not derivable from other relationships, and
indecomposible, i.e. not equal to the join of
their projections into subrelationships. For
example, the following two relationships specify
the employees qualified to hold each job, and the
jobs allocated to a given department. Ig Number
allocated” may be specified as a property of
llallocationl’:

relationshiPs pronerties
qualified(job,emp) --es
allocation(dept,job) number

We further distinguish the types of relation-
ships recognized by the design model. A binary
relationshin R. on entity sets E.(t) and E,.(t) is
single-valued tin E (t) -if each’ entity of E (t)
occurs in at most ode instance of R,. Intuitiv ly, k
we may think of R as representing % function from
E (t) into E (t),$ecause each entity in E (t) can
be related ?o no more than one entity 1 -d E (t).
‘If- each entity in E,(t) occurs in exactly2 one
instance of R R ib called an association. We
mav think of d’ ast representing a total function.
Single-valued Relationships which are not associa-
tions can be thought of as partial functions,
because at a given point in time, the function
need not be defined over all entities in E (t).
Associations are used to model the situatio& in
tihich the domain object can exist only if it is
related to some range object. If an object in the
range of an association is deleted, then the
objects in the domain no longer occur in an
instance of R .
to maintain t k

Therefore, they must be deleted
e totality of the function. Examples

of associations include:

works-in (emp,dept)
assignment (emp, job)

which represent the facts that an employee must
work-in some department at all times and must be
assigned to some job at all times. An example of a
single-valued relationship which is not an associ-
ation is:

q gr (dept,emP)

which associates a managing employee with a
department, although a department can exist
without a manager.

Explicit provisions for value set definitions
have been omitted in our model. A subsystem such
as that proposed in [MCLE76] could be included,
but existing systems do not support sophisticated
domain definition. A simpler approach is to use
the primitive data types supported by most systems
for the domain definition (e.g., integer,
char(lO), etc.).

Our design model can be reformulated to
represent logical access paths in terms of total
and partial functions between objects. This is
similar to the approach taken in the functional
data models of [BUNE79] and [SHIP80]. The objects
of the schema are the value sets, entity sets, and
relationships. Single-valued relationships are
partial functions, while associations and proper-
ties are total functions. In addition, total func-
tions can be defined to map a relationship object
into the entity set objects over which it is
defined.

The above example is reproduced here in terms
of the functional viewpoint (some abbreviation has
taken place):

total functions
ename : emp --> char(20)
title: job --> char(l5)
birthyr: emp --> integer
salary: job --> integer
dname: dept --> char(l0)
works-in: emp -4 dept
location: dept --> char(20)
assignment: emp --> job
qual-emp: qua1 -4 emp
qual-job: qua1 -4 job
allot-dept: allot --> dept
allot-job: allot --> job
number: allot --> integer

partial functions.
mgr: dept --> emp

A design schema can be represented graphi-
cally. Let I = (V,E) be a directed graph with set
V of vertices and set E of edges. For each object
in the schema, there is a vertex in V. For each
function from object to object , there is a
directed edge from thle vertex for2 object to the
vertex for object . Value objects are replesented
hv black vertice , G non-value objects by white.
-.s --

The graphical representation ‘of the example schema
is shown in figure 1.

1. The Access Path Model

The functions of the design model represent
logical access paths that can be used to navigate
among the.obj_eqts of the schema. For example,
WORKS-IN(ENAME (vfred”)) gives us the department

23

figure 1 - Graphical Representation
of Schema

that Fred works in. The access path schema is con-
cerned with those functions and inverses that are
“supported” for efficient access by the underlying
database system. “Support” is used in an opera-
tional sense to mean that the time to perform a
supported access is less than the time to perform
an unsupported one.

When used to access objects, logical access
paths are called access mappings. An access map-
ping may be defined for either a function or its
inverse. To make it possible to compose access
mappings, we extend the definition to allow them
to be applied to sets of domain objects. An
access mapping is suvported in the storage struc-
ture if the database system can efficiently per-
form the desired access, i.e., the time to access
an object via a supported access map is less than
the time to scan the object set exhaustively for
the desired object(s). If an access mapping is not
supported, it is an unsuDoorted access mapping.
Supported access mapping is our terminology for
the usual notion of access path.

An access path schema consists of the objects
of the design schema and the supported access map-
pings. A graphical representation similar to the
one proposed in the previous section can be used
to represent an access path schema. The schema
must continue to represent all logical interrela-
tionships, whether or not they are efficiently
supported. For example, WORKS-IN associates with
each employee a single department. If WORKS-IN is
not supported, we must still be able to access the
associated department, albeit not as efficiently
as if the mapping had been supported. To accom-
plish this, we introduce the concept of identif-
a. An identifier is a l-to-l property of an
entity set which is used to uniquely represent
each entity in the set. An unsupported access
mapping between employees and departments can be
represented instead as an access mapping between
employees and the identifier value set of depart-
ment .

(supported) WORKS-IN: emp --> dept
(unsupported) WORKS-IN:

emp --> identifiers of dept

The access path schema, together with the
assigned storage structure properties (introduced
in section 4.1), captures the effects of storage
structure support without committing the schema to
a particular implementation and without sacrific-
ing any of the interrelationships of the design
schema. WORKS-IN can be used to navigate directly
between employees and departments only if the map-
ping is supported by the underlying system. It is
immaterial whether this support is furnished by a
physical pointer between employee records and
department records, an index that maps employee
identifiers into department records, or some other
technique.

4. Physical Database Design

The access path schema provides a useful
interface between the user’s logical view of the
data and its physical implementation. In this sec-
tion, we will describe an implementation oriented
physical design methodology nhich is largely
independent of the specific database system and
data model. The implementation dependent aspects
will be discussed in section 5.

The approach is to generate designs which
provide the best possible support for the most
travelled access paths, without conflicting with
the support for other paths. A specification of
the user’s expected access patterns is used to
direct the design process. A system specific map-
ping is then invoked to implement the access path
schema by choosing storage structures supported by
the target system.

3.1 Algebraic Structure for Physical Design

For the purposes of implementation oriented
design, we shall use the logical access paths of
the design schema. An access path schema may be
used to represent those paths actually chosen for
support. Properties of an access mapping can be
formulated to capture desirable characteristics of
traversing the mapping in either the functional or
inverse functional direction. Consider the schema
function f: A --> B. The following properties of
the mapping can be defined:

(1)

(2)

(3)

(4)

Evaluated : given a in A, f(a) can be found
without an exhaustive scan of B, i.e., the
cost to access f(a) is less than the cost to
access every element of B.

: Indexed given b in B, f”(b) can be found .
without an exhaustive scan of A.

Clustered : the elements of f”(b) are in
close proximity, i.e., the cost to access the
elements in the inverse is less than the cost
to access an arbitrary subset of the same
cardinality.

Placed : Well a and f(a) are stored in close
proximity, I .e., the cost to access both is
less than the cost to access them separately.

We make the critical assumption that each
object of the schema, be it a value, an entity, or
a relationship instance, is assigned to a single
stored record. Replication, e.g., the replication

24

.-

of data item values to record instances, will be
made explicit by introducing new objects into the
schema. The usual concept of Vecord” can be
represented as a concatenation of the stored
records of the values that make up the fields of
the record. Our approach does not preclude the
record segmentation and allocation techniques
described in [SCHK78]. Given this assumption,
certain implication rules can be formulated:

(i) well DlaCed z=> evaluated

By placing f(a) near a, a fast way to get from the
domain to the range is automatically provided. It
is no longer necessary to scan the entire set of
range objects to find the desired one.

(ii) clustered ==> indexed

By placing elements of f-‘(b) together, an exhaus-
tive scan of all the domain objects of f is not
necessary. The scan is considerably speeded up by
placing the objects together.

(iii) well placed ==> clustered

Let b = f(a). Well placed means that a and b are
stored together. Since there is one record for
each b instance, all A objects with b in the range
of f will be placed near b and hence near each
other. Thus clustering is achieved.

For systems without index storage structures,
it is possible to have a mapping which is
evaluated but not indexed. For example, an
employee’s name may be stored in the record that
represents the employee, with no storage struc-
tures available to access the record via an
employee name. The opposite is possible as well.
Some inverted file systems allow access to a
record through a value that is not stored in that
record. For example, an employee’s name may not be
stored with the record that represents the
employee, but an index on employee name is avail-
able. Thus evaluated need not imply indexed and
vice versa.

The implication rules can be used to impose a
partial ordering among the properties:

b w-4
A

W>C>I

T

E W>E

10

A u is an assignment of properties to an edge
of the integrity schema. There are six distinct
labels: W, <C,E>, <I,E>, C, I, and E. Our algo-
rithm will generate schemas with maximally sup-
ported access paths. We assume that all access
paths are at least evaluated. Therefore we deal
only with the first three labels, denoted as VP,
“C”, and IrP. A labellinq is an assignment of a
label to each edge of the schema, denoted as an
n-tuple (1 1 . . .
of edges id ‘thz’schema).

1) where n is the number
l%e assignment is subject

to constraints which are shown below. The partial
‘ordering among properties induces a partial order-
ing among labels as well: UW’l > llP1 > l’I1’. A par-
tiai ordering can be defined for labellings. Let
L, and L be two labellings over the same schema.
We say zh g’L.$ at L if for each edge in the
schema, L,‘s a signe label is the same as L ‘s
assigned label. We say that L > L if for e ch E
edge in the schema, either L
the same as L2’s or L2’s

,e2s asslgned label is
lab 1 > L, s, and L, f

L . Note that under this definition, some label-
lzngs are incomparable, e.g. L, = (18W”,t’C”) and L
= (WC” , “W”) . 2

An obvious approach to achieving a maximal
labelling is to assign “WV’, the label that
represents the highest degree of support, to each
edge. Unfortunately, certain labellings represent
a choice of properties which can not be supported
simultaneously within a schema. There are four
constraints which conflict-a labellings must
meet :

(i) cluster constraint: it is not possible to

It is not possible to partition the domain on more

label,more than one outedge of
a node with a V’ or nWgr.
Clustering places together all
domain objects which are
mapped into the same range
object .

than one function and still achieve this advanta-
geous placement. Note that l-to-l properties do
not cause a conflict because a l-to-l function
partitions the doaiain objects into clusters of
size one. This can always be supported regardless
of additional clustering.

(ii) placement constraint: it is not possible to
label more than one inedge of

~1acZfZt $tes ‘Zster%
domain objects with a common
range object near that range

object. It is not possible to achieve this advan-
tageous placement simultaneously for domain
objects from more than one function.

(iii) placement-cluster constraint: it is not pos-
sible to simultaneously label

t$-&
an inedge of a node ltWtl while
labelling an outedge V”. The
placement of X object clusters
near their

associated Y ,objects destroys the advantageous
clustering of the Y objects. l-to-l functions do
not cause the constraint to be violated.

(iv) imDlied constraints: Certain compositions of
‘CM functions and their properties

“w’

c

result in the violation of one
of the above constraints. For
example, this schema would

Hc’ cause a violation
of an implied cluster constraint.

The above constraints are conservative in the
sense that the desirable properties of placement
and clustering can be achievedi even if the con-
straints are violated. However, this tends to be
sensitive to the parameters of a particular sys-
tem. For example, in constraint (ii), if clusters
from both domain object sets can fit on the same
page, then simultaneous well placement can be
achieved.

The degree of a schema IS the number of vio-
lations of placement or cluster constraints that
may be made during, the labelling process. Each of
these violations can be resolved if we introduce
the replication of objects. Assume that the
schema is labelled as in (i). A confliot is a vio-
lation of a cluster or placement constraint. A

25

cluster conflict can be resolved by one of the
following methods:

(A) A “I” A’ (B) A “C” AC

In (A), a copy of the domain ob jeot is made, and
both the original and the copy are clustered on
the appropriate ranges. In (B) , a copy of the
range is made and placed in one-to-one correspon-
dence with the original domain object. To illus-
trate this, consider the entity set employees and
the value set integers, interrelated by the pro-
perty function age. Schematically, the following
situation can arise:

employees integers

The effect of type (B) cluster resolution is to
replicate the age values so there is one age value
per employee :

emplovees emp-ints integers

A placement conflict is resolved in an analo-
gous way:
(A) A “1” A’ (B) A “W” AC

The degree of a schema is a measure of the
amount of replication we are willing to tolerate
during the labelling process. Replicated informa-
tion introduces increased costs for storage and
update while reducing retrieval costs. A degree
of 0 insures that no replication will result,
i.e., the cluster and placement constraints are
never violated; a degree of n > 0 will allow up to
n replicated objects to be created.

A maximal labelling is a labelling L for
which there exists no labelling L’ such that L’ >
L. Our objective is to generate maximal
conflict-free labellings. Because not all label-
lings are comparable, it is possible to generate
many such labellings for the same schema. Rather
than generate all the possible labellings for a
given schema, usage information can be use to res-
trict the enumeration to those that best support
the expected usage patterns of the database.

A.zA Labellinsr Alnorithm

In this subsection, we present an algorithm
for generating a max’imal labelling that specifies
superior support for the access paths most heavily
travelled. Assume that the degree of replication
is n. This means that up to n placement or cluster

conflicts will be tolerated while labelling the
schema. These conflicts will later be resolved
using the techniques of the previous subsection.

The input to the algorithm is a schema to be
labelled and a ranking of the edges (access map-
pings) according to frequency of traversal. The
algorithm only enforces cluster and placement con-
straints. Initially all edges are labelled llI1’.
We begin by assigning the next most favorable
label (*IF) to the heaviest used edge. We continue
assigning labels’ in this manner until either n
cluster conflicts have been detected or all edges
have been examined. Then we assign the most favor-
able label (VIWIV) to the most heavily used edge
that is already labelled aC1l. We continue until a
total of n cluster or placement cos@icts are
detected. The edge that causes the n+l conflict
is not relabelled. The algorithm to assign labels
is given in figure 2. When all edges have been
assigned a label, resolution is performed for each
vertex which does not meet the placement and clus-
ter constraints. Type (A) placement resolution is
chosen for conflicts involving association and
single-valued relationship edges and type (B) for
conflicts involving property edges. ._

The algorithm’ can be illustrated with an
example. Consider the sample schema:

S(SNO,SNAME)
P(PNO,PNAME)
SP(S,P,QTY)

Consider the following ranking of
from most to least heavily used.

1) s-SP
2) SNO
3) P-SP
4) QTY
5) PNO
6) PNAME
7) SNAME

access mappings,

Algorithm LabelSchema
#conflicts <- 0
for each edge do label edge rtI1l
for each edge

(in frequency of access order) do
label edge V”
if cluster conflict then

[

if #conflicts = n
then relabel edge “1”

else #conflicts <- #conflicts + 1
for each edge labelled “C”

if #conflicts = n
then relabel edge Y?

else #conflicts <- #conflicts + 1

figure 2 - Labelling Algorithm

26

This ranking could have been derived from a set of
user queries in conjunction with an indication of
relative frequency, or simply specified by the
designer. For a degree of replication = 1, the
algorithm proceeds as follows:

initial labelling: all edges labelled "1"

s-labelling:
STEP 1: label S-SP with IrV1

STEP 2: label SNO with I'C"

STEP 3: P-SP can not be labelled llC1' without a
conflict. Label it llC1l. No additional

STEP 4:

STEP 5:

STEP 6:

STEP 7:

conflicts are allowed.

QTY can not be labelled llC1l without a con-
flict.

label PNO with "CtV

label PNAME with V" (does not conflict
with PNO)

label SNAME with "Cn (does not conflict
with SNO)

H-labellinq: all edges labelled II Cl, can be
labelled lVW1' without conflict.

The resulting labelling is:

Placement resolution must be performed for SP. The
more frequently used edge will eminate from the
original SP while the less frequently used edge
will eminate from the replicated SP'. Type (A)
resolution is used because the conflicting edge,
P-SP, involves non-value vertices:

We note that fully constrained labelling can
be formulated in terms of an integer linear pro-
gram with an objective function that maximizes the
sum of the frequencies of the edges labelled "W"
and VtCt'. Further details can be found in [KATZ8G].

5. Implementing a Schema
Up to this point, the ,design has been

independent of the actual data model and system.
In this section we briefly discuss the considera-
tions involved in mapping a labelled schema into
DBTG storage structures.

The quality of the mapping depends on the
detail of usage information specified. In the fol-
lowing, we assume that information has been speci-
fied at the level of the previous section. All

property mappings are "evaluatedtl supported by
placing the range value in the record that
represents the entity or relationship instance.

In the new CODASYL proposal [CODA78], many
aspects of the physical database design have been
removed from the schema DDL and localized in data
storage definition. The DSDL provides facilities
for the specification of the pagination of the
storage media, schema to storage record mapping,
record pointer implementation, 'set representation,
and storage record placement. We do not deal with
the specification of the storage media, and assume
that all sets are represented by chains with
direct pointers. Additional usage information
could be used to make a more sophisticated choice
for these parameters.

.

The DSDL provides three choices for the
record placement strategy. A record may be calc'd
(hashed) on a key specified in the DDL, clustered
by set membership and optionally placed near the
owner, or stored in sequential sorted order.
Indexes can be specified separately for keys
specified in the DDL.

At most one non-identifier outedge of a node
can be labelled "W" or' V'. This edge should be
used to determine the primary structure of the
record type if its traversal frequency exceeds
that of the identifier outedge. Otherwise, the
identifer outedge (which can always be labelled
"W") should be used. In the latter case, the
record type is calc'd on the related key data
item. In the former, if the outedge is a property,
then the record type is stored sequentially and
sorted and indexed on the appropriate data item.
Otherwise the outedge represents an association or
single-valued relationship, and the record type is
clustered on the associated set. If "W" is speci-
fied, the records are placed near their owners.
Indexes are created for data items whose associ-
ated property mappings are labelled "S'. The algo-
rithm of figure 3 can be used to determine the
record type's structure.

The DSDL also provides facilities to allow a
single schema record to be represented by multiple
stored records. This corresponds closely to our
formulation of replication. Consider the following
degree 1 labelling and its associated CODASYL
schema:
record tvoes sets
S(SNO,SNAME) S-SP, Owner S, hQmber SP
P(PNO;PNAME) P-SP; Owner P, Member SP
SP(QTY)

The DSDL specification for the schema would be:
MAPPING FOR S

STORAGE RECORD IS S

MAPPING FOR P
STORAGE RECORD IS P

MAPPING FOR SP

27

Algorithm CodasylPhvsicalDesinn

FOR EACH non-value node DO
IF node is entity set THEN

i <- identifier_outedge
j <- other outedge labelled lrWn or llCgl
IF fi > f

j
THEN calo on key data item
ELSE

IF j is association or
S.V. relationship

TBEN cluster on set membership
IF label = llWtl

TH$N place near owner
ELSE /* property outedge s/

sort 6 index on data item
FOR EACH property edge labelled 1111' DO

index on data item
ELSE /*relationship */

j <- outedge labelled "WI1 or "Cn
IF association

THEN cluster on set membership
IF label = trWtf

THEN place near owner
ELSE sort & index on data item

FOR EACH property edge labelled IfI" DO
index on data item

figure 3 - CODASYL Design

STORAGE RECORDS ARE SP,SP'

STORAGE RECORD NAME IS S
PLACEMENT IS SEQUENTIAL ASCENDING SNAME
SET S-SP ALLOCATION IS STATIC

POINTER FOR FIRST, LAST RECORD SP
IS TO SP

STORAGE RECORD NAME IS P
PLACEMENT IS SEQUENTIAL ASCENDING PNAME
SET P-SP ALLOCATION IS STATIC

POINTER FOR FIRST, LAST RECORD SP
IS TO SP'

STORAGE RECORD NAME IS SP
LINK TO SP'
PLACEMENT IS CLUSTERED

VIA SET S-SP NEAR OWNER S
SET S-SP ALLOCATION IS STATIC

POINTER FOR NEXT, PRIOR
POINTER FOR OWNER

STORAGE RECORD NAME IS SP'
LINK TO SP
PLACEMENT IS CLUSTERED

VIA SET P-SP NEAR OWNER P
SET P-SP ALLOCATION IS STATIC

POINTER FOR NEXT, PRIOR
POINTER FOR OWNER

plus specification for INDEXES for each data item
not covered in the above. The access schema for
the above is:

All access mappings are maximally supported. Usage
information may indicate that certain paths are
not worth the overhead of supporting them.

5. Conclusions and Future Work
In this paper ne have proposed an access path

model for physical database design as an extension
of our original work with a semantic model for
logical database design and schema conversion. The
properties of access paths were discussed and a
methodology which generates maximally supported
schemas was proposed and illustrated with exam-
ples. We believe that this approach to qualita-
tive physical design is new and unique.

We have briefly discussed the applications of
our methodology for designing CODASYL physical
databases. More work is required on usage specifi-
cation in order to improve the quality of the
design.

The aooess path model also has applications
to problems of program translation. A generalized
query processing algorithm can be formulated to
%ompiletl non-procedural queries, e.g., relational
calculus, into the access paths supported in the
access schema. Primitive operations on the access
schema can be defined in a way that facilitates
implementing these operations in terms of CODASYL
DML. In addition, we have been investigating how
to reverse the process, i.e., lldecompilingn pro-
grams that access data at the level of DML into
non-procedural queries, with the aid of the access
schema. These problems are further explored in
[KATZ80].

1. References

[BUNE79] Buneman, P., Frankel, R. E., "FL& -- A
Functional Query Language," Proc. A.C.M. SIG-
MOD Conf., (May 79).

[CARD731 Cardenas, A. F., tlEvaluation and Selec-
tion of File Organization - A Model and a
System," Comm. A.C.M., V 16, N 9, (Sep 73).

[CARD751 Cardenas, A. F.; "Analysis and Perfor-
mance of Inverted Data Base Structures,"
Comm. A.C.M., V 18, N 5, Way 75).

[CHEN76] Chen, P. P., "The Entity-Relationship
Model - Toward a Unified View of Data,"
A.C.M. Trans. on Data Base Sys., V 1, N 1,
(Mar 76).

[CODA781 CODASYL Data Description Language Commit-
tee Journal of Development, 1978.

[DUHN78] Duhne, R. A., Severence, D. G., "Selec-
tion of an Efficient Combination of Data
Files for a Multiuser Database," Proc. AFIPS
Natl. Comp. Conf., 1978.

[GOTL74] Gotlieb, C. C., Tompa, F. W., @*Choosing a
Storage Schema," Acta Informatica, V 3, pp.

28

297 - 319, 1974.

[KATZ801 Katz, R. H., "Database Design and Trans-
lation for Multiple Data Models,k Univ. of
California, Berkeley, Ph.D. Thesis, in
preparation.

[MCLE76] McLeod, D. J., "High Level Domain Defini-
tion in a Relational Data Base System," 1976
A.C.M. SIGMOD - SIGPLAN Conf. on Data, (Mar
76).

[SCHM75] Schmid, H. A., Swenson, J. R., llOn the
Semantics of the Relational Data Model,"
Proc. A.C.M. SIGMOD Conf., (May 75).

[SCHK78] Schkolnick, M., "A Survey of Physical
Database Design Methodology and Techniques,"
Proc. of Conf. on Very Large Data Bases,
1978.

[SENK7.3] Senko, M. E., et. al.,. "Data Structures
and Accessing in Data-Base Systems,ll IBM Sys-
tems Journal, V 12, N 1, 1973.

[SHIP80] Shipman, D. W., "The Functional Data
Model and the Data Language DAPLEX," to
appear in A.C.M. Trans. on Database Systems,
1980.

[SILE76] Siler, K. F., “A Stochastic Model for
Database Organizations in Data Retrieval Sys-
tems," Comm. A.C.M., V 19, N 2, (Feb 76).

[TSIC77] Tsichritzis, D., Klug, A., eds., "The
ANSI/X3/SPARC DBMS Framework - Report of the
Study Group on Data Base Management Systems,
1977.

‘[WONG79] Wong, E., Katz, R. H., tlLogical Design
and Schema Conversion for Relational and DBTG
Databases," Proc. Intl. Conf. on Entity-
Relationship Approach to Systems Analysis and
Design, (Dee 79).

[YAO 751 Yao, S. B., Merten, A., llSelection of
File Organization Using an Analytic Model,"
Proc. Intl. Conf. on Very Large Data Bases,
1975.

29

