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The gradual accumulation of sensory evidence is a crucial component of perceptual

decision making, but its neural mechanisms are still poorly understood. Given the wide

availability of genetic and optical tools for mice, they can be useful model organisms for

the study of these phenomena; however, behavioral tools are largely lacking. Here, we

describe a new evidence-accumulation task for head-fixed mice navigating in a virtual

reality (VR) environment. As they navigate down the stem of a virtual T-maze, they see

brief pulses of visual evidence on either side, and retrieve a reward on the arm with the

highest number of pulses. The pulses occur randomly with Poisson statistics, yielding

a diverse yet well-controlled stimulus set, making the data conducive to a variety of

computational approaches. A large number of mice of different genotypes were able

to learn and consistently perform the task, at levels similar to rats in analogous tasks.

They are sensitive to side differences of a single pulse, and their memory of the cues is

stable over time. Moreover, using non-parametric as well as modeling approaches, we

show that the mice indeed accumulate evidence: they use multiple pulses of evidence

from throughout the cue region of the maze to make their decision, albeit with a small

overweighting of earlier cues, and their performance is affected by the magnitude but not

the duration of evidence. Additionally, analysis of the mice’s running patterns revealed

that trajectories are fairly stereotyped yet modulated by the amount of sensory evidence,

suggesting that the navigational component of this task may provide a continuous

readout correlated to the underlying cognitive variables. Our task, which can be readily

integrated with state-of-the-art techniques, is thus a valuable tool to study the circuit

mechanisms and dynamics underlying perceptual decision making, particularly under

more complex behavioral contexts.
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INTRODUCTION

Making decisions based on noisy or ambiguous sensory evidence
is a task animals must face on a daily basis. Take, for instance,
a mouse in the wild, whose navigation behavior relies on
vision (Alyan and Jander, 1994; Etienne et al., 1996; Stopka
and Macdonald, 2003). Amidst tall grass, deciding a route to a
partially occluded food source (say, a corn plant) might require
gradual accumulation of visual evidence, i.e., short glimpses
of what may or may not be part of that plant. This example
also highlights another important point about decision-making,
namely that it is often performed in conjunction with other
complex behaviors and can itself be a dynamic process occurring
over seconds-long timescales. Here, the mouse must find its food
source while navigating in a potentially changing environment;
the corn plant may turn out to be a scarecrow, and evidence for or
against this is typically used to interactively update a motor plan.

How the brain gradually accumulates sensory evidence has
been the topic of extensive studies performed primarily in
primates (Gold and Shadlen, 2007). However, much remains
unknown regarding which brain areas are involved, and the
specific circuit mechanisms and dynamics underlying this
computation (Brody and Hanks, 2016). More recently, several
groups have started using rodents to tackle such questions
(Brunton et al., 2013; Carandini and Churchland, 2013; Raposo
et al., 2014; Hanks et al., 2015; Scott et al., 2015; Morcos and
Harvey, 2016; Licata et al., 2017; Odoemene et al., 2017). Rodents
provide many complementary advantages to the use of primates,
such as lower cost, larger scalability, and, particularly for mice,
the wide availability of an ever-expanding arsenal of tools to
record from and manipulate circuits with great spatiotemporal
and genetic specificity in behaving animals (Svoboda and Yasuda,
2006; Dombeck et al., 2007; Luo et al., 2008; Deisseroth, 2011;
Chen et al., 2013; Guo et al., 2014; Rickgauer et al., 2014;
Sofroniew et al., 2016; Song et al., 2017).

Motivated by the above, we have developed a novel behavioral
task in which head-fixed mice are required to gradually
accumulate visual evidence as they navigate in a virtual T-maze.
The side on which the majority of the evidence appears informs
them of which of the two arms the reward is located in.
Compared to freely moving behaviors, the use of virtual reality
(VR) (Harvey et al., 2009) allows for better control of sensory
stimuli, ease of readout of motor output, and, crucially, the head
fixation required for many state-of-the-art optical techniques
(Dombeck and Reiser, 2012; Minderer et al., 2016). In studying
perceptual decision-making in conjunction with navigation, we
emulate a more naturalistic context of rodent behavior. As brains
are highly non-linear systems that may engage qualitatively
different mechanisms in different contexts, trying to approximate
such conditions is arguably an important component toward
understanding neural codes (Carew, 2005; Krakauer et al., 2017).
Another highlight of our task is the use of multiple short pulses of
sensory stimuli that are randomly distributed per trial according
to Poisson statistics (Brunton et al., 2013; Scott et al., 2015). The
diverse yet well-controlled nature of this stimulus set allows for
the use of powerful computational approaches when analyzing
the data (Brunton et al., 2013; Erlich et al., 2015; Hanks et al.,

2015; Scott et al., 2015). Specifically, the stimuli are designed to be
delivered in perceptually distinct pulses (“cues”), enabling neural
recording and perturbation studies to trace/modulate precisely
timed inputs into the animal’s brain. The randomized locations
of the cues decorrelates the dynamics of evidence streams from
the general progression of time, on a trial-by-trial basis, allowing
us to investigate the distinct contributions of the amount and
the timing of incoming evidence. This, in turn, gives us a better
handle on the behavioral strategies the animals employ.

Here we perform a thorough characterization of various
performance indicators, behavioral strategies and navigational
aspects of the task, with the goal of providing a bedrock for
future studies investigating the neural mechanisms underlying
this behavior. We show that mice can consistently learn this task
and solve it by using multiple pulses of visual cues distributed
throughout the cue presentation period, thus accumulating
evidence toward a decision. Moreover, we show that their
performance is influenced by the magnitude of the evidence
but not its duration. We also describe an intriguing, if small,
tendency to alternate choices after rewards, and present logistic
regressionmodels that combine evidence and trial history as tools
to quantify the behavior. Finally, we capitalize on the navigational
component of the task and show that trajectories, though fairly
stereotyped, may provide an ongoing readout correlated with
cognitive variables.

MATERIALS AND METHODS

Animals and Surgery
All procedures were approved by the Institutional Animal Care
and Use Committee at Princeton University and were performed
in accordance with the Guide for the Care and Use of Laboratory
Animals (National Research Council, 2011). Experiments were
performed on both male and female mice aged 2–12 months,
from several strains:

• 5 wild types [C57BL6/J, Jackson Laboratories, stock # 000664].
• 14 VGAT-ChR2-EYFP [B6.Cg-Tg(Slc32a1-COP4∗H134R/

EYFP)8Gfng/J, Jackson Laboratories, stock # 014548] (Zhao
et al., 2011).

• 16 triple transgenic crosses expressing GCaMP6f under the
CaMKIIα promoter, from the following two lines: Ai93-
D; CaMKIIα-tTA [Igs7tm93.1(tetO−GCaMP6f)Hze Tg(Camk2a-
tTA)1Mmay/J, Jackson Laboratories, stock # 024108] (Madisen
et al., 2015); Emx1-IRES-Cre [B6.129S2-Emx1tm1(cre)Krj/J,
Jackson Laboratories, stock # 005628] (Gorski et al., 2002).

• 8 Thy1-GCaMP6f [C57BL/6J-Tg(Thy1-GCaMP6f)
GP5.3Dkim/J, Jackson Laboratories, stock # 028280] (Dana
et al., 2014).

• 1 Thy1-YFP-H [B6.Cg-Tg(Thy1-YFP)HJrs/J, Jackson
Laboratories, stock # 003782] (Feng et al., 2000).

• 6 DAT-IRES-CRE [B6.SJL-Slc6a3tm1.1(cre)Bkmn/J, Jackson
Laboratories, stock # 006660] (Bäckman et al., 2006).

The various strains were part of different ongoing, unpublished
studies, and are hereby grouped for behavioral analysis.
Despite happening for technical reasons, the inclusion of and
comparisons between different strains also allowed us to confirm
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that we can obtain comparable levels of behavioral performance
across separate experiments and different experimenters. The
mice underwent sterile stereotaxic surgery to implant a
custom lightweight titanium headplate (∼1 g, CAD design
files available at https://github.com/sakoay/AccumTowersTools.
git) under isoflurane anesthesia (2.5% for induction, 1.5% for
maintenance). Briefly, after asepsis the skull was exposed and
the periosteum removed using a bonn micro probe (Fine Science
Tools) or sterile cotton swabs. The headplate was then positioned
over the skull and affixed to it using metabond cement (Parkell).
Some of the animals underwent additional procedures to either
implant an imaging cranial window or make the skull optically
transparent, as previously described (Harvey et al., 2012; Guo
et al., 2014). Additionally, in the DAT-cre mice only, AAV5-
EF1a-DIO-hChR2 (Penn Vector Core) was injected bilaterally in
the ventral tegmental area (VTA) following standard biosafety
level 1 procedures, and 300-µm optical fibers (Thorlabs) were
implanted bilaterally above the VTA. The virus was injected as
part of a separate study. The animals received one pre-operative
dose of meloxicam for analgesia (1 mg/kg I.P. or S.C.) and
another one 24 h later, as well as peri-operative body-temperature
I.P. saline injections to maintain hydration. Body temperature
was maintained constant using a homeothermic control system
(Harvard Apparatus). For cranial window implantation surgeries
only, an intraperitoneal injection of dexamethasone (2–5 mg/kg)
was given at the beginning of the procedure in order to reduce
brain swelling. The mice were allowed to recover for at least
3 days before starting water restriction for behavioral training.
They were then restricted to an allotted water volume of 1–2mL
per day, always ensuring that no clinical signs of dehydration
were present and body mass was at least 80% of the initial
value. If any of these conditions were not met, the mice received
supplemental water (or had ad libitum access to water if more
than mildly dehydrated) until recovering. Most typically, animals
received their whole allotment during behavioral training, but
received supplemental water if necessary, at least 1 h after the end
of training.

The animals were handled daily from the start of water
restriction until they no longer showed any signs of distress, such
as attempting to escape, defecating or urinating, which typically
took 3–5 days. Mice were never picked up from the cage by their
tails, instead voluntarily climbing onto the experimenter’s hand
or being gently lifted with a hand scoopingmovement. They were
allowed to socialize in an enclosed enriched environment (∼0.3
m2, with 5–10 mice) outside of behavioral sessions and before
being returned to the vivarium at the end of each day.

Behavioral Task
Apparatus
We trained mice on VR systems similar to ones described
previously (Harvey et al., 2012; Low et al., 2014; Figure 1A).
Subjects were head-fixed using custom-made headplate holders
and stood on a spherical treadmill comprised of a Styrofoam R©

ball (8-inch diameter, Smoothfoam) placed on a custom 3D-
printed cup and suspended by compressed air (60–65 p.s.i.).
Compressed air was delivered through a 1.5 inch-diameter
flexible hose (McMaster-Carr) coupled to an enclosed chamber

beneath the cup. The source of air to this hose was first
passed through a laminar flow nozzle (series 600 Whisperblast,
Lechler), which dramatically reduced ambient noise by reducing
air turbulence. The animals were placed on the ball such that their
snouts were roughly aligned with the center of its upper surface,
and at a height such that they could touch the ball with their
whole forepaw pads, while not displaying noticeable hunching.
This allowed them to run comfortably, with similar posture to
when they are freely moving. A custom alignment tool that was
mounted on the posts supporting the headplate holders was used
to verify the mice’s alignment with respect to VR system, and was
critical to prevent side biases stemming from lateral asymmetries
in controlling the ball (a CAD file for 3D printing the tool is
available at https://github.com/sakoay/AccumTowersTools.git).

Ball movements controlled the mice’s position within the
VR environment, projected onto a custom-built Styrofoam R©

toroidal screen with a 270◦ horizontal field of view, using
a DLP projector (Optoma HD 141X) with a refresh rate of
120Hz, a pixel resolution of 1,024 × 768, and relative color
balance of 0, 0.4, and 0.5, for the red, green and blue channels,
respectively. Motion was detected by an optical flow sensor
(ADNS-3080 Optical Flow Sensor APM2.6), coupled to infrared
LED (890 nm, Digikey), and lying underneath the ball, within the
cup on which the ball sat, which contained a 30mm aperture
covered with Gorilla Glass R© (Edmond Optics). Optical flow
was transformed into displacement and output to the behavior
control PC using custom code running on an Arduino Due
(code and documentation may be downloaded from https://
github.com/sakoay/AccumTowersTools.git). The accuracy of this
measurement depends on the presence of sufficiently high-
contrast features on the ball surface. In order to ensure this,
the styrofoam balls were either roughened with steel wool or
small black marks were made crisscrossing the entire area using
a permanent marker. Treadmill displacements in X and Y (dX,
dY) resulted in equal translational displacements in the VR
environment (i.e., gain of 1). To set the virtual viewing angle
θ, the acute angle between the line formed by the displacement
vector and the Y axis line was calculated as:

2 = atan2(−dX × sign(dY), |dY|)

The rate of change in θ (radians/second) was then calculated
using an exponential gain function of 2, as follows:

dθ

dt
= sign(d2)×min([exp(1.4× |d2|1.2)− 1,π]

This gain was tuned to damp small values of dθ/dt, stabilizing
trajectories in the maze stem where mice typically made only
small course corrections to maintain forward movement. The
exponential dependence ensured that mice could still perform
sharp turns (i.e., generate large values of dθ/dt) into the maze
arms; see Supplementary Methods for more details.

Reward delivery was controlled by TTL pulses from the
control PC sent to a solenoid valve (NResearch) and done
through a beveled plastic 100 µL pipette tip coupled to PVC
plastic tubing (McMaster-Carr). Sounds were played through
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FIGURE 1 | Accumulating-towers task. (A) Schematic drawing of the VR setup used to train mice in the task. (B) Schematic drawing of the task showing the

progression of an example left-rewarded trial.

conventional computer speakers (Logitech). The apparatus was
enclosed in a custom-designed cabinet (8020.inc) lined with
sound-absorbing foam sheeting (McMaster-Carr). The whole
systemwas controlled by a PC running thematlab-based software
ViRMEn (Aronov and Tank, 2014) (available for download
at https://pni.princeton.edu/pni-software-tools/virmen-virtual-
reality-matlab-engine).

Accumulating-Towers Task
Mice were trained to run down a virtual T-maze (total length:
330 cm, visual width: 10 cm, allowed travel width: 1 cm, wall
height: 5 cm) and retrieve a fluid reward from one of the two
end arms (each measuring 10.5 × 11 × 5 cm, length × width
× height; Figure 1B). As they ran down the central stem they
saw briefly-appearing, tall, high-contrast objects (towers, width:
2 cm, height: 6 cm) on either side of the maze, and the arm on
the side with the most towers contained the reward. Towers
appeared whenever the animals were 10 cm away from them, and
disappeared 200ms later. In each trial, tower position within the
cue period (200 cm) was drawn randomly from spatial Poisson
processes with means of 7.7 towers/m for the rewarded side and
2.3 towers/m for the non-rewarded (minority cue) side (i.e., an
overall tower density of 5 m−1), and a refractory period of 12 cm;
see Supplementary Methods.

At the start of each trial the mice were teleported to a 30-cm
long starting location and the maze appeared. The virtual view
angle was restricted to be 0 throughout this region, in essence
acting as a buffer zone during which mice could straighten out
their running patterns. After they ran past the starting location,
the floor and wallpapers changed to indicate they were in the
main part of the maze, and mice were then free to rotate the view
angle. Towers could appear anywhere within the first 200 cm of
the maze (cue period), and the last 100 cm of the maze (delay
period) did not contain any towers but had the same wallpaper
as the cue period. The wallpaper changed in the arms of the maze

but was identical on both sides. After the mice reached one of the
arms, the world was frozen for 1 s and then disappeared for 2 s
(i.e., screen became black). A correct response was thus followed
by a 3 s inter-trial interval and was rewarded with a drop of 10%
(v/v) sweet condensed milk solution (4–8 µL), whereas an error
was followed by a sound and an additional 9 s timeout period
(total inter-trial interval of 12 s). Trials timed out after 600 s (or
60 s in some sessions).

Every session started with warm-up trials of a visually-guided
maze. In this maze, towers appeared exclusively on one side, and
a tall visual guide (30 cm) positioned in one of the arms indicated
the reward location. In order to advance to the main maze, the
mice were required to perform at least 10 warm-up trials at a
minimum of 85% correct, with a maximum side bias (difference
in percent correct between right- and left-rewarded trials) of 10%
and at least 75% of good-quality trials, defined as trials in which
the total distance traveled is at most 110% of the maze length.
Once in the main maze, performance was constantly evaluated
over a 40-trial running window, with two purposes. First, if
performance fell below 55% correct, animals were automatically
transferred to a block of trials in an easier maze, with towers
shown only on the rewarded side, but with no visual guide.
This block had a fixed length of 10 trials, after which the mouse
returned to the main maze regardless of performance. The other
purpose of the 40-trial window was to assess and attempt to
correct side bias. This was achieved by changing the underlying
probability of drawing a left or a right trial according to a
balanced method described in detail elsewhere (Hu et al., 2009).
In brief, the probability of drawing a right trial, pR, is given by:

pR =
√
eR

(
√
eR +√

eL)

Where eR (eL) is the weighted average of the fraction of errors the
mouse has made in the past 40 right (left) trials. The weighting
for this average is given by a half-Gaussian with σ = 20 trials

Frontiers in Behavioral Neuroscience | www.frontiersin.org 4 March 2018 | Volume 12 | Article 36

https://pni.princeton.edu/pni-software-tools/virmen-virtual-reality-matlab-engine
https://pni.princeton.edu/pni-software-tools/virmen-virtual-reality-matlab-engine
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Pinto et al. Evidence-Based Navigation in VR

in the past, which ensures that most recent trials have larger
weight on the debiasing algorithm. To discourage the generation
of sequences of all-right (or all-left) trials, we capped

√
eR

and
√
eL to be within the range [0.15, 0.85]. In addition, a

pseudo-random drawing prescription was applied to ensure that
the empirical fraction of right trials as calculated using a σ =
60 trials half-Gaussian weighting window is as close to pR as
possible, i.e., more so than obtained by a purely random strategy.
Specifically, if this empirical fraction is above pR, right trials are
drawn with probability 0.5 pR, whereas if this fraction is below
pR, right trials are drawn with probability 0.5 (1+ pR).

The six DAT-IRES-Cre mice included in the dataset ran a
slightly different version of the task. For these animals, the cue
region was 220 cm and the delay was 80-cm long (vs. 200 and
100), the tower density was 3.5 m−1 (vs. 5), and the tower
refractory period was 14 cm (vs. 12). For this reason, these mice
were not included in any of the analyses except the comparison of
performance between different strains (Supplementary Figure 4).

Shaping
Details about the shaping procedure can be found in
Supplementary Figure 1 and Supplementary Table 1. Briefly,
mice underwent at least 11 shaping stages (T1–T11, where T11
is the final maze explained in the previous paragraph). The
first 4 stages (T1–T4), consisted of visually-guided mazes with
cues throughout the stem, and with progressively increasing
lengths. Moreover, while the appearance of towers was triggered
by proximity as previously explained, they did not disappear
after 200ms. Final length was reached at maze T4. Next, the
visual guide was removed (T5) and the cue period length was
progressively decreased to its final value of 200 cm (T6–T7). Up
to T7, towers always appeared only on the rewarded side. The
next step in shaping was to progressively increase the rate of
minority cues (i.e., towers on the non-rewarded side, T8–T11)
and finally to make the towers disappear after 200ms (T10–T11).
An earlier version of the shaping procedure had 14 instead
of 11 steps, whose only difference was to introduce changes
more gradually, but eventually reaching an identical maze.
These animals were included in all the analyses except that in
Supplementary Figure 1. Mice were trained 5–7 days/week, for
one 1-h session per day. The only exceptions to this were for the
first 2 days of training, where mice were acclimated to the VR
setup for 30 and 45min, respectively. Mice typically took 6–7
weeks to reach the final stage (see Results).

Data Analysis
Data Selection
The initial dataset was comprised of 1,067 behavioral sessions
from 38 mice, with a total of 194,766 trials from the final
accumulation maze (182.5 ± 2.2 trials/session, mean ± SEM).
Besides regular behavioral training, we also included sessions
occurring during either two-photon or widefield Ca2+ imaging,
or optogenetic manipulation experiments. In the latter case,
we only included control (laser off) trials (70–85% of trials in
a session). Unless otherwise stated, we applied the following
block-wise data inclusion criteria: (1) whole trial blocks (i.e.,
consecutive trials in the same maze, of which there could be

multiple in a session) with an overall performance of at least
60% correct, including trials of all difficulties; (2) trials with
a maximal traveled distance of 110% of nominal maze length
(Harvey et al., 2012); (3) no timed-out or manually aborted trials;
and (4) after applying criteria 1–3, individual mice with at least
1,000 trials. We thus selected 135,824 trials from 878 sessions
and 25 mice (mean ± SEM: 5,433 ± 774 trials/mouse, range:
1,118–15,283; mean± SEM: 35.1± 4.5 sessions/mouse, range: 7–
86). For analyses involving effects of trial history (Figures 7A–F),
we excluded all optogenetic sessions to avoid the use of non-
consecutive trials, as well as those without at least 5 trials of
history (i.e., first five trials of a block). Those additional criteria
yielded 66,411 trials from 18 mice and 507 sessions. For all model
fits except the Signal Detection Theory (SDT) model (Figures 4,
6, 7 and Supplementary Figures 5, 6), we required one trial of
history, to allow for fair comparison between models with and
without trial history. Those criteria yielded 81,705 trials from 20
mice and 597 sessions.

Psychometric Curves
We built psychometric curves by plotting the percentage of trials
in which the mouse chose the right arm as a function of the
difference in the number of right and left towers (#R – #L, or 1).
For Figure 2A and Supplementary Figures 6C,D, 1 was binned
in groups of 3 and its value defined as the average 1 weighted by
the number of trials. We fitted the psychometric curves using a
4-parameter sigmoid:

pR = b+ a

1+ exp(−(1 − 10)/λ)

The slope of this sigmoid (Figure 2C) was defined as a/4λ. (the
derivative of the curve at 10), and lapse rate (Figure 2D) was
defined as the average error rate (%) in all trials with |1| ≥ 10.

Logistic Regression Analysis
To assess how evenly mice weighted sensory evidence from
different segments of the cue period (Figures 3A,B), we
performed a logistic regression analysis in which the probability
of a right choice was predicted from a logistic function of the
weighted sum of the net amount of sensory evidence per segment,
1(y), where y is one of 5 equally spaced segments between 10 and
200 cm (because tower appearance was triggered by proximity,
the earliest possible tower occurred at y= 10 cm):

pR = 1

1+ exp(−(β0 +
5

∑

i=1
βi1i))

Note that this analysis is similar to the commonly used reverse
correlation (e.g., Brunton et al., 2013). We have confirmed
that both analyses yield very similar results (not shown). To
estimate the amount of recency or primacy effects from the
logistic regression coefficients (Figure 3C) we computed a weight
decay ratio as [(14 + 15)/2]/[(11 + 12)/2], such that values
smaller than 1 indicate primacy effects (i.e., initial portions of
the cue period are weighted more toward the decision) and
1 indicates spatially homogeneous accumulation. To calculate
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FIGURE 2 | Performance of the accumulating-towers task. (A) Best-session example psychometric functions from three mice. Circles: data points, lines: sigmoidal

function fits, error bars: binomial confidence intervals. (B) Overall psychometric functions across the population. Thin gray lines: sigmoidal function fits for all mice with

at least 1,000 trials (n = 25). Black circles and line: psychometric function with sigmoidal fit for aggregate data (metamouse, n = 135,824 trials). Error bars: binomial

confidence intervals. (C) Distribution of slope of the psychometric function for the individual mice shown in (B), pooling all data (gray) or selecting the top 10% of

blocks for each animal (with at least 300 remaining trials after this selection, n = 16), as defined by average performance. Arrowheads: mean. (D) Distribution of lapse

rates for the mice shown in B, defined as the average error rate for trials where |#R – #L| ≥10. Conventions as in (C). (E) Comparison between psychometric slopes

obtained for the top 10% of blocks in a surrogate dataset sampled from a fixed psychometric curve vs. the actual data. Thin gray lines: individual mice, black lines:

average, error bars: ± SEM. (F) Comparison of lapse rates between the surrogate and actual data sets. Conventions as in (E).

the significance of the decay ratio for each mouse, spatial bin
identities for each trial were shuffled 200 times, and in each
iteration the logistic regression model was refit, yielding a
null distribution for the ratio. P-values were calculated as the
proportion of shuffling iterations whose decay ratio was smaller
than the actual ratio. Errors on logistic regression coefficient
estimates for individual mice were calculated as the standard
deviation of the distribution given by sampling the trials with
replacement and refitting the model 200 times.

Effect of Number of Towers, Cue, and Delay Duration
For this analysis, |1| and total number of towers were binned into
groups of two, and effective duration of cue and delay periods
into 10 cm bins. Effective cue period duration was defined as the
difference in the position of the last and first tower, regardless of
side, and effective delay duration was defined as 300 (stem length
in cm) minus the position of the last tower. We first calculated
performance (% correct) separately for each binned value of |1|,
as a function of either cue duration (Figure 5A), total number
of towers (Figure 5B) or delay duration (Figure 5D). To better
estimate the relative contributions of |1|, total number of towers
and period duration (Figure 5C), we fit a linear model to the
data as follows. First, for each mouse, we calculated performance
for all 3-way combinations of binned predictor values (where
period duration is of either cue or delay), and subtracted
the average performance for that mouse. We then averaged

these mean-subtracted performance values across mice, and fit
a 3-parameter linear regression. Fitted parameter significance
values were derived from the t-statistic of the parameter, i.e.,
its average divided by its standard deviation, which follows a
t distribution with n – p – 1 degrees of freedom, where n is
the number of data points and p is the number of parameters
(Chatterjee and Hadi, 2015).

Trial History Analysis
Alternation bias for eachmouse (Figures 6, 7C–E) was calculated
as the percentage of trials in which they chose the arm opposite to
their previous choice, subtracting the overall average percentage.
In other words, we calculated the average difference between
red and black, and blue and black curves in Figures 7A,B, with
appropriate sign conventions. Note that positive alternation bias
values indicate visiting the opposite arm in the following trial,
whereas negative values indicate perseveration, i.e., visiting the
same arm. For the analyses going five trials back (Figures 7D,E),
bias is always defined with respect to trial zero (t0).

Analysis of Running Speed
Speed in cm/s was calculated on a trial-by-trial basis using
the total x-y displacement for 0 < y < 300 cm (i.e., for the
central stem). For the analysis in Supplementary Figure 7C, for
each mouse, within-session standard deviation is the standard
deviation across trials in the same session, averaged across
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FIGURE 3 | Mice use cues from the entire cue region. (A) Example logistic regression for three mice. In this analysis, net evidence (#R – #L) in each of five spatial bins

is used to predict the mouse’s final decision to turn left or right. Notice fairly flat shapes, suggesting that mice take into account evidence from all parts of the cue

period. (B) Logistic regression coefficients for all mice with at least 1,000 trials (thin gray lines, n = 25), along with average coefficients across the population (thick

black line). Error bars: ± SEM. (C) Distribution of weight decay ratios for the mice shown in B, defined as the average of coefficients in the last two bins divided by the

average of the coefficients in the first two bins. Dark gray: mice with significantly non-flat logistic regression weight curves (P < 0.05), light gray: mice with flat curves

(P ≥ 0.05). Arrowhead: mean. (D) Average percentage of trials containing at least one minority cue in each binned cue region position for correct (black) and error

trials (magenta). Error bars: ± SEM. (E) Difference between the percentage of trials containing at least one minority cue in each binned cue region position between

correct and error trials, shown for each individual mouse (thin gray lines), and the average across mice (thick black line). Error bars: ± SEM.

sessions, and across-session standard deviation is the standard
deviation of the distribution of average speeds for each session.

View Angle Analysis
In a given trial, the mouse traverses the T-maze with a y position
trajectory y(t) that is not necessarily monotonically increasing,
as variations in motor control can cause small amounts of
backtracking. We therefore defined the view angle at a particular
Y position, θ(Y), as the value of θ at the first time t at which y(t)≥
Y. For the choice decoding analysis in Figure 8B, we defined an
optimal choice decoding boundary θcd(y) for a given y position
by requiring that the fraction of right-choice trials with θ(y) >

θcd(y) be equal to the fraction of left-choice trials with θ(y) <

θcd(y). Thus, θcd(y) is the boundary that most equally separates
the right- vs. left-choice distributions. The choice decoding
accuracy was defined as the percent of right-choice trials with
θ(y) > θcd(y). For the analysis in Figure 8D, for each mouse we
subtracted single-trial view angle trajectories from their average
trajectory, separately for left and right choice trials. We then
calculated tower-triggered trajectories separately for right and left
towers, where y = 0 was defined as the position of the mouse
when the tower appeared.

Brunton et al. Model
For the analyses in Figures 6A–C and Supplementary Figure 5,
we fit the model described in detail in Brunton et al. (2013). It

is part of the family of the widely used drift diffusion models
(DDMs) (Ratcliff and Rouder, 1998; Gold and Shadlen, 2007),
and models a latent decision variable a, whose amount of change
per maze y position is given by:

da/dy =







0 if a ≥ B
σadW/dy +(δy,yRηRC(φ, τφ)

−δy,ytLηLC(φ, τφ))λa otherwise

where δy,yR and δy,yL are delta functions at the spatial positions
of right and left tower onset, η are i.i.d. variables drawn from
N(1,σ 2

s), the initial value of a is drawn from N(1,σ 2
a), and dW

is a Wiener process. B parametrizes the height of a sticky bound,
C is a function of two parameters, Φ and τΦ , and describes
the adaptation dynamics to the sensory pulses. The memory
time constant is given by τ = 1/λ. Finally, a bias parameter
determines the position of the threshold above which a right
choice is made and the lapse rate represents the probability
of trials in which subjects will ignore the stimulus and choose
randomly. Both these parameters are applied at the end of the
trial when converting the continuous decision variable into a
binary decision. The model was fit using a gradient descent
algorithm to minimize the negative log likelihood cost function,
using the interior-point algorithm from the Julia package Optim.
Gradients were computed through automatic differentiation
with respect to model parameters for each trial. Automatic
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differentiation makes it possible to efficiently compute complex
derivatives with machine precision, and greatly improves the
optimizer’s performance. We used the following parameter value
constraints to fit the models: −5 < λ < 5, 0 < σ 2

a < 200, 0 <

σ 2
s < 200, 0 < σ 2

i < 30, 5 < B < 25, 0 < Φ < 1.2, 0.001 < τΦ

< 2 (maximum length of the cue period), −5 < bias < 5, 0 <

lapse < 1.

Signal Detection Theory (SDT) Model
We used the SDT model (Figure 6D) developed by Scott et al.
(2015), where details about the method can be found. Briefly, the
probability of making a correct choice (pc) in a given trial was
modeled as the difference of two Gaussian distributions given
by unique tower counts on the sides with the larger and smaller
number of towers, L and S, where the variance of the distributions
were the free parameters σ 2

L and σ 2
S:

pc =
∫ ∞

0
N(L− S,

√

σ 2
L + σ 2

S )d(L− S)

where L and S are an integer number of towers between 0 and
15 (we excluded trials with 16 or more towers on one side
since there were very few of them). The model thus had 16 free
parameters, whose best fit values were the ones that maximized
the likelihood of the mice’s choices using the Matlab function
fmincon’s interior-point algorithm. To fit this model, we only
used the metamouse (aggregate) data, since individual mice had
too few trials to obtain good fits.

In order to statistically distinguish between the linear variance
and the scalar variability hypotheses, we explicitly modeled σ

as either a linear or a square root function of the number of
towers instead of fitting separate σ values. Specifically, we fit
two separate two-parameter models to the data, one where σ (n)
= β0 + β1n and another where σ 2(n) = β0 + β1n, with β0

and β1 being free parameters and requiring β0 ≥ 0 (similar
to models b and d in Figure 4 of Scott et al., 2015). Statistical
significance was calculated by bootstrapping the data 1,000 times
and defined as the proportion of bootstrap experiments in which
the linear variance model had better goodness-of-fit than the
scalar variability model (using the model information index, see
below). For the two-parameter models, we also fitted individual
mouse data. Note that for all SDT models, unlike the other
models, we used the full dataset including non-contiguous trials
(n= 25 mice, 135,824 trials), in order to gain statistical power.

Heuristic Models With Trial History
We fitted logistic regression models (Figures 7G,H and
Supplementary Figure 6) where the probability of making a
right choice, pR, was a function of both sensory evidence (with
two different parameterizations, see below), and trial history, as
follows:

pR = ℓL +
1− ℓL − ℓR

1+ exp[−p0 − (1+ βee)(β0 + Eβ⊺

1
E1)]

(1)

In the equation above, p0 ≡ − ln(1/fR−1) where fR is the fraction
of right-choice trials in the given dataset. This was introduced
such that when all the free model parameters Eβ → 0, then

pR → fR, i.e., the models considered here are a nested set w.r.t.
the null hypothesis that the mouse has a constant right-choice
probability fR, which facilitates model comparison. ℓR (ℓL) are
lapse rates and can be interpreted as the probability of the mouse
making a right choice in very easy right- (left-) rewarded trials,
which can depend on both the mouse’s previous choice and the
resulting outcome of the previous trial (Figures 7A,B). In other
words, because of the observed trial-history-dependent vertical
shifts in the psychometric curves (Figures 7A,B, Supplementary
Figures 6C,D), history-dependent terms modulated the lapse
rates and not the evidence terms inside the logistic function.
Because probabilities must be bounded such that 0 ≤ pR ≤ 1,
we constrained both lapse rates to be in the range 0 ≤ ℓR/L ≤ 0.5
by applying a cosine transform to the otherwise linear model of

dependence on history terms Eh:

ℓR = 1

2
[1− cos(βR

0 + Eβ⊺

h
Eh)]

ℓL = 1

2
[1− cos(βL

0 − Eβ⊺

h
Eh)]

Here, βR
0 and βL

0 are history-independent lapse rates, and
Eh = (c±−1, o

±
−1, c

±
−1 × o±−1), where the previous-choice indicator

function c±−1 is defined to be +1 (−1) if the mouse chose right
(left) in the previous trial, and the previous-outcome indicator
function o±−1 is defined to be+1 (−1) if the mouse was rewarded
in the previous trial. Back to Equation (1), βe was introduced to
account for history effects that change the slope of the evidence
dependence after errors (Figure 7B), multiplying the “error”
indicator function e, which is defined to be+1 if the mouse made
a wrong choice in the previous trial and −1 otherwise. Finally,
E1 is a vector of evidence weights that took two different forms.
For the model in Figure 7H, this vector was equivalent to that in
the spatial bin logistic regression model described previously, i.e.,
the cue region was divided into 5 equal-width bins spanning y =
10–200 cm, and E1 was set to be a 5-dimensional vector where
each coordinate corresponds to #R – #L towers in each of the
bins. For themodel in Supplementary Figure 6 (cue ordermodel),
we built the evidence vector as follows. For a given trial, cues
(including both sides) were first ranked by their y position in
ascending order, i.e., rank 1 corresponds to the first cue seen by
the mouse on that trial. To improve statistical power, this rank
was downsampled by a factor of 3 before defining E1 as a vector of
#R – #L restricted to cues with the corresponding ranks. That is,
the first coordinate of E1 is δ1−3 = [#R − #L]ranks1−3, the second
coordinate is δ4−6 = [#R − #L]ranks4−6, and so forth. Because
the total number of cues differs from trial to trial due to random
sampling, this means that not all trials have information for what
would be the 2nd and onwards coordinates of E1. In order for
the model to be well-posed, the dimensionality of E1 is fixed to
be the maximum possible such that there are at least 50 trials
that have information for the last coordinate. Trials with fewer
than this number of cues are therefore assumed to have 1i =
0 for the remaining coordinates. The evidence vector was then

normalized as E1 = (δ1−3, δ4−6, . . .)/〈|1|〉1/2n . The normalization
factor 〈|1|〉n depends on the number of cues n for the given
trial, and defined to be the average |#R – #L| over all trials in the
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dataset with the same number n of cues. These models were fit by
maximizing the log-likelihood including L1 penalty terms for all
free parameters (Schmidt, 2010). For a more detailed treatment
of the models and fitting procedure, refer to Supplementary
Methods.

Alternative Strategy Models
(1) Trial-history-only model (Figure 4A): we fitted a logistic
regression model in which choice was a function only of previous
trial history. The model is the same as in equation (1), except
it did not contain the spatially binned evidence terms E1. (2) K
random tower models: for these models, we assume that in each
trial the mouse chooses k towers at random (from all presented
towers) and uses only those to make its decision. The probability
of making a right choice is thus equivalent to the probability that
the majority of the k towers is on the right side, i.e., kR > k/2. This
is given by the hypergeometric distribution, which gives us the
probability of k/2 in k random draws without replacement from
a population of size #R + #L, given that we know that #R towers
are on the right. We implemented this using the Matlab function
hygecdf. Note that in the special case where k = 1 (i.e., the one
random tower model, Figures 4B,C), the probability of choosing
right reduces to #R/(#R + #L). (3) First tower and Last tower
models: here we simply assume that themouse will choose right if
the first (last tower) appears on the right. In order to account for
lapse rates inmodel classes (2) and (3), the obtained probability of
going right, pmR , was modulated by the experimentally measured
lapse rates for right and left trials (lR and lL) for each animal, i.e.,
pR = lR + [(1 − (lR + lL)])p

m
R . These lapse rates can be assessed

independently of pmR by using trials where there are only towers
on one side, for which pmR = 1 for all these models. Therefore,
ℓR (ℓL) is the fraction of error trials out of all trials with only left
(right) towers. For further details on alternative strategy models,
refer to Supplementary Methods.

Model Comparison and Cross-Validation
All models except the SDT were evaluated separately for each
mouse using 70 runs of 3-fold cross-validation (i.e., using 2/3
of the data for training and 1/3 for testing the model), making
sure that the subsamples of data used in each run were identical
for all models. In these models, we are either hypothesizing
that trial history effects do not exist, or that trial history effects
have particular explicit parameterizations as described above.
Therefore the model prediction for each trial is uncorrelated with
that of any other trial (beyond any explicitly modeled history
effects), and for each run we calculated the log likelihood (ln L) of
the test dataset given the best-fit parameters on the training set, as
follows. Let the mouse’s choice on the ith trial be ci, i = 1, . . . ,m
which is 1 (0) if the mouse chose right (left). The likelihood
of observing this choice is given by the binomial distribution
B(1, pR) = pR(Exi)ci [1− pR(Exi)]1−ci , where Exi are various features
of the ith trial that the model depends on (evidence, trial history,
and so forth). Taking the product of individual-trial likelihoods
we obtain:

ln Lx =
∑

1≤i≤m

{

ci pR(Exi) ln pR(Exi)+ (1− ci) ln[1− pR(Exi)]
}

Additionally, we calculated a reference log likelihood (ln L0)
of a trivial model with constant probability of going right, fR,
being the experimentally-measured fraction of trials in which the
animal went right. We then defined the goodness-of-fit of a given
model to be the model information index,MI:

MI = (ln L− ln L0)/ntrials
ln(2)

In other words, we calculated a trial-averaged excess likelihood
of the model (compared to the trivial model) and converted the
log to base 2, which gives us the amount of information of the
model in units of bits/trial (Paninski et al., 2004; Pillow et al.,
2008). In the cross-validation framework, all model parameters
are extracted using the training set of 2/3rds of trials, and theMI
values are evaluated only using the test set of 1/3rd of trials, which
penalizes overfitting. To compare models across the population,
we took the median MI across the 210 cross-validation runs for
each mouse. To assess significance of the difference betweenMIs
for a given mouse, we calculated a P value as the proportion of
runs in which one model out(under)-performed the other.

General Statistics
Datasets were tested for normality using the Lilliefors’
modification of the Kolmogorov-Smirnov test. For comparisons
between two normally distributed datasets, we used two-sided
t-tests, and for non-normally distributed datasets we used the
Wilcoxon sign rank test (or their paired test counterparts where
appropriate). Multiple comparisons were corrected using the
false discovery rate correction method described in Benjamini
and Hochberg (1995); see also Guo et al. (2014). Briefly, P-values
are ranked in ascending order, and the ith ranked P-value,
Pi, is deemed significant if it satisfies Pi ≤ (αi)/n, where n is
the number of comparisons and α = 0.05 in our case. For
tests involving the comparisons among multiple groups, we
performed one- or two-way ANOVAs with repeated measures,
followed by Tukey’s post-hoc tests where appropriate. Binomial
confidence intervals were calculated as 1-σ intervals using
Jeffrey’s method.

RESULTS

Accumulating-Towers Task
We have developed a novel pulse-based evidence accumulation
task for mice navigating in VR (Figure 1, Supplementary Movie
1). Briefly, mice were trained to navigate on a virtual T-maze to
retrieve water rewards from one of the two arms. While they ran
down the central part of the maze (cue region, 200 cm), salient
visual cues (towers) appeared transiently (200ms) on either side.
After a delay period without any cues (100 cm), the animal made
either a right or left turn into one of the arms, and was rewarded
if this corresponded to the side that had the highest number of
towers (Figure 1B). Incorrect choices led to the playing of an
error-indicating sound and a time-out period of 9 s, in addition
to the regular 3 s intertrial interval. The cues were distributed
as spatial Poisson processes (Supplementary Methods) with
different rates on the rewarded and unrewarded sides, such that
the positions and number of towers on either side varied from
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FIGURE 4 | Mice rely on multiple cues to perform the task. (A) Comparison of cross-validated prediction performance of a model containing both trial history and

spatially binned evidence (Figure 7H) and one containing only trial history terms (n = 20 mice). MI: model information. (B) Comparison of cross-validated prediction

performance of a model in which the mouse makes a decision based on a single random tower and one with spatially binned evidence (no history) (n = 20 mice).

(C) Psychometric curves for the actual data and a model that chooses from each trial 1 of the presented cues (randomly) and bases the trial choice on the identity of

that cue. Data is aggregated across mice for trials where the total number of cues (#R + #L) is equal to 12. In the scenario where #R + #L is fixed, we expect the “1

random cue” model’s performance to be linear with #R – #L (as is borne out in the figure). In contrast, if mice used multiple cues the psychometric curve should be

different from a line. The psychometric curve for the actual data (gray) is significantly different from that predicted by the ‘1 random cue’ model (yellow, P < 0.01,

shuffle test, see Supplementary Materials and Methods).

trial to trial. This, together with the transient nature of the
cues, meant that towers needed to be incrementally accumulated
toward a decision. Importantly, the precisely controlled stimulus
times allowed for powerful computational approaches when
analyzing the data.

We developed detailed shaping procedures whereby different
elements of the final task were gradually introduced, with well-
defined and automated criteria for progression through the
various stages (Supplementary Figure 1, Supplementary Table 1).
Most animals in the dataset underwent an 11-step procedure,
taking 34.8 ± 4.5 daily sessions (mean ± SEM, n = 17 mice) to
reach the final stage, or 6–7 weeks including training breaks.

Mice Are Sensitive to the Amount of
Sensory Evidence
We analyzed data from 25 mice with at least 1,000 trials on the
final accumulation maze, obtaining a total of 135,824 trials (see
Materials and Methods for details on data selection). Overall
task performance including all trial difficulties was 68.7 ± 0.5%
correct (mean ± SEM, n = 25, range: 64.7–72.8%). We were
able to obtain many good-performance sessions for most mice
(Supplementary Figure 2), including very high-performance
sessions with steep psychometric curves and low lapse rates (e.g.,
Figure 2A). Performance was variable across sessions (standard
deviation of overall performance across sessions: 7.0 ± 0.4%,
mean ± SEM across mice), and could fluctuate within sessions
(Supplementary Figures 2C, 3), typically dropping toward the
end, presumably when the mice were sated (Supplementary
Figure 3A).

Importantly, performance was modulated by the amount
of sensory evidence (#R – #L towers, or 1), as revealed by
psychometric curves (Figures 2A,B, Supplementary Figure 3B).
Taking all blocks of consecutive trials in the same maze level
into account (a block is defined here as consecutive trials in the
same maze level, and there could be multiple within a session, see

Materials and Methods), the slope of the psychometric function
was 4.7 ± 0.2%/tower (mean ± SEM, Figure 2C), and the lapse
rate, defined as the error rate for |1| ≥ 10, was 21.4 ± 0.9%
(Figure 2D).

Given the variability we observed in performance, we next
explored different performance selection criteria. For instance, if
only the blocks over the 90th percentile of overall performance
were selected, psychometric slope and lapse rate were 8.2 ±
0.4%/tower and 12.8 ± 1.1%, respectively (Figures 2C,D, green
histograms). Of course, if we assume that different behavioral
blocks are noisy samples from static psychometric curves,
applying these criteria would trivially yield better performance
indicators. To explicitly test for this possibility, we assumed that
each mouse had a static psychometric curve across all sessions
and generated 200 surrogate datasets by drawing samples from
the binomial distributions given by the psychometric curves at
the actual experienced values of 1 towers, and reselected the top
10% of blocks for each of these 200 draws. Interestingly, only
the average improvements in lapse rate, but not psychometric
slope, were significantly smaller in the surrogate data than the
actual observed improvement (Figures 2E,F, P = 2.4 × 10−4

and 0.97 respectively for lapse and slope, one-sided signed
rank test; 7/18 mice have individually significant differences
for lapse). This can be understood by noting that trials with
|1| towers ≥ 10 comprise only ∼10% of the total number,
making them a relatively unimportant contribution to the overall
performance and therefore not much affected by selection in the
simulated static-psychometric data. We thus conclude that actual
mice exhibit significantly lower lapse rates on high-performance
behavioral blocks, but not more sensitivity to evidence, beyond
that expected by random sampling.

We also wondered what impact within-session fluctuations
in performance had in the measured psychometric functions.
We calculated ongoing performance using a sliding gaussian
window and recalculated psychometric functions after excluding
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low-performance bouts (i.e., consecutive trials with performance
below several different thresholds). Excluding these trial bouts
yielded sharper psychometric curves with lower lapse rates
(Supplementary Figure 3B).While these criteria were not used for
any other analyses in this work, they illustrate howmore stringent
trial selection criteria may be applied depending on data analysis
needs.

Behavioral performance in the accumulating-towers task was
thus on average comparable to that seen in rats doing an
analogous task (Scott et al., 2015), consistent with the finding that
mice and rats perform similarly in several perceptual decision-
making tasks (Mayrhofer et al., 2013; Jaramillo and Zador,
2014). Additionally, mice of different strains did not show any
statistically significant differences in a variety of performance
indicators, except for running speed (Supplementary Figure 4).
Note, however, that strain comparison was not the main goal of
this study, and sample sizes and the specific chosen strains were
a function of data available from separate unpublished, ongoing
studies. We thus lacked the appropriate sample size to detect
small differences in behavior. This caveat notwithstanding, we
were able to train mice from all tested strains on the task.

Mice Use Multiple Evidence Pulses From
the Entire Cue Region
We next sought to determine whether mice solve the task by
using towers from the entire cue period. For each mouse we
performed a logistic regression analysis to predict choice using
the amount of net evidence in each of 5 equally spaced bins
spanning the 200 cm cue region. We observed a variety of shapes
in the curves given by the different spatial weights in the model
(Figures 3A,B): while somemice had fairly flat curves, suggesting
spatially homogeneous accumulation of evidence (Figure 3A),
others had curves with higher coefficients in the beginning of
the maze, indicating primacy effects, and a minority had higher
coefficients in the later spatial bins, suggesting recency effects
(Figure 3B). To better quantify this, we computed a weight decay
ratio between the average weight in the two last and two first
bins, such that numbers smaller than one indicate primacy,
and estimated statistical significance of individual animals with
a shuffling procedure (Figure 3C, see Materials and Methods).
Across the population, we obtained an average ratio of 0.73 ±
0.06 (mean ± SEM), significantly different than one (P = 1.3 ×
10−4, two-sided t-test). Furthermore, 10/25 mice had indices that
were significantly smaller than one. Next, to further quantify the
contribution of towers from different portions of the cue period,
we calculated the percentage of trials containing cues on the
non-rewarded side (minority cues) in the different spatial bins,
separately for correct and error trials (Figures 3D,E). The overall
magnitude of this percentage was significantly different between
correct and error trials [F(1, 24) = 381.75, P = 5.73 × 10−50], as
expected because trials with a higher density of minority cues are
more difficult by design. Unlike what was observed in a different
evidence-based navigation task (Morcos and Harvey, 2016), the
distribution of trials with minority cues did not vary significantly
as a function of position [F(1, 4) = 0.15, P= 0.96, 2-way repeated-
measures ANOVA]. On the whole, these analyses suggest that the

mice take into account evidence from the entire cue period, on
average slightly overweighting earlier evidence. This is consistent
with findings from both humans andmonkeys performing pulse-
based evidence accumulation tasks (Kiani et al., 2008; Tsetsos
et al., 2012; Bronfman et al., 2016).

In theory, it is possible that some of the aforedescribed
findings could be obtained if the mice were selecting (one)
random tower(s) in different trials, or, less likely, employing
more degenerate strategies that do not rely on sensory evidence
at all. To test for these possibilities, we built models that
implemented such strategies and compared them against models
containing spatially binned evidence terms (Figure 4). First,
we built a trial-history-only model that only contains previous
choice and reward terms, i.e., no evidence is used for the decision
(see Materials and Methods). This modeled the population
of mice more poorly, in terms of having significantly worse
cross-validated goodness-of-fit (model information index, MI)
compared to a model that also has sensory evidence terms (P
= 8.9 × 10−5, n = 20, signed rank test, Figure 4A). We next
assessed a model in which the mouse uses exactly one randomly
selected tower per trial to make a decision. Again, this model
had significantly worse MI than a model where evidence is
used for the decision (P = 4.1 × 10−4, n = 20, paired t-test,
Figure 4A; both models also have left/right lapse parameters).
Moreover, we reasoned that, in this scenario, for a fixed number
of total towers (#R + #L) behavioral performance should vary
linearly with #R – #L (Morcos and Harvey, 2016), whereas if the
mouse uses multiple cues the psychometric curve should deviate
from linearity. The data supported the latter: the experimentally
obtained psychometric curve was significantly different than the
line predicted by the one-random-tower hypothesis (Figure 4C,
P < 0.01, shuffling test, see Supplementary Materials and
Methods). Additionally, we reasoned that the one-random-tower
hypothesis predicted that, for trials without any minority cues
(i.e., no towers on the non-rewarded side), performance should
not vary as a function of the number of towers, since any
randomly selected tower would lead to a correct decision. This,
however, is not what we observed. When we compared trials with
fewer than 5 towers to trials with more than 9 towers (all on the
rewarded side), performance was significantly higher in the latter
case for all mice with sufficient trials for this analysis (P < 0.001,
signed rank test, not shown). Finally, we implemented other
models in which the mice adopt other trivial strategies, namely
making a choice based on the first tower, last tower, and 3, 5 or
7 random towers (see Materials and Methods). The spatial bin
logistic regression model (Figure 3) significantly outperformed
all five alternative models at the population level (data not shown,
n = 20, P < 0.01, paired difference tests with false discovery rate
correction, see Materials and Methods).

Performance Is Affected by the Number of
Cues but Not Trial Duration
Having thus established that mice accumulate multiple pulses of
evidence from the whole cue period, we next sought to quantify
in more detail how the number of towers and cue or delay period
duration affected performance. For trials with similar difficulty
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(same |1| towers), we plotted percent correct performance
as a function of the effective duration of the cue and delay
periods, and noticed no apparent dependence (Figures 5A,D).
Conversely, when we plotted performance as a function of
the total number of towers (#R + #L) for different values of
|1|, we observed a consistent decrease in performance with
increasing numbers of towers (Figure 5B), similar to previous
findings in the rat (Scott et al., 2015). To quantify how |1|,
#R + #L and duration each influence performance, we fitted
a linear model using these three quantities as predictors (see
Materials and Methods for details). The largest contribution to
performance was given by |1| (P = 3.1 × 10−46, t statistic
for regression coefficients), and total number of towers had a
significant negative coefficient (P = 2.4 × 10−11), whereas the
cue duration coefficient was not significantly different than zero
(P = 0.64; Figure 5C).

A potential explanation for the findings described above
is the existence of one or more sources of noise that grow
proportionally with the number of visual pulses presented in the
trial, and that the noise generated by these sources is greater
than stimuli-independent noise sources, such as time-dependent
accumulation (diffusion) noise in a drift-diffusion model (DDM)
framework (Brunton et al., 2013; Scott et al., 2015). Potential
sources of stimulus-dependent noise are many, and include noise
in stimulus presentation and/or processing, which adds noise
independently with each pulse (Smith and Ratcliff, 2004; Brunton
et al., 2013), or noise that scales non-linearly with the total
amount of pulses (Fechner, 1966; Scott et al., 2015).

To further investigate this, we fitted the data using two
different models. First, to estimate the magnitude of different
noise sources, we employed a DDM developed by Brunton et al.
(2013), which models a latent decision variable as a function
of memory leak (λ), a sticky accumulation bound, and three
sources of noise: diffusion, stimulus and initial value of the
accumulator (in addition to four other parameters, see Materials
and Methods, Supplementary Figure 5). Consistent with findings
in rats (Brunton et al., 2013; Scott et al., 2015), we found that
sensory noise was the dominant source of noise for the majority
of mice (Figures 6A,B and Supplementary Figure 5, across the
population: P = 7.0 × 10−4, t-test, and 5.9 × 10−4, signed rank
test, respectively for σ 2

s vs. σ 2
i and σ 2

s vs. σ 2
a; 8/20 and 9/20

mice had significantly higher σ 2
s compared to σ 2

i and σ 2
a,

respectively, based on proportions of cross-validation runs). Also
consistent with the previous studies, we found memory leaks
close to zero (Figure 6C; λ = 0.03 ± 0.09 m−1, mean ± SEM,
P = 0.78, two-sided t-test vs. zero, only four animals had λ

values that were statistically different from zero). These results
are also consistent with our analyses in Figure 5, where neither
the duration over which the cues are presented nor the effective
delay interval after the last cue are significant factors (beyond #R
and #L). Like other DDMs, the Brunton et al. model assumes that
each pulse of evidence is associated with independent Gaussian
noise, which results in linear scaling of the total variance with
increasing number of pulses. This assumption, however, has been
shown not to hold for an analogous visual pulse accumulation
task in the rat or the acoustic version of Brunton et al. (Scott et al.,
2015). Instead, the standard deviation of the perceived evidence

(i.e., not the variance but its square root) increased linearly
with increasing number of pulses, favoring a scalar variability
framework (Fechner, 1966; Gallistel and Gelman, 2000). We
attempted to quantify this in our data by fitting the same SDT
model as Scott et al. In this model, each unique tower count
is associated with a Gaussian distribution of mean number of
towers T and standard deviation σT , the latter being the free
parameter. The probability of choosing a side is given by the
difference in the distributions of left and right tower counts (see
Materials andMethods for details). For the data aggregated across
mice (we failed to obtain low-noise parameter estimates from
fits to individual mice), best-fit σT grew monotonically with the
number of towers T (Figure 6D). We then fitted two competing
two-parameter models to directly test whether scalar variability
or linear variance predicted the data better. Again in agreement
with the visual and auditory rat tasks (Scott et al., 2015), we found
that the scalar variability was, on average, a better model than
the alternative, although the results were variable at the level of
individual mice (for aggregate data: P < 0.003, bootstrapping;
10/25 individual mice had significantly better predictions from
the scalar variability model, 2/25 had better linear variance, 13/25
were statistically indistinguishable).

Choice Is Influenced by Previous Trial
History
Having determined that mice are sensitive to the amount of
sensory evidence and that they use multiple pulses throughout
the maze to make their decision, we next investigated how
previous choice and reward history influenced current choice.
Rodents have been shown to display behavioral effects of trial
history in a variety of task designs (Busse et al., 2011; Narayanan
et al., 2013; Pinto and Dan, 2015; Scott et al., 2015). In particular,
in two-alternative forced choice tasks in operant conditioning
chambers, they are more likely to repeat previously rewarded
choices (Busse et al., 2011; Scott et al., 2015). We were therefore
surprised to uncover the opposite pattern of trial history, albeit
of small magnitude: on average, the mice were more likely
to go to the opposite arm to a previously rewarded one, and
to repeat an unrewarded choice (Figures 7A,B). This behavior
is potentially reminiscent of the well-documented tendency to
spontaneously alternate arms when mice explore a (physical) T-
maze (Lalonde, 2002). To better quantify this effect, we defined
the alternation bias for each mouse as the mean-subtracted
percentage of trials in which they chose the arm opposite to
their previous choice (see Materials and Methods for details).
Post-error and post-reward biases did not significantly differ
in magnitude (Figure 7C, P = 0.48, two-sided paired t-test),
although only post-error biases were significantly different than
zero (P = 0.006 and 0.11 for post-error and post-reward,
respectively, two-sided t-test). There was no correlation between
the magnitude of post-reward and post-error biases across mice
(r = −0.28, P = 0.25, Pearson’s correlation, analysis not shown).
Post-error biases also had a longer time scale than post-reward,
going at least five trials in the past (Figure 7D). Note that
for the analysis Figure 7D a long-lasting negative bias with
respect to trial zero indicates higher probability of going to
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FIGURE 5 | Behavioral performance decreases with increasing total number of towers, but not duration of cue period. (A) Overall performance as a function of

effective cue period duration in space, for various subsets of trials with different absolute differences between tower counts (|1|, color code). Effective duration is

defined as the position of the last viewed tower minus the position of the first tower. Error bars: binomial confidence intervals. (B) Overall performance as a function of

the total number of towers (#R + #L), for subsets of trials with different |1|. Conventions as in (A). (C) Best-fit coefficients from a linear regression model predicting

performance as a weighted combination of |1| towers, total towers, and effective cue period duration. The data is the mean-subtracted performance averaged across

mice. Error bars: standard error for each parameter. Significance was calculated from parameter t-statistics. (D) Overall performance as a function of effective delay

period duration in space for subsets of trials with different |1|. Error bars: binomial confidence intervals. Conventions as in (A). ***P < 0.001.

FIGURE 6 | Behavioral performance seems to be limited by cue-dependent noise. (A) Distribution across mice (n = 20) of the difference between best-fit sensory and

diffusion noise parameters (σ2
s and σ2

a, respectively) from the Brunton et al. model, color coded according to whether they are significantly different from zero

according to 95% confidence intervals determined from cross-validation runs. Arrowhead, population mean. (B) Distribution across mice of the difference between

best-fit sensory and initial noise parameters (σ2
s and σ2

i , respectively) from the Brunton et al. model. Conventions as in (A). (C) Distribution of the memory leak (λ)

parameter from the Brunton et al. model. Conventions as in (A). (D) Best-fit parameters for the SDT model (aggregate mouse data). Black data points: parameters

from the full model where σ2 is determined separately for each tower count. Yellow line: prediction from the two-parameter scalar variability model. Green line:

prediction from the two-parameter linear variance model. Scalar variability yielded significantly better predictions (P < 0.003). Error bars: standard deviation from

bootstrapping iterations (n = 200).

same arm over consecutive trials. In other words, this would
indicate the presence of choice perseveration bouts, particularly
following an error trial. To directly assess this, we calculated
the alternation bias selecting trials with consecutive rewards
or errors in the same arm (Figure 7E). We noted an increase
in the magnitude of negative bias with increasing numbers
of consecutive erroneous visits to the same arm, as expected
from the interaction between choice perseveration and our
debiasing algorithm. For example, a mouse that perseverates
in going left with little regard to the evidence will cause
the debiasing algorithm to sample more right-rewarded trials,
increasing the fraction of consecutive left-choice, right-rewarded
trials. To estimate how these perseveration bouts affected overall
performance, we recomputed the aggregate psychometric curve
after removing trial bouts in which the mice made at least
three consecutive identical choices. Applying this additional trial
selection criterion resulted in little performance improvement

(Figure 7F, and changing the criterion to more trials did not
qualitatively change the results).

Thus, choice and reward history impacted present choice
in the accumulating-towers task. To provide a more complete
description of the behavior, we added trial history to our
behavioral models. First, however, we compared the performance
of the Brunton et al. DDM to the logistic regression model
in which choice is a weighted function of the net amount of
sensory evidence in different spatial bins (Figures 2A,B). This
latter heuristic model performed as well as the Brunton DDM
in cross-validated datasets across the population (Figure 7G, P
= 0.58, n = 20, Tukey’s post-hoc test after a one-way ANOVA
with repeated measures for the three models in the figure; P
= 2.4 × 10−6 for main effect of model type). We therefore
added trial history to the logistic regression model (Figure 7H),
adding terms to account for both the observed vertical shifts
in the psychometric curves and the decrease in psychometric
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FIGURE 7 | Choice is moderately influenced by previous trial history. (A) Psychometric curves for aggregate data (metamouse) divided according to previous choice in

rewarded trials. Black: average post-reward curve, blue: psychometric curve for trials following rewarded right choices, red: psychometric curve for trials following

rewarded left choices. Error bars: binomial confidence intervals. (B) Psychometric curves divided according to previous choice in error trials. Conventions as in

(A). (C) Distribution of alternation bias after reward (gray) or error (magenta) trials. Arrowheads: population mean. (D) Magnitude of alternation bias calculated for 1–5

trials after a choice, separately for rewarded and unrewarded trials. Error bars: ± SEM across mice (n = 18 with at least 1,000 trials after removing trials with fewer

than 5 history trials). (E) Magnitude of alternation bias calculated for 1–5 trials after identical rewarded or unrewarded choices. Error bars: ± SEM. (F) Psychometric

curves for aggregate data (metamouse) with the trial selection adopted throughout the paper (black) and adopting an additional criterion to exclude at least 3

consecutive-choice trials (gray). Error bars: binomial confidence intervals. (G) Comparison of cross-validated model prediction performance for the Brunton et al.

DDM, the spatial-bin logistic regression, and the latter plus trial history terms. Thin gray lines: individual mice, black lines and error bars: mean ± SEM. ***P < 0.001.

MI: model information index. (H) Best-fit standardized coefficients for the spatial bins model with trial history terms. Thin gray lines: individual mice, thick black lines:

population mean, error bars: ± SEM.

slope following errors (Figures 7A,B, see Materials and Methods
for details). As expected, doing so significantly increased model
performance (Figure 7G, P = 9.9 × 10−5, Tukey’s post-hoc test).
Note that this model has the underlying assumption that the
mice adopt a spatial strategy, i.e., that weights are assigned to
net evidence in different segments of the nominal cue region,
regardless of how many towers the mice have seen before
reaching that segment. An alternative hypothesis is that mice
weight towers according to the order in which they occur. In this
scenario, the first tower in a trial would have the same impact
on the mouse’s decision, whether it occurred on the first or
nth spatial segment. To test for this possibility, we constructed
another logistic regression model in which towers are ranked (in
bins of three) according to their ascending order of occurrence
(Supplementary Figure 6). The model, which confirmed the
predominance of primacy effects on the behavior (i.e., earlier cues
have more weight on the decision), performed marginally better
than its spatial counterpart, with a trend toward significantly
better cross-validated predictions (P = 0.07, n = 20, two-sided
paired t-test, both cases had the same trial history parameters).
This suggests that an internal evidence weighting function that
depends on a running numerosity explains behavior at least
as well as one that weighs evidence based on a tower’s spatial
position.

Mice Display Fairly Stereotyped Running
Patterns
Lastly, we turned to the analysis of the mice’s running patterns
as they navigated the maze. We characterized the time course
of movements that the mice made, as well as how these are
modulated by choice and evidence, as this navigational behavior
is presumably reflective of the ongoing decision process in a
given trial. Secondly, we quantified the motor skill element of
our task, as it generally adds to the difficulty and may specifically
contribute to the observed lapse rates of the mice.

Inspection of single-trial speed vs. maze position (trial time)
traces suggested that mice run at fairly stereotyped speeds
in different portions of the maze (Supplementary Figure 7A).
Average running speed in the maze stem across the population
was 61.1 ± 2.4 cm/s (Supplementary Figure 7B, mean ±
SEM, range: 44.2–92.9), translating into a nominal cue period
duration of 3.4 ± 0.1 s (mean ± SEM, range: 2.2–4.5). Given
the broad distribution of speeds we observed across mice
(Supplementary Figures 7C,D), we next wondered whether
there was any systematic relationship between running speed
and performance across the population. Indeed, we found a
significant correlation between these two indicators, averaged
across all sessions (Supplementary Figure 7E, r = 0.48, P =
0.02, Pearson’s correlation). In other words, faster mice tended
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to perform better. This relationship, however, did not in general
hold within individual mice in a session-by-session analysis
(Supplementary Figure 7F, r = 0.06± 0.05, mean± SEM).

We also sought to analyze how frequently mice made putative
motor errors (Supplementary Figure 7G). We found an overall
low occurrence of trials with unusual motor events, at an
average of 5.6 ± 1.0% (mean ± SEM, excluding low-speed trials,
which are 10% by definition, see Materials and Methods). The
distribution of these events differed significantly among event
types and between correct and error trials (Supplementary Figure
7G, 2-way repeated measures ANOVA, Pevent type = 2.8 × 10−38,
Ptrial outcome = 2.6 × 10−5), with events being more common
in error trials. The frequency of unusual motor events did not
depend on trial difficulty (2-way repeatedmeasures ANOVA, P=
0.25, data not shown).We thus conclude that while motor aspects
did contribute to error trials, they cannot fully explain the lapse
rates.

We then turned to the analysis of view angle trajectories.
Specifically, we first looked for statistical correlations between
view angle distributions and the animal’s behavioral strategy, and
find that these distributions do on average reflect the eventual
choice of the animal, as follows. For each mouse, we calculated
the distribution over trials of view angles as a function of
y position in the maze, separately for left and right choice
trials (Figure 8A). We observed diverging distributions with
increasing y positions, indicating that the animals progressively
turned to their choice side as they ran down the stem of the maze.
To better quantify this phenomenon, we built choice decoders

that predicted the future choice based on the current view angle
at a particular y position along the maze stem (see Materials and
Methods). At y = 100 cm (half-way through the cue period),
average decoding accuracy was 73.1 ± 1.3% (mean ± SEM),
whereas at the end of the cue period (y = 200 cm) we could
predict choice with an accuracy of 87.3 ± 1.1% (Figure 8B). We
reasoned that this divergence of view angles during the cue period
could be related to the observed primacy effects (i.e., mouse
weighting earlier evidence more, Figure 2 and Supplementary
Figure 6), prompting us to look for such relationship at the
subject level. We thus calculated the correlation between the
weight decay ratio (Figure 2C) and choice decoding accuracy at
y = 100. We found a significantly negative correlation between
the two (Figure 8C, r = −0.71, P = 7.6 × 10−5, Pearson’s
correlation), indicating that in fact animals integrating more
evenly across the maze also tended to run straighter during the
cue period. This finding possibly indicates that they commit later
to a particular decision. In fact, the view angle trajectories of mice
were on averagemodulated by the strength of evidence within the
trial, with view angles diverging earlier toward the target side (as
defined by the eventual choice) for trials with larger magnitudes
of |1| towers (Figure 8E). Although highly variable on a per-trial
basis (Supplementary Figure 7D), this aspect of the navigational
behavior seemed to be sensitive to parameters of the cognitive
strategy employed by the mice (weighting of cues vs. space, trial
difficulty), and may prove useful for future studies.

Given the above correlations, we considered the possibility
that mice may actually circumvent the memory demands of the

FIGURE 8 | View angle trajectories. (A) Distribution of view angles in left and right choice trials (arbitrary units, normalized to equal area for both choice categories) for

an example mouse, sampled at several y positions (0, 50, …, 250, 295 cm) along the stem of the T-maze. (B) Accuracy of decoding the eventual choice of a given

mouse using a threshold on the view angle, evaluated at various y positions along the T-maze. (C) Scatter plot across mice of the evidence weight decay ratio (see

Figure 3C) vs. the choice decoding accuracy evaluated at halfway into the cue region as indicated in (B). (D) Cue-triggered change in the view angle θ relative to the

average trajectory <θ> for trials of the same choice. The bands indicate the 1 standard deviation spread across mice, with the thick lines being the median across

mice. (E) Average view angle for subsets of left/right choice trials with various values of #R – #L (color code). For a given choice, the mean view angle trajectory of

individual mice are aligned to the aggregate data (metamouse) before averaging.
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task by using the view angle throughout the maze as a mnemonic
for the side with more evidence. To address this, we looked
for timepoint-by-timepoint changes that could reflect such a
mnemonic strategy, e.g., always turning by +1◦ every time a
right cue appears. We computed tower-triggered view angles
separately for left and right choices, subtracting the average
trajectories for each mouse (Figure 8D). As a population, mice
exhibit no pulsatile nor step-like changes in the view angle for
at least 50 cm (∼1 s) post either left or right cues, although the
aforementioned statistical correlation between view angle and
choice is visible at 80 cm post-cues (for cues at the end of the
cue period, this corresponds to the location of the T-maze arms).
However, a mnemonic strategy must be carried out on a per-
trial basis, and should be evident in the cue-triggered view angle
distribution across trials (as opposed to across mice). The 1-
standard-deviation spread of view angle across trials is more
than a factor of 5 times larger than the difference in right/left
choice mean view angles for every mouse (Supplementary Figure
8), which argues strongly against a stereotyped, memoryless
mnemonic of using an “accumulated” view angle to make a
choice.

DISCUSSION

We have developed a new virtual navigation-based, pulsed
evidence-accumulation task for head-fixed mice, along with tools
to quantify their performance and behavioral strategy. We show
that mice can gradually accumulate visual evidence in VR over
seconds. First, large numbers of mice from several strains can
be reproducibly trained in the task (Figure 2, Supplementary
Figures 1–4). Second, using a combination of analytical and
modeling approaches, we also show that mice solve this task by
using multiple pulses of evidence across the cue region, although
they tend to slightly overweight earlier evidence (Figures 3, 7
and Supplementary Figure 6). Moreover, our analyses suggest
that sensory evidence-dependent noise, but not accumulation
memory, is an important performance-limiting factor, much like
analogous tasks in rats and humans (Figures 5, 6; Brunton et al.,
2013; Scott et al., 2015). An intriguing difference from previous
reports was our observation that the mice tended to alternate
instead of repeating a previously rewarded choice (Figure 7),
unlike what has been observed in both rats and mice (Busse et al.,
2011; Scott et al., 2015). We speculate that this is related to the
mice’s tendency to spontaneously alternate their choices in T-
mazes (Lalonde, 2002), but note that choice alternation has also
been reported in humans performing perceptual decisionmaking
tasks, and has been found to be modulated by the magnitude
of uncertainty in the previous trial (Urai et al., 2017). Finally,
analysis of the mice’s virtual navigation trajectories suggested
that ongoing behavioral readouts may provide useful proxies for
latent cognitive variables (Figure 8), although further studies will
be needed to explore that possibility in more detail. For example,
the slight modulation in view angle trajectories by the amount
of sensory evidence could statistically reflect decision confidence
(Kepecs et al., 2008), and/or on average different decision times
for trials of different difficulty. Additionally, this feature of the

behavior could potentially be explored to study changes of mind
at the level of single trials (Kiani et al., 2014), by explicitly
designing the evidence pulse streams to change their underlying
rates at various points in the cue region.

A central aspect of the accumulating-towers task is that
decision-making must occur while the animal navigates a
(virtual) environment. Despite introducing complexity in the
behavioral training and data analyses, we argue that this is a
desirable feature. Natural behavior seldom occurs in isolated
modules, and is instead dynamic and high-dimensional, and
it is precisely these behavioral constraints that are thought to
have shaped the evolution of neural circuits (Darwin, 1998;
Gomez-Marin et al., 2014; Krakauer et al., 2017). The study
of highly reduced decision-making behaviors have allowed the
field to make large strides in understanding their underlying
neural mechanisms (Gold and Shadlen, 2007; Carandini and
Churchland, 2013; Brody and Hanks, 2016). The study of these
processes under more complex contexts should yield novel
insights into how they are flexibly composed to produce real-
world solutions.

A recent study has described a similar visual evidence-
accumulation task for mice navigating in VR (Morcos and
Harvey, 2016). The accumulating-towers task differs from theirs
in a few crucial ways, in terms of stimulus design, task
difficulty and apparent strategies adopted by the mice. We used
Poisson-distributed, brief pulses of spatially discrete evidence
(200ms, 12 cm separation), which resulted in up to 16 cues
on one side (median: 4) and up to 25 cues total (median:
10). Conversely, Morcos and Harvey always had six cues of an
optical flow (wallpaper) nature that were four times as long
(∼800ms) and occurred in stereotyped positions throughout
the stem of the maze. The latter design sampled the same
stimulus configurations at high frequencies, which is beneficial
for increasing statistical power via averaging. However, we
argue that there are complementary advantages to sampling a
much larger region of stimulus space with spatially random
cues. For example, decorrelating cue locations from space/time
allowed us to tease apart the effects of stimulus strength
vs. an important aspect of working memory, i.e., retention
time (Figure 5), while maintaining a quasi-fixed trial duration.
Moreover, using brief pulses of sensory evidence gives one the
ability to study cue-triggered neural responses (Koay et al.,
2016; Scott et al., 2017). This highly heterogeneous design did
likely increase task difficulty, which may explain the slightly
lower performance we observed compared to the Morcos and
Harvey task. Note, however, that we used deliberately liberal
trial selection criteria, and that when more stringent criteria
were applied we could obtain very high performance sessions
(Figure 2, Supplementary Figure 3), which might be desirable
for neural recording and perturbation experiments. Interestingly,
these task design differences led to apparent differences in the
strategies that the mice employed. Specifically, the mice in the
Morcos and Harvey study displayed more pronounced primacy
effects than ours (Supplementary Figure 9).

The primacy effects we observed in many of our mice
(Figures 3, 7 and Supplementary Figure 6) agree with several
other evidence pulse-based tasks in mice, monkeys and humans
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(Ludwig et al., 2005; Kiani et al., 2008; Tsetsos et al., 2012;
Bronfman et al., 2016; Odoemene et al., 2017), but are at odds
with findings of temporally even evidence integration in rats
performing a high-rate auditory clicks task (Brunton et al., 2013).
The reasons behind these differences are a matter of ongoing
debate. In particular, it has been argued that primacy in pulsed-
based tasks is due to either reaching an accumulator bound (Kiani
et al., 2008) or to competition between leaky integrators that
mutually inhibit each other (Tsetsos et al., 2012). Interestingly,
it has been recently shown that in humans the degree of primacy
and even the monotonicity of the evidence weighting curve can
change with stimulus duration, which prompted the authors
to postulate a dynamic evidence accumulation mechanism
(Bronfman et al., 2016). Thus, it is conceivable that different
decision-making and integration mechanisms might be at play
depending on stimulus and task features (Uchida et al., 2006;
Piet et al., 2017). Task design differences could also explain
why we did not observe an improvement in performance with
increased stimulus durations (Figure 5), as might be expected if
a diffusion-to-bound-type mechanism is at play. Specifically, our
stimulus period durations were longer than when the benefits
of prolonged stimulus saturate (Gold and Shadlen, 2007; Kiani
et al., 2008; Brunton et al., 2013). On the other hand, the finding
that behavior in our task was influenced by the number but not
duration of cues is consistent with multiple previous studies of
counting in rodents (Mechner, 1958; Fernandes and Church,
1982; Gallistel and Gelman, 2000; Çavdaroglu and Balci, 2016).
Counting is thought to be carried out as a magnitude-estimation
process that displays the property of scalar variability, i.e.,
the noise (standard deviation) in estimates scales linearly with
count/magnitude (Fechner, 1966; Gallistel and Gelman, 2000).
Accordingly, following a recent report in rats (Scott et al., 2015),
we show through modeling that noise in the mice’s estimates
of the number of towers in our task scales in a way that is
compatible with the phenomenon of scalar variability.We extend
previous findings by showing that, in addition to self-generated

lever presses (Çavdaroglu and Balci, 2016), mice can accumulate
visual stimuli in the context of a perceptual decision-making task.

In summary, the accumulating-towers task is a valuable
behavioral tool to study evidence accumulation and decision-
making in mice. The task is conducive to further automation and
scaling, and interesting modifications such as designed stimulus
sets can be easily incorporated. Most importantly, it is readily
integratable with any number of optical or electrophysiological
techniques requiring head fixation (Koay et al., 2016; Pinto et al.,
2017), allowing us to leverage the comprehensive mouse toolkit
in understanding neural mechanisms underlying this important
cognitive behavior.
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