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Abstract. Automatic 3D segmentation of the brain from MR scans is
a challenging problem that has received enormous amount of attention
lately. Of the techniques reported in literature, very few are fully au-
tomatic. In this paper, we present an efficient and accurate, fully au-
tomatic 3D segmentation procedure for brain MR scans. It has several
salient features namely, (1) instead of a single multiplicative bias field
that affects all tissue intensities, separate parametric smooth models are
used for the intensity of each class. This may be a more realistic model
and avoids the need for a logarithmic transformation. (2) A brain atlas is
used in conjunction with a robust registration procedure to find a non–
rigid transformation that maps the standard brain to the specimen to be
segmented. This transformation is then used to: segment the brain from
non–brain tissue; compute prior probabilities for each class at each voxel
location and find an appropriate automatic initialization. (3) Finally, a
novel algorithm is presented which is a variant of the EM procedure,
that incorporates a fast and accurate way to find optimal segmentations,
given the intensity models along with the spatial coherence assumption.
Experimental results with both synthetic and real data are included, as
well as comparisons of the performance of our algorithm with that of
other published methods.

1 Introduction

Image segmentation is a fundamental problem in image processing and com-
puter vision with numerous applications including but not limited to medical
image analysis, image compression, etc. Three-dimensional processing and visu-
alization of medical images is a rapidly growing area of research and MRI has
provided a means for imaging tissue at very high resolutions providing the desired
information for use in fields like radiotherapy treatment planning, stereotactic
neurosurgery and others. In the context of neuro-imaging, 3-D segmentation of
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white matter, gray matter, CSF, bone etc. is extremely important for quantita-
tive analysis such as volume measurements. It has already been established that
volumetric analysis of different parts of the brain is useful in assessing progress
or remission of various diseases e.g., the Alzheimer’s and Epilepsy.

The main difficulties found in the automatic segmentation of MR brain im-
ages derive from the fact that image intensities are not necessarily constant for
each tissue class. Thus, traditional clustering schemes, such as those reported
in [6,17], or methods based on thresholding [32] do not yield desired results. An
additional difficulty stems from the presence of noise in the data, which causes
pixel-wise classification methods to give unrealistic results, where the regions cor-
responding to each tissue class may appear granular, fragmented, or violating
anatomical constraints. Thus, it is necessary to devise methods that simulta-
neously include the estimation of variable intensity models for each class, and
prior knowledge about the location and spatial coherence of the corresponding
regions.

The most natural framework for the design of such methods is probabilistic,
and involves the simultaneous estimation of a discrete field (the tissue class) and
a continuous one (the corresponding intensities). Spatial coherence assumptions
may be incorporated using a Bayesian approach, in the form of prior Markov
Random Field (MRF) models [28,21], and anatomical constraints about the lo-
cation of each class may be specified as prior probabilities, obtained from statis-
tical studies [23]. The resulting estimation procedure is iterative, and consists,
in general, of 2 steps that are repeated until convergence: (i) Estimate the most
likely segmentation, given the intensity models for each class. (ii) Estimate the
intensity models, given a segmentation, with an appropriate initialization step.

If a “soft” segmentation is computed in the first step, i.e., if one computes the
marginal probabilities for each tissue class, this iterative procedure is equivalent
to the Expectation maximization (EM) algorithm [2], and it has been used by
a number of researchers [10,7,30,11,19,22,23]. The efficiency of these methods,
however, has been limited by several factors. If no spatial coherence assumptions
are included, the estimation of the posterior marginal probabilities for each class
at each voxel is straightforward and computationally efficient (as in [11]); the
quality of this type of segmentation, however, degrades rapidly if noise is present
in the data. If, on the other hand, spatial coherence assumptions are included,
the exact computation of the optimal segmentation becomes intractable, so that
approximations must be made. The most precise are based on Markov Chain
Monte Carlo (MCMC) methods, such as the Gibbs Sampler or Metropolis algo-
rithms [28], but are computationally very expensive. Deterministic approxima-
tions, such as the ones based on Mean Field (MF) Theory [15,9,20,31] (as used
in [23]) are faster, although less precise and more vulnerable to noise.

As an alternative, one can estimate a hard segmentation in the first step.
Here, one has to choose an appropriate cost function, to get the corresponding
optimal estimator (e.g., the Maximum a Posteriori (MAP) or the Maximizer of
the Posterior Marginals (MPM) estimators). It was shown in [13], that for low
SNR (signal to noise ratio), the MPM criterion yields superior segmentation re-
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sults whereas for high SNR, both are more or less equivalent. Another important
issue to be taken into consideration is: for a given criterion, what is the best al-
gorithm for finding the optimal estimator? Computational efficiency is a crucial
issue that influences the answer to this question. Again, in the presence of im-
mense computational resources, MCMC schemes (such as Simulated Annealing
[29] as used in [18] for computing the MAP) are very apt. On the other hand,
if computational efficiency is of high priority, it is necessary to resort to viable
approximations, such as the ICM algorithm [3] used in [26,18,16] for computing
the MAP, which is very fast, but highly vulnerable to noise. It is also possible to
use the MF or the Gauss-Markov Measure Field (GMMF) [14] approximations
for computing the MPM. In [14], it is shown that for low SNR, GMMF is found
to be superior to MF, both in terms of accuracy and of computational efficiency.
For medium-high SNR MF and GMMF give equivalent results, but GMMF is
faster.

The computation of the image intensities associated with each tissue class for
a given segmentation (step 2) is complicated by the fact that both intrascan and
interscan intensity inhomogeneities often appear, due to poor radio frequency
coil uniformity, operating conditions of the MR equipment, etc. These inhomo-
geneities are usually modeled as a single multiplicative degradation (bias field)
that affects a constant intensity model for each class [11,19,16,22,23]. Thus, the
intensity associated to class k at voxel r is usually modeled as: Ik(r) = β(r)µk,
where the bias field β is assumed to have a slow spatial variation, and µk denotes
the unknown constant intensity for class k. This intensity model, however, may
not be very realistic: there may be variations in the magnetic susceptibility of
the tissues; attenuation may be different depending on the location of anatom-
ical structures, etc. To compensate for these effects, in [18] a Parzen-window
distribution is used to model the conditional probability of the intensity for each
tissue class. This distribution, however, requires of high level user intervention
to be defined in each case, and leads to equations that are, in practice, too
complicated to be solved exactly.

An additional complication introduced by the model described above is that
to make it computationally tractable, the multiplicative degradation must be
transformed into an additive one by means of a logarithmic transformation,
which has the undesirable effect of altering the intensity distribution, making
the tissue separation more difficult. A further difficulty comes from the fact that
non–brain tissue may be wrongly classified as gray or white matter in the seg-
mentation step, leading to wrong estimated values for the class intensities. This
may be avoided if the brain/non-brain separation is effected prior to segmen-
tation, either manually (as in [16]), or automatically, using for example, active
contours [24], active brain templates [16] or registering a standard brain atlas
[23].

In summary, while the Bayesian approach to MRI segmentation appears to
be very promising, there are several problems which limit its performance and
need resolution prior to making it a feasible approach. Below is an itemization of
these problems (not in any specific order). (1) If spatial coherence assumptions
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are included, an exact computation of the optimal segmentation at each step
becomes intractable and approximations are either computationally expensive
or inaccurate. (2) A single bias field affecting all tissue classes equally may not
be realistic. (3) A multiplicative bias model requires a logarithmic transformation
that distorts the intensity distribution. (4) Computation of the intensity models
for the tissue classes is made rather difficult by the presence of misclassified non-
brain tissue. (5) Appropriate initialization of the iterative procedure is difficult
to find in a fully automatic way.

The goal of this paper is to present a fully automatic Bayesian–based scheme
that overcomes these difficulties, and thus, has superior performance. To achieve
this, our method incorporates the following features: (i) Instead of a single multi-
plicative bias field that affects all tissue intensities, we propose separate paramet-
ric, smooth models for the intensity of each class. This may be a more realistic
model and avoids the need for a logarithmic transformation and hence the re-
lated nonlinear distortions. (ii) We propose the use of a brain atlas (as in [23]),
together with a robust registration procedure to find a non-rigid transformation
that maps the standard brain to the specimen to be segmented. This transfor-
mation is then used to segment the brain from non–brain tissue; compute prior
probabilities for each class at each voxel location and find an appropriate au-
tomatic initialization. (iii) We propose a novel variant of the EM algorithm [2]
which allows for the use of a fast and accurate way to find optimal segmentations,
given the intensity models which incorporate the spatial coherence assumptions.

The rest of this paper is organized as follows: the above described algorithm
features are elaborated upon in section 2. Section 3 contains the experimental
validation of the complete procedure, and finally some conclusions are drawn in
section 4.

2 An Improved Bayesian Approach to MRI Segmentation

In this section, we first present a Bayesian formulation of the segmentation prob-
lem followed by a novel, accurate and efficient 3D segmentation algorithm which
is dubbed as the MPM-MAP algorithm.

2.1 Bayesian Formulation of the Segmentation Problem

In a Bayesian approach to segmentation, one specifies the distribution of the
observation noise, and introduces the prior constraint about the spatial coherence
of the support regions in the form of a prior probability distribution on the set
of possible segmentations. To describe this approach, we introduce the following
notation: let L denote the pixel lattice, and {g(r), r ∈ L} denote the observed
images; let {Φ(r; θk), k = 1, ...,K} denote a set of models characterized by the
parameter vector θ = (θ1, ..., θK), which describe the variation of the value of a
property f over L. Note that f may represent a scalar valued data representing
the intensity values in a 3D volume, or it may be a vector valued function defined
on a 3D image grid. Each model k is supposed to be valid in a region Rk ⊆ L
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– note that Rk is a partitioning of L – so that the value of the field f at pixel
r is f(r) =

∑K
k=1 Φ(r; θk)bk(r), where bk(r) is the indicator function for region

Rk, i.e., bk(r) = 1 if r ∈ Rk, and bk(r) = 0, otherwise. Assuming a Gaussian
observation noise model, the likelihood of the data given the models and the
support regions is :

P (g|b, θ) = 1
ZL
Πr∈LΠ

K
k=1lk(r)

bk(r)

where ZL is a constant and

lk(r) = ¶ (g(r)|θ, bk(r) = 1) (1)

=
√
γ

π
exp

[−γ|g(r)− Φ(r, θk)|2
]

where γ is a parameter that depends on the noise variance. One may also have
prior probabilities that specify the probability of the voxel at location r belong-
ing to each of the classes. We will denote these probabilities by qk(r) = ¶(voxel
r ∈ class k). The constraint for the spatial coherence of the support regions
{R1, ..., RK} may be expressed, in probabilistic terms, in the form of a prior
Markov Random Field (MRF) model on the indicator variables b; in particular,
one may assume a prior generalized Ising (Potts) model [13], where the neigh-
borhood Nr of each site r ∈ L is formed only by its nearest neighbors (in a
2-D image there are 4 such neighbors, and in a 3-D volume image there are 6
in the simplest neighborhood system). This gives the prior Gibbs distribution:
Pb(b) = 1

Zb
exp

[
β

∑
<r,s> V (b(r), b(s))

]
. Where, Zb is a normalizing constant, β

is a positive parameter controlling the granularity of the regions, the summation
is performed over all nearest–neighbor pairs of sites in L and the Ising potential
VI is given by,

VI (b(r), b(s)) =
{

−1 , if∑K
k=1 bk(r)bk(s) = 1

1 , otherwise
(2)

(note that bk(r) ∈ {0, 1} and that ∑K
k=1 bk(r) = 1 for all r ∈ L). The poste-

rior distribution is computed using Bayes rule and is of the form: P (b, θ|g) =
1
Z exp [−U(b, θ)], where Z is a normalizing constant and

U(b, θ) = −
∑
r∈L

K∑
k=1

[bk(r) log lk(r) + log qk(r)]

+β
∑

<r,s>

VI(b(r), b(s)) + logP (θ) (3)

where lk(r) is given by Eq. (1), and P (θ) represents the prior distribution of
the parameters that define each intensity model. In the classical Expectation
Maximization (EM) approach [2], the b variables are considered “missing data”
and U is minimized in a 2–step procedure consisting of an (E) step in which one
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first computes the expected value < b > of the b variables, given an estimate
of the model parameters θ, while in the second (M) step, one minimizes the
U function, where the b variables are replaced by their expected value. The
drawback of this approach lies in the computational complexity associated with
the computation of < b >: since the variables are binary, their expected value is
equal to the posterior marginal probabilities given by

πk(r) = ¶ (bk(r) = 1|θ, g) =
∑

b:bk(r)=1

1
Z
exp [−U(b, θ)] (4)

It is clear that the summation in (4) has too many terms to be exactly computed,
so it has to be approximated. There are several methods that have been pro-
posed for estimating the posterior marginals of discrete–valued MRF’s: stochas-
tic approaches based on the construction of regular Markov chains [28,13], and
deterministic approaches based on the mean–field approximation [9,15] in which
the estimated marginals are obtained as solutions of large systems of coupled
non–linear equations. These approaches, however, are computationally very ex-
pensive. Other methods [20,31] that also involve mean field approximations using
different cost functions require solution to a large coupled system of nonlinear
equations but possibly lead to more accurate – than the approximation out-
lined in [15] – approximation of the marginals. In this paper, we propose a novel
approach with which one can get fast, high quality estimators solving a set of
decoupled, linear systems of equations. It is based on the fact that, given a Gibbs
distribution with energy of the form:

U(b) =
∑
r∈L

V0(b(r)) + β
∑

<r,s>

VI(b(r), b(s))

where the b’s are random K−vectors satisfying: bk(r) ∈ {0, 1} and ∑K
k=1 bk(r) =

1 for all r ∈ L, and VI is an Ising potential, then, the marginals πk(r) = ¶(bk(r) =
1) may be approximated by the expected value of random vectors p that admit
a Gibbsian model with energy of the form:

Up(p) =
∑
r∈L

|p(r)− p̂(r)|2 + λ
∑

<r,s>

|p(r)− p(s)|2 (5)

where p̂k(r) = 1
Z exp [−V0(ek)] with Z a normalizing constant and where ek is

a unit vector with a 1 in the kth position. (see [14] for details). Therefore, an
approximation to the marginals may be constructed by minimizing (5), that is,
by solving K sets of decoupled linear equations, that result from setting the par-
tial derivatives of Up, with respect to the variables pk(r), equal to zero.The EM
algorithm, however, may be quite sensitive to errors in the estimated marginals.
Therefore, if this fast approximation procedure is to be used, it is necessary to
modify the algorithm to make it more robust with respect to this kind of errors.
This modified algorithm will be described in the next subsection.
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2.2 The MPM-MAP Algorithm

The algorithm we propose for the simultaneous estimation of b and θ is based
on Bayesian estimation theory. In this approach, we consider b and θ as random
vectors whose optimal estimators are to be found via the minimization of the ex-
pected value of an appropriate cost function, taken with respect to the posterior
distribution. The cost function we propose is:

C (̂b, θ̂, b, θ) = 1− δ(θ − θ̂) +
1

|L|
∑
r∈L

[
1− δ

(
b(r)− b̂(r)

)]
(6)

where the δ functions equal 1 if their argument is the 0 vector, and equal 0
otherwise. The first term requires that the estimated parameter vector θ̂ be —
on the average — a perfect estimator, while the second term requires that the
estimated indicator functions b̂ for the support regions, minimize the expected
number of segmentation errors. Denoting Q(̂b, θ̂) = E

[
C (̂b, θ̂, b, θ)

]
, the optimal

estimators (̂b∗, θ̂∗) are, therefore,

(̂b∗, θ̂∗) = argmin
b̂,θ̂

Q(̂b, θ̂)

To minimize Q we propose a 2-step procedure in which Q(̂b, θ̂) is minimized with
respect to b̂ for a given θ̂ in a first step, and then minimized with respect to θ̂,
keeping the optimal b̂ fixed, in the second step. To derive the implementation of
the first step, we make the following considerations: suppose that θ̂ = θ is given.
The optimal estimator for b̂ is found by minimizing the expected value of the
second term of Eq. (6):∑

b

∑
r∈L

[
1− δ

(
b(r)− b̂(r)

)]
P (b, θ|g) (7)

= |L| −
∑
r∈L

K∑
k=1

πk(r)̂bk(r)

where

πk(r) =
∑

b:bk(r)=1

P (b, θ|g) (8)

is the posterior marginal probability for the support region k at pixel r. Expres-
sion (7) is minimized by setting b̂ = b, where bk(r) = 1, if πk(r) > πk′(r) for
k′ �= k,and bk(r) = 0, otherwise. This estimator is called the Maximizer of the
Posterior Marginals or MPM estimator [13] for b given θ.

To minimize Q with respect to θ̂ for a fixed b̂ = b one needs to consider
only the expected value of the first term of (6), so that the optimal (Maximum
a Posteriori or MAP) estimator for θ is found by minimizing U(b, θ) (Eq. (3))
with respect to θ. The complete algorithm is therefore:
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1. Compute an initial estimate b = b(0) for the segmentation indicator variables
and set t = 0;

2. Until convergence do steps (3-4):
3. MAP-step: compute θ(t+1) = argminθ U(b, θ) ;
4. MPM-step:

a) Compute the estimators pk(r) for the posterior marginals πk(r), r ∈ L,
k = 1, ...K solving the linear system resulting from the minimization of
(5).

b) Set bk(r) = 1, if pk(r) > pk′(r) for k′ �= k,and bk(r) = 0, otherwise; set
t := t+ 1 ;

The convergence of the algorithm follows from the facts that Q is bounded below
(it is always non–negative) and that it cannot increase in one full iteration; it
could converge to a limit cycle, but in practice it is found to converge to a fixed
point. Note that this algorithm is more robust than EM [2] with respect to errors
in the estimation of the posterior marginals {πk(r)}, because only the location of
the mode of each distribution π(r) is of consequence.

2.3 Parametric Models of the Intensities in Each Tissue Class

To complete the specification of the approach we are proposing, it is necessary to
define the parametric models that represent the spatial variation of the intensity
within each tissue class. This intensity, in an MR image, is usually not a constant,
due to the variations in the magnetic properties of the biological tissues, irreg-
ularities in the magnetic fields, operating conditions of the MR equipment, etc.
In this paper, instead of the usual assumption of a multiplicative bias field that
modulates a class-dependent constant intensity, we use a more general approach
in which the variable intensity for each class is separately modeled. Here, we use
spline models with a Gibbsian prior P (θ) that imposes a controlled smoothness
constraint. This is equivalent to a finite element approximation to a membrane
spline. In particular, we define the model Φ(r, θk) as:

Φ(r, θk) =
m∑

j=1

Nj(r)θkj (9)

where {Nj} are the classical trilinear interpolation functions used for the 8-node
Lagrangian element[25], and the parameters θkr correspond to the height of the
membrane at the nodes of the finite element mesh.

The smoothness constraint is specified in the form of a Gibbs distribution:

P (θk) =
1
Z
exp

[
−η

∫
L

|∇Φ(r, θk)|2dr
]

(10)

where Z is a normalizing constant and η is a parameter. This scheme allows
one to model arbitrary smooth shapes, while retaining sufficient control on the
smoothness of each model (given by the positive parameter η). Substituting (9)
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and (10)into (3) and setting the partial derivatives of U with respect to the
parameter vector θk equal to zero, one obtains a system of linear equations
whose solution gives the optimal parameters. In this way, the whole procedure
involves only the solution of linear systems (in both the MAP and MPM steps)
and is, therefore, computationally efficient.

2.4 Prior Class Probabilities and Automatic Initialization

To improve the performance of a segmentation method, we should take advan-
tage of domain–dependent relevant information. In the particular case of brain
MRI, we consider the fact that the location of the main anatomical structures
is approximately the same in most subjects, if the brain is brought to a stan-
dard position and scale. Therefore, it should be possible to incorporate into the
segmentation procedure, prior information about the approximate location of
the different tissue classes. This information may then be used to provide an
initial approximate segmentation to initialize the algorithm (step 1 in section
2.2) and also to estimate the prior class probabilities for each voxel (qk(r) in Eq.
(3)). The class location information may be obtained from statistical studies, in
which hand–segmented MRI’s for a given population of subjects are brought to
a standard position, so that the frequencies with which each tissue class appears
at each standard voxel location can be computed. One such study, based on a
population of 151 normal subjects, is available in [12], and is the one we used
in our experiments. To incorporate this information in our procedure, it is nec-
essary to find a transformation that maps the standard anatomical model (to
which the intensity distribution is referred) into the specimen to be segmented.
Here, we use the level–set based PDE procedure described in [4] to estimate the
transformation. Once this transformation is obtained, it is used to: segment the
brain from non–brain tissue (“peeling” the brain); to map the prior probabilities
to the specimen space and to find a good approximate segmentation to initialize
the procedure.

2.5 Complete Segmentation Procedure

In summary, the complete segmentation procedure we are proposing consists of
the following steps:

1. Find the complete transformation T that maps the standardized (atlas) space
into the specimen space using the 2–step procedure of section 2.4, and peel
the brain using transformation T .

2. Obtain the initial segmentation b(0) from the anatomical model mapped into
the specimen space using T .

3. Map the empirical frequency field using T and compute the prior class prob-
ability field using qk(r) = αfk(r) + (1 − α)/K, where, K is the number of
classes and α ∈ [0, 1] weights the influence of the frequencies.

4. Apply the MAP–MPM algorithm of section 2.2 until convergence.
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In the case of multi–band images (e.g., T1, T2 and PD weighted MRI), the
individual images have to be registered separately, and a different membrane
model has to be adjusted for each band in the MAP step in a decoupled manner.
One finds, however, a unique segmentation in each MPM step.

This procedure has a number of parameters: γ in equation (1); λ in Eq. (5)
and η in Eq.(10). The best value for these parameters has to be hand–picked
using a trial and error procedure on a test image. Once these values are found,
however, they may be used in different data sets without need of further tuning,
since the performance of the method is quite insensitive to their precise value.
The values we have used in all the experiments reported in the next section,
both for synthetic and real data, are: γ = 1 ; λ = 0.1 and η = 1000. The finite
element mesh size used in all our experiments to be described in the next section
is (32× 32× 8).

3 Experimental Validation

To validate the performance of our method, we performed 2 sets of experiments,
one on simulated MR and another on real MR brain scans. In the first set, we
used the simulated MR images of the head generated using the BrainWeb MR
simulator [12,1,8]. Since in this case, the anatomical model (ground truth) avail-
able, it is possible to obtain a quantitative assessment of the performance of
the algorithm, under different conditions (different levels of noise, spatial inho-
mogeneities and contrast). We considered the following cases: (i) T1 weighted
images with 1 through 9 % noise levels and no spatial inhomogeneity. (ii) Same as
(1), with 40 % spatial inhomogeneity. (iii) Multi–band (T1, T2 and PD weighted)
data with 1 through 9 % noise and 40 % spatial inhomogeneity. Only results for
the latter case are shown in this paper for the sake of brevity.

Since these experiments were also reported in [23], in order for the results to
be meaningfully compared, we used the performance index reported therein. The
results are shown as plots at the top of the Figure (1). For the sake of brevity,
only gray matter segmentation results are shown here but results for white matter
and CSF depict similar superior performance as well. As one can see, the pro-
posed method shows an excellent and stable performance, outperforming the best
results (to our knowledge) reported to date in literature. Showing good perfor-
mance with simulated data, however, is not sufficient to validate a segmentation
procedure. It is also very important to test it with real images and compare it
with other published methods. This comparison is difficult to do, because most of
the published methods work with different data sets. To overcome this problem,
we use the 20 normal MR brain data made publicly available on the world wide
web by the Center for Morphometric Analysis at Massachusetts General Hos-
pital. In addition, manual expert segmentations and performance results from
five automatic segmentation methods are also provided at this site [5], making
it convenient to compare our results with those reported by the five automatic
methods. The 20 coronal scans of this data set were chosen because they have
been used in published volumetric studies in the past, and because they have
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*[]

*[]

Fig. 1. Performance indices for the segmentation of: (Top row) MRI simulated data
(from the brainweb) with 40% spatial inhomogeneities, using our algorithm and the
one in [21] for gray matter; (Bottom row:) real MRI data from the MGH database.
The results for white matter and CSF are similar.

various levels of difficulty; the worst scans have low contrast and relatively large
spatial inhomogeneities. Hence, these test images permit a standardized mecha-
nism for testing the sensitivity of a proposed segmentation method to signal to
noise ratio, contrast to noise ratio, shape complexity, degree of partial volume
effect, etc. The repository also contains performance indices that measure the
amount of overlap between the expert hand–guided segmentation and a collec-
tion of automatic methods. The index in this case is the Tanimoto coefficient
[27].

A final validation comes from the positive opinion of practicing neuro- scien-
tists.

We applied our method to the twenty complete head MR scans in this data
set, using the same parameter values in all cases, so that it may, in effect, be
considered an automatic procedure. The results are summarized in table (1)
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*[]

Fig. 2. Sample images from the MGH database. On each row: left: original image;
center: MPM-MAP automatic segmentation; right: expert hand-guided segmentation
(see text for details).

and the bottom plots in figure (1). Once again, only gray matter segmentation
performance is depicted here as in the simulated data case for the sake of brevity.
The dimensions of the image stacks were 256× 256× 64 voxels, and the average
total processing time (including registration for peeling the skull and non-brain
material and segmentation) was 29 minutes on a single processor of an SGI
ONYX machine. As one can see, these results are significantly better than all
other reported methods (see [5] for details on these other methods). Figure (2)
depicts a sample of our segmentation results, together with the corresponding
expert (ground truth) segmentation. We used an intensity value of 255, 170 and
85 to depict the white matter, gray matter and CSF pixels respectively.

4 Discussion and Conclusions

The Bayesian estimation framework is very convenient for MRI segmentation,
because it permits the inclusion of explicit models for the spatial coherence and
location of the different tissues, as well as for the spatial inhomogeneities of the
corresponding image intensities caused by the bias field in the magnetic field of
the MR instrument. For Bayesian-based methods to be effective, however, it is
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Table 1. Average Overlap (performance indices) between manually-guided segmenta-
tions and various methods for the 20 brain scans of the MGH data base.

Method Gray Mat. White Mat.
adaptive MAP 0.564 0.567
biased MAP 0.558 0.562
fuzzy c-means 0.473 0.567

Maximum a Posteriori Probability (MAP) 0.550 0.554
tree-structure k-means 0.477 0.571
Maximum-Likelihood 0.535 0.551

MPM-MAP 0.662 0.683
Manual (4 brains averaged over 2 experts) 0.876 0.832

crucial to have: realistic spatially varying models for the intensity of each class;
efficient and accurate ways for computing optimal segmentations given these
intensity models and robust and precise registration procedures, so that prior
information about the location of anatomical structures may be incorporated.

We have presented a fully automatic method that incorporates these features,
and therefore depicted a superior performance over existing methods reported
in literature.
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