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An Accurate and Robust Range Image Registration

Algorithm for 3D Object Modeling
Yulan Guo, Ferdous Sohel, Mohammed Bennamoun, Jianwei Wan, and Min Lu

Abstract—Range image registration is a fundamental research
topic for 3D object modeling and recognition. In this paper,
we propose an accurate and robust algorithm for pairwise and
multi-view range image registration. We first extract a set of
Rotational Projection Statistics (RoPS) features from a pair of
range images, and perform feature matching between them. The
two range images are then registered using a transformation
estimation method and a variant of the Iterative Closest Point
(ICP) algorithm. Based on the pairwise registration algorithm, we
propose a shape growing based multi-view registration algorithm.
The seed shape is initialized with a selected range image and
then sequentially updated by performing pairwise registration
between itself and the input range images. All input range images
are iteratively registered during the shape growing process.
Extensive experiments were conducted to test the performance of
our algorithm. The proposed pairwise registration algorithm is
accurate, and robust to small overlaps, noise and varying mesh
resolutions. The proposed multi-view registration algorithm is
also very accurate. Rigorous comparisons with the state-of-the-
art show the superiority of our algorithm.

Index Terms—Range image registration, 3D modeling, feature
detection, feature description, object reconstruction.

I. INTRODUCTION

THREE dimensional (3D) models are commonly used to

describe shapes of objects. This has numerous applica-

tion areas including education (e.g., electronic museums and

multimedia books), entertainment (e.g., 3D TV, games and

movies), cultural heritage (e.g., reconstruction of historical

relics), medical industry (e.g., orthodontics and diagnosis),

manufacturing (e.g., prototyping and inspection) and robotics

(e.g., navigation and object/face recognition) [1]–[5]. A model

can be built using either Computer Aided Design (CAD) tools

or 3D scanning equipments. 3D scanning techniques are the

best choice when dealing with free-form objects. However,

the range image acquired from a single viewpoint cannot

represent the complete shape of an object. Therefore, a 3D

object modeling technique is required to register and integrate

the set of range images that are acquired from the different

viewpoints [6]–[8].
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Range image registration is a key step for any 3D object

modeling system [6]. According to the number of input range

images, existing registration algorithms can be classified into

pairwise and multi-view registration techniques [9]. Both of

them involve two steps: coarse and fine registration [10].

The aim of coarse registration is to estimate an initial trans-

formation between two range images. The resultant initial

transformation is then further refined using a fine registration

algorithm. Coarse registration can be achieved either manually

or automatically [11], [12]. The manual algorithms require

human intervention (e.g., a calibrated scanner and turntable,

or attached markers) to determine the initial transformation

between any two overlapping range images [10]. Their appli-

cations are therefore strictly limited due to scenarios where

the object must be placed in a fully controlled environment

[10], [12]. In contrast, automatic algorithms estimate the initial

transformation directly from the data based on the matching of

local surface features (also known as correspondence identifi-

cation [11]). They are more applicable to real-world scenarios

compared to their manual counterparts [10]. On that basis,

the focus of this paper is on fully automatic range image

registration based on local surface features.

A number of local features based pairwise range image

registration algorithms have been proposed in the literature

[11], [13]–[15]. However, many of these features suffer from

low descriptiveness, and/or weak robustness to certain nui-

sances including noise and varying mesh resolutions [15],

[16] (see Section II). Besides, lots of multi-view range image

registration algorithms can also be found in the literature,

e.g., the spanning tree based algorithm [9], [15], [17], [18].

One major limitation of these algorithms is their high com-

putational complexity due to the expensive exhaustive search

[11]. Mian et al. proposed a connected graph and hypergraph

based algorithm [11], which is more computationally efficient

compared to [9]. However, it can only be applied to the cases

when the given range images are from a single object or scene.

In this paper, we propose a fully automatic, accurate and

robust (pairwise and multi-view) range image registration

algorithm for the simultaneous modeling of multiple 3D

objects. That is, given a set of mixed and unordered range

images (where each range image includes only one object),

our algorithm automatically registers all the range images

which are related to the same object. This paper first uses

a feature called Rotational Projection Statistics (RoPS) [19]

for pairwise range image registration algorithm. It exhibits

both high accuracy and strong robustness to noise and varying

mesh resolutions. A comparison with a set of the state-of-

the-art algorithms shows the superiority of our algorithm.

Based on the pairwise registration algorithm, a shape growing
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based fully automatic multi-view range image registration

algorithm is proposed. Extensive experiments were performed

to demonstrate the effectiveness and efficiency of the multi-

view registration algorithm.

The rest of this paper is organized as follows. Section

II briefly reviews related work on range image registration.

Section III introduces a RoPS based pairwise range image

registration algorithm. Section IV describes a shape growing

based multi-view range image registration algorithm. Section

V presents the experimental results of our proposed algo-

rithms, with comparison to the state-of-the-art.

II. RELATED WORK

This section presents a brief overview of the existing algo-

rithms for pairwise and multi-view range image registration.

A. Pairwise Registration Algorithms

1) Coarse Registration: Fully automatic pairwise coarse

registration is usually accomplished by finding point corre-

spondences through the matching of local features [20]. A

number of local surface features have been introduced in

the literature. Stein and Medioni [21] proposed “splash” by

describing the distribution of surface normals along a geodesic

circle. Johnson and Hebert [13] represented the neighboring

points of a feature point with a cylindrical coordinate frame,

and proposed a “spin image” feature to encode the local

surface. Spin image is among the most cited local feature

extraction algorithms. However, it suffers from several lim-

itations including its low descriptiveness and high sensitivity

to varying mesh resolutions [19]. Following a similar approach

to [13], Yamany and Farag [14] proposed “surface signatures”

to encode a local surface. Frome et al. [22] introduced a “3D

Shape Context (3DSC)” by counting up the weighted number

of neighboring points falling into the bins of a spherical

space. One major limitation of 3DSC is its uncertainty in

the rotation around the surface normal [23]. Later, Tombari

et al. [23] improved 3DSC by constructing a unique reference

frame for each feature, resulting in a “Unique Shape Context

(USC)” feature. Chen and Bhanu [24] proposed “Local Surface

Patches (LSP)” to represent the shape index values and normal

variations in the local surface. Rusu et al. [25] introduced

“Point Feature Histograms (PFH)” by encoding the relative

information (i.e., angles and a distance) between all pairs of

the neighboring points. They then proposed a FPFH feature

to improve the computational efficiency of PFH [26]. Tombari

et al. [18] divided the neighborhood space of a feature point

into 3D spherical volumes, and used the angles between the

normal of the feature point and these of the neighboring points

to generate a SHOT feature descriptor. However, many of the

existing features suffer from either low matching accuracy,

or high sensitivity to certain nuisances including noise and

varying mesh resolutions [15], [19]. For more details on 3D

local surface features, the reader is referred to a comprehensive

and contemporary survey [27].

2) Fine Registration: Once an estimation of the transfor-

mation between two range images is obtained, a fine pairwise

registration algorithm is performed to produce a more accurate

solution. Several direct solutions (which did not require any

iterative calculations) were proposed in the literature [28].

However, the most popular algorithms use iterative approaches

to achieve more accurate registration results, e.g., [29], [30].

Besl and McKay [30] proposed an ICP algorithm to mini-

mize the average point-to-point distance of the closest point

pairs between two range images. However, the original ICP

algorithm requires range images to have a significant overlap,

and is not robust to outliers [31]. Later, a set of variants

have been proposed to improve the performance of the orig-

inal ICP algorithm [32]. Chen and Medioni [29] proposed

a fine registration algorithm based on the minimization of

the average point-to-plane distance rather than the point-to-

point distance between two range images. Compared to the

ICP algorithm, Chen and Medioni’s algorithm usually requires

less iterations to reach convergence [10]. However, solving

the nonlinear least squares problem to minimize the residual

registration error is computationally expensive [31]. Liu [33]

proposed a fine registration algorithm based on the Lyapunov

function for a Markov chain of thermodynamic systems. A

comparative study shows that Liu’s algorithm outperforms

the state-of-the-art ICP variants. However, it is also the most

computationally expensive algorithm compared to the state-of-

the-art. Therefore, we use a variant of the ICP algorithm for

the fine registration.

B. Multi-view Registration Algorithms

1) Coarse Registration: A multi-view coarse registration

algorithm involves two tasks. The first task is to recover the

overlap information between the input range images, and the

second task is to calculate the rigid transformations between

any two overlapping range images (which is effectively a

pairwise registration). Huber and Hebert [9] first applied the

spin image based pairwise coarse registration algorithm to all

pairs of range images to construct a model graph. They then

searched this graph for a spanning tree which was pose con-

sistent and globally surface consistent. This spanning tree was

finally used to register multi-view range images. Following the

same approach, Masuda [17], Bariya et al. [15] and Tombari

et al. [18] respectively used LPHM, SHOT and exponential

map based algorithms for pairwise coarse registration, and

constructed a spanning tree of the input range images that

maximize the sum of the number of inlier point pairs (or

the area of overlap). For a set of Nm range images, the

computational complexity of the Huber and Hebert’s spanning

tree based algorithm and its variants is O
(
N2

m

)
as they need

to exhaustively register every pair of range images. These

algorithms are therefore very time consuming and infeasible

for the registration of a large number of range images [9]. Mian

et al. [11] constructed a connected graph by choosing the range

image with the maximum surface area as the root node and

iteratively added new range images with enough corresponding

3D tensors and passed global verification to the graph. Guo

et al. [34] followed a similar technique and used Tri-Spin-

Image features to perform multi-view registration. ter Haar

[35] selected quadruples of range images to form incomplete

3D models of an object. These quadruples were then verified
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and aligned to obtain the final alignment. This algorithm was

more efficient compared to [9]. One major limitation of this

algorithm is that each quadruple should cover the entire object,

and range images which cover a small part of an object cannot

be registered [35].

2) Fine Registration: Based on the multi-view coarse reg-

istration results, multi-view fine registration algorithms aim to

minimize the registration error of all overlapping range im-

ages. Benjemaa and Schmitt [36] extended the ICP algorithm,

Neugebauer [37] extended the Chen and Medioni’s algorithm

from pairwise fine registration to multi-view fine registration.

Williams and Bennamoun [38] proposed an extension of the

Arun et al.’s pairwise registration algorithm [28] to perform

simultaneous registration of multiple corresponding point sets.

Masuda [39] represented the input range images with Signed

Distance Field (SDF) samples, and simultaneously performed

multi-view registration and integration based on the SDF sam-

ples. Nishino and Ikeuchi [40] employed the laser reflectance

strength as an additional attribute of the 3D points to further

improve the robustness of a multi-view registration algorithm.

C. Major Contributions

This paper has three major contributions, which are sum-

marized as follows.

(i) We introduce an accurate pairwise range image regis-

tration algorithm based on RoPS features. The algorithm is

very robust to small overlaps, noise and variations in the

mesh resolutions. Comparisons with a set of state-of-the-art

algorithms prove the superiority of our image registration

algorithm. Although RoPS [19] was originally proposed for

3D object recognition, we use it in this paper for 3D object

modeling without any prior information about the scene (e.g.,

order of the range images). The effectiveness and robustness of

the RoPS descriptor has been fully demonstrated in the context

of 3D modeling (through extensive experimental tests).

(ii) We propose a multi-view range image registration al-

gorithm based on shape growing (Section IV). Although the

concept of shape growing has been used in other work (e.g.,

[6]) for the registration of successive range images of a single

object, we propose in contrast a novel multi-view registration

algorithm for the registration of a set of mixed and unordered

range images from multiple 3D objects.

(iii) We integrate our pairwise and multi-view range image

registration algorithms into a framework for automatic 3D

object modeling (as shown in Fig. 1). The framework was

tested on a number of range images acquired with both high

and low-resolution sensors (i.e., Cyberware, Minolta Vivid,

Microsoft Kinect, and Space Time). Experimental results show

that the proposed framework is able to reconstruct the 3D

model of an object without any manual intervention (Section

V-C for more details).

III. PAIRWISE RANGE IMAGE REGISTRATION

A pairwise registration algorithm should be automatic and

accurate. It also should be robust to small overlaps, noise,

varying mesh resolutions and other nuisances. In this section,

we introduce a RoPS based pairwise registration algorithm

which satisfies these qualifications (see Section V-A). The

algorithm consists of four parts: RoPS feature extraction,

feature matching, robust transformation estimation and fine

registration. The reader is referred to [19] for more details on

the RoPS feature extraction and feature matching. It is also

briefly described below for completeness.

A. RoPS Feature Extraction

Given a range image Ii or a pointcloud generated from

this, it has to be converted into a triangular mesh Mi since

the subsequent feature point detection and feature description

algorithms work on mesh data. This can be achieved by Delau-

nay triangulation [19] or the Marching Cubes algorithm [41].

We then detect a set of feature points pi
k, k = 1, 2, . . . , Ni

from Mi and represent these points using our previously

proposed RoPS feature descriptors [19], [42].

In order to detect unique and repeatable feature points, the

mesh Mi is first simplified to a low-resolution mesh M̂i,

the vertices of Mi which are nearest to the vertices of M̂i

are selected as candidate points. These candidate points are

then filtered by a resolution control technique [19] to remove

redundant points. Boundary points are also pruned out from

these candidate points to improve their stability. For each

remaining point, we perform a weighted Continuous Princi-

pal Component Analysis (CPCA) [19] on its local surface,

resulting in three eigenvalues λ1, λ2 and λ3. The points

with λ1

λ2

> τλ are considered as feature points, where τλ
is a threshold to further remove the points with symmetrical

underlying local surfaces. The threshold τλ determines both

the number and the stability of the feature points. That is, a

large threshold can produce a limited number of feature points

with high stability. In this papers τλ is empirically set to 1.02.

For each feature point pi
k in mesh Mi, a local surface Li

k is

first cropped from Mi for a given support radius r. Then, a

unique and unambiguous Local Reference Frame (LRF) Fi
k is

derived using the eigenvectors of its local surface Li
k. The

points on Li
k are aligned with this LRF F

i
k to make the

resultant feature descriptor invariant to rotation and translation.

The transformed local surface L̃i
k are then used to construct a

RoPS feature descriptor.

The local surface L̃i
k is first rotated around the x axis by a

set of angles. For each rotation, the points on L̃i
k are projected

onto three coordinate planes (i.e., the xy, xz and yz planes) to

extract several statistics. Specifically, we first obtain an L×L

distribution matrix D of the projected points on each plane,

and then calculate five statistics (including central moments

µ11, µ21, µ12, µ2 and entropy e) for the distribution matrix

D. That is,

µmn =

L∑

a=1

L∑

b=1

(a− ā)
m (

b− b̄
)n

D (a, b) , (1)

e = −

L∑

a=1

L∑

b=1

D (a, b) log (D (a, b)) . (2)

where

ā =

L∑

a=1

L∑

b=1

aD (a, b) , (3)
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Fig. 1: An illustration of the proposed 3D object modeling framework (Figure best seen in color).

b̄ =
L∑

a=1

L∑

b=1

bD (a, b) . (4)

These statistics for all coordinate planes and rotations are

concatenated to form a sub-feature f i
kx. The local surface

L̃i
k is then rotated around the y and z axes respectively to

obtain another two sub-features f i
ky and f i

kz . The overall

RoPS feature f i
k is obtained by concatenating the three sub-

features f i
kx, f i

ky and f i
kz . The reader is referred to [19] for

further details about the RoPS feature extraction.

B. Feature Matching

Let F i =
{
f i
1,f

i
2, . . . ,f

i
Ni

}
and F j ={

f
j
1,f

j
2, . . . ,f

j
Nj

}
respectively be two sets of RoPS

features for meshes Mi and Mj . For a feature f i
k from F i,

we find its nearest feature f
j
k from F j as:

f
j
k = arg min

n=1,2,...,Nj

(∥∥f i
k − f j

n

∥∥
2

)
. (5)

The pair
(
f i
k,f

j
k

)
are considered a feature correspondence,

and their associated points c
ij
k =

(
pi
k,p

j
k

)
are considered a

point correspondence. Note that, there might be more than

one nearest feature in F j for a given f i
k. In that case, several

point correspondences can be generated for the feature f i
k. We

employed the k-d tree algorithm to reduce the computational

complexity of feature matching. All features in F i are matched

against these features in F j , resulting in a set of point

correspondences Cij =
{
c
ij
1 , c

ij
2 , . . . , c

ij
Ni

}
.

For each point correspondence c
ij
k , a rigid transformation

T
ij
k =

(
R

ij
k , t

ij
k

)
can be calculated using their point positions(

pi
k,p

j
k

)
and LRFs

(
F

i
k,F

j
k

)
. That is,

R
ij
k =

(
F

i
k

)T
F

j
k, (6)

t
ij
k = pi

k − p
j
kR

ij
k , (7)

where R
ij
k is the rotation matrix and t

ij
k is the translation

vector of the rigid transformation T
ij
k . Totally, Ni transfor-

mations can be calculated from these point correspondences.

Note that, several incorrect point correspondences may exist

in Cij , which will subsequently result in wrong transformation

estimations.

C. Robust Transformation Estimation

Several methods have been developed in the literature to

produce a correct transformation from a set of point corre-

spondences with outliers, e.g., the Random Sample Consensus

(RANSAC) method [43] and its variants [44], and the rigidity

constraint based method [8]. We instead use a Consistent

Correspondences Verification (CCV) method [19], which is

shown to perform better than the RANSAC method (see

Section V-A1).

Let Cij =
{
c
ij
1 , c

ij
2 , . . . , c

ij
Ni

}
be the point correspondence

set for the mesh pair Mi and Mj , and T
ij
k be the estimated

transformation from point correspondence c
ij
k . For each esti-

mated transformation T
ij
k , we find out all point correspon-

dences C
ij
k whose estimated transformations are similar to

T
ij
k . Specifically, we first convert the rotation matrix of each

transformation into three Euler angles. We then measure the

difference between any two transformations using both the

distance da between their Euler angles and the distance dt

between their translation vectors. The transformations, whose

angle distances da to T
ij
k are less than a threshold τa and

translation distances dt to T
ij
k are less than a threshold τt, are

selected to form a group of consistent correspondences C
ij
k .

In this paper, τa and τt are empirically set to 0.2 and 10dres,

respectively. We then calculate a plausible transformation

estimation T̃
ij
k for each point correspondence c

ij
k using the

group of consistent correspondences C
ij
k . If C

ij
k has at least

three point correspondences, the T̃
ij
k is calculated from these

point correspondences using a least-square fitting method [45].

Otherwise, T̃
ij
k is calculated as the average value of these

transformation estimations corresponding to C
ij
k .

In order to find out the best transformation estimation from

C
ij = {Cij

1 ,C
ij
2 , . . . ,C

ij
Ni
}, Mi and Mj are first simplified

https://www.researchgate.net/publication/236645039_Rotational_Projection_Statistics_for_3D_Local_Surface_Description_and_Object_Recognition?el=1_x_8&enrichId=rgreq-21add2e0-c794-40c3-aa93-cc68a8725c2f&enrichSource=Y292ZXJQYWdlOzI2MTMzMTYwMTtBUzoxMDc5OTY5MTkxMTE2ODBAMTQwMjc1OTg4MTEwMw==
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to two low-resolution meshes M̃i and M̃j , respectively.

The process of mesh simplification is performed using the

MATLAB function “reducepatch”, which reduces the number

of points and preserves the overall shape of the mesh. Each

transformation T̃
ij
k is then used to align mesh M̃i to M̃j . The

one which results in the maximum number of inlier point pairs

is considered the final transformation estimation T
ij . Here, a

pair of points is defined as an inlier point pair only if the

distance between the two points is less than two times the

average mesh resolution. In order to find inlier point pairs, we

match only the points in the simplified meshes (M̃i and M̃j)

for computational efficiency. Since the numbers of vertices

in the simplified meshes are much smaller compared to their

original meshes (Mi and Mj), this process of simplification

greatly reduces the computational time for alignment.

D. Fine Registration

Once the initial transformation T
ij is determined, a variant

of the ICP algorithm is used to perform fine registration

between the meshes Mi and Mj . Starting with the initial

transformation T
ij , the ICP algorithm iteratively refines the

rigid transformation by repeatedly generating pairs of closest

points in the two meshes and minimizing a residual error (i.e.,

the average distance between pairs of closest points) [2], [30].

This variant differs from the original ICP algorithm in several

aspects. First, we adopt a coarse-to-fine sampling approach

to improve its computational efficiency. Rather than using all

points in Mi to search for their closest points in Mj , we

take only a part of the points from Mi at the m-th iteration.

Since random subsampling and uniform subsampling based

ICP algorithms have a very similar registration performance

[32], we only use random sampling for its simplicity.

The number of sample points nm is defined as:

nm = −
1

2
log

(
ǫm−1

dres

)
(nmax − nmin) + nmin, (8)

where nmax and nmin are respectively the pre-defined max-

imum and minimum number of sampling points for each

iteration. ǫm−1 is the residual error for the last iteration,

which is usually smaller than the average mesh resolution

dres. According to Eq. (8), the number of sample points in

each iteration is related to the residual error. That is, we

use initially a small number of sample points in order to

speedup the process when the residual error is still very large.

Then, when the residual error decreases, we use more sample

points to improve the registration accuracy. In order to further

improve the accuracy and stability of the ICP algorithm, we

reject at each iteration all pairs of closest points whose point-

to-point distances are more than 2 times the average mesh

resolution.We also use the k-d tree algorithm to perform a

closest point search efficiently.

IV. MULTI-VIEW RANGE IMAGE REGISTRATION

So far we have described our proposed RoPS based pairwise

registration algorithm. This registration algorithm is used as

the basis for our proposed multi-view range image registration

algorithm. The process is described illustrated in Fig. 1.

A. Shape Growing based Coarse Registration

Given a set of input meshes {M1,M2, . . . ,MNm
}, the

task of multi-view range image registration is to register them

to a common coordinate frame effectively. The algorithm starts

by initializing the search space Φ with all the input meshes,

and then selects a mesh from the search space as the seed shape

R1. The shape R1 iteratively grows by performing pairwise

registration between itself and the remaining meshes in the

search space.

For a mesh Mi in the search space, we use the RoPS based

pairwise registration algorithm (which includes the ICP fine

alignment) to register it to the shape R1 (as shown in Fig.

2(a)). The mesh Mi is considered to be successfully registered

to R1 only if the number of overlapping points exceeds a

predefined threshold (e.g., 0.5 times of the number of vertices

in Mi). If the registration is successful, the mesh vertices in

Mi (as shown in Fig. 2(b)), whose shortest distances to the

registered R1 are larger than the average mesh resolution,

are added to the shape R1. Consequently, the shape R1 is

updated. The updated shape contains all points of the previous

shape and some points of the input mesh Mi. Note that, the

distance constraint used here is to make sure that no redundant

point is added to the shape.

We now need to extract RoPS features for the newly updated

shape R1. Since the RoPS features of all these input meshes

have already been extracted, we therefore, generate RoPS

features for R1 from the already available RoPS features of

the previous shape and the mesh Mi (rather than following

the method described in Section III-A to extract brand-new

features). Specifically, for each feature point in the previous

shape and the mesh Mi, we find its closest point (correspond-

ing point) in the updated shape. If the distance between the two

points is less than the average mesh resolution, the correspond-

ing point in the updated shape is considered a feature point.

Note that, the distance constraint used here is to make sure

that the two points correspond to the same physical position.

We also applied a resolution control strategy [19] to the newly

added feature points to remove any redundant feature points.

Once the feature point in the updated shape is selected, the

LRF and RoPS feature descriptor of the existing feature point

in the previous shape or the mesh Mi are assigned to the

corresponding feature point in the updated shape (as shown in

Fig. 2(b) and (c)). Note that, this feature extraction process for

the shape R1 can be performed immediately once the shape is

updated. Therefore, this process improves the computational

efficiency of feature extraction as it does not need any feature

calculation (as described in Section III-A) during the process

of shape growing.

Once the mesh Mi is checked, it is then removed from

the search space Φ. If the registration is successful, the

transformation information between Mi and the shape R1

is stored. The algorithm then proceeds to the next unchecked

mesh Mi+1 in the search space Φ, and the shape growing

process is performed again on the newly selected mesh Mi+1.

This iterative process of shape growing continues until either

all the meshes have been registered to R1, or no mesh in

the search space Φ can further be registered to R1. It is
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(a) (b) (c)

Fig. 2: An illustration of the process of shape growing. (a) The

seed shape. (b) The input mesh, where the red dots represent

the points which are going to be updated to the seed shape. (c)

The updated shape. The blue dots represent the corresponding

points between the input mesh and the updated shape (Figure

best seen in color).

worth noting that, the surface of the shape R1 gradually

grows into a final 3D shape (rather than 2.5D), as shown

in Fig. 1(b). Meanwhile, the pose of the shape R1 keeps

unchanged during the process. Therefore, all range images

are registered to a common coordinate frame (i.e., the one

used by R1). Once the process of shape growing stops, the

rigid transformations between all these registered meshes and

R1 are already known. We then transform these meshes to

the coordinate frame of R1. Consequently, these meshes are

coarsely registered. Note that, the shape R1 is just used as

a reference (i.e., a common coordinate frame), it will not be

used for the subsequent stages (e.g., fine registration and 3D

modeling). We just use the coarsely registered meshes for the

3D modeling.

In order to cope with the cases where the meshes may

correspond to several different objects, the algorithm continues

to initialize a new seed shape R2 by picking up a mesh

from the remaining meshes in the search space. The shape

R2 grows using the same technique as for R1. Consequently,

all the meshes corresponding to the shape R2 are coarsely

registered. This process continues until no initial seed shape

can be built anymore. Finally, all these input meshes can

separately be registered to their corresponding shapes. That

is, the meshes which correspond to a particular shape are

considered to be from the same object.

Compared to the spanning tree based algorithms (e.g.,

[9], [15], [17], [18]), the advantages of the shape growing

based algorithm are at least twofold. First, it performs coarse

registration on range images more efficiently, as demonstrated

in Section V-B3. Second, it can accomplish multi-view reg-

istration of range images corresponding to several different

objects, rather than from only a single object, as further

demonstrated in Section V-B4.

Other related work includes [6], [3] and [7]. Our algorithm

differs from these methods in several aspects. First, [6], [3]

and [7] mainly focus on the registration of successive range

images. In contrast, our multi-view registration algorithm can

successfully register a set of unordered range images. Second,

[6] and [3] work on the registration of range images from

a single object, while our algorithm can work on a set of

mixed range images corresponding to multiple objects (as

demonstrated in V-B4). Third, [6], [3] and [7] reconstructed

a single 3D model/scene in the context of user interaction.

In contrast, this paper focuses on offline automatic (non-

interactive) modeling of multiple 3D objects. Fourth, [6], [3]

and [7] directly used the updated shape (surface) for the

final reconstructed model. We however, use the updated shape

as the reference of a common coordinate system for multi-

view coarse registration, and then perform 3D reconstruction

from the transformed input meshes. Therefore, we can avoid

the accumulated error caused by shape growing. Besides, [7]

worked on depth images which have regular lattices while our

algorithm works on pointclouds (or meshes).

B. Fine Registration and 3D Modeling

Once the meshes corresponding to a particular shape are

coarsely registered, these registrations are refined with a multi-

view fine registration algorithm (e.g., [38]). This process

further minimizes the overall registration error of multiple

meshes, and distributes any registration errors evenly over the

complete 3D model. A continuous and seamless 3D model is

finally reconstructed for each shape by using an integration

and surface reconstruction algorithm [46].

Note that, the proposed algorithm is fully automatic and can

be performed without any manual intervention. It does not

require any prior information about the sensor position, the

shapes of objects, viewing angles, overlapping pairs, order of

meshes, or number of objects. In our case, a user can treat the

modeling process as a “black box”. The only thing one needs

to do is to import all scanned range images to the system, and

to collect the complete 3D models at the output.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, a set of experiments were performed to test

the effectiveness and robustness of our proposed algorithms.

A. Pairwise Registration Results

We tested the performance of our pairwise registration

algorithm on the UWA 3D Modeling Dataset [11]. The dataset

consists of 22, 16, 16, and 21 range images respectively from

four objects, namely the Chef, Chicken, Parasaurolophus and

T-Rex. These range images were acquired with a Minolta Vivid

910 scanner. In order to calculate the ground truth rotation

R
ij
GT and translation t

ij
GT between any two range images Mi

and Mj , the two range images were first aligned manually

and then further refined using the ICP algorithm. Their degree

of overlap was calculated as the ratio of overlapping points to

the average number of points of the two aligned range images.

Note that, we used manual alignment only for the ground truth

generation. During the performance tests, all algorithms were

conducted automatically without any manual intervention (i.e.,

the whole process is fully automatic).

We measured the accuracy of a pairwise registration using

two errors [16], i.e., the error ǫijr between the estimated

rotation R
ij
E and the ground truth rotation R

ij
GT , and the error
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ǫ
ij
t between the estimated translation t

ij
E and the ground truth

translation t
ij
GT . The rotation error ǫijr is calculated as:

ǫijr = arccos



trace

(
R

ij
d

)
− 1

2


 180

π
, (9)

where

R
ij
d = R

ij
GT

(
R

ij
E

)
−1

. (10)

The translation error ǫ
ij
t is calculated as:

ǫ
ij
t =

∥∥∥tijGT − t
ij
E

∥∥∥
dres

. (11)

where dres is the average mesh resolution of all range images

of an object.

We performed pairwise registration between any two range

images of an object, and calculated their registration errors.

The range image pairs with an extremely small overlap (less

than 10%) were excluded from the results, the same as in [47].

In total, 145, 83, 82 and 147 pairs of range images respectively

from the Chef, Chicken, Parasaurolophus and T-Rex were used

in the experiments. A registration was reported as correct if

the rotation error was less than 5◦ and the translation error

was less than 5dres (except in Section V-A1 where different

thresholds are used for the experiments). Otherwise, it was

considered as an incorrect registration.

1) Transformation Estimation: We performed pairwise

range image registration using different transformation esti-

mation methods including the CCV method and the RANSAC

method [43]. During each iteration of the RANSAC method,

three pairs of point correspondences are randomly selected to

calculate a transformation. The number of inlier point pairs

between two simplified meshes is selected as a measure for

alignment, the transformation which results in the maximum

number of inlier point pairs is selected and then refined using

the inlier point pairs to obtain the final transformation. In

this paper, we tested the RANSAC method with different

numbers of iterations (i.e., 500, 1000, 5000 and 10000). We

also tested a variant of the RANSAC method [17] using the

same parameters as in the article [17]. In addition, we tested

a method which calculated a transformation directly from

the whole set of point correspondences using a Least Square

Fitting (LSF) approach. An illustration of the pairwise range

image registration is shown in Fig. 3.

We report in Table I the percentages of correct registrations

of these methods with different thresholds. That is, we consid-

ered a registration as correct if the translation error was less

than 1dres, 2dres, 3dres, 4dres, 5dres, 10dres, 15dres, and

20dres, respectively. Several observations can clearly be made

from these results. First, the RANSAC method achieved a

significant improvement compared to the LSF method. Taking

the results under a threshold of 5dres as an example, 45.73%

correct registrations were achived by the RANSAC method

with 5000 iterations, while only 3.94% correct registrations

were achieved by the LSF method. That is because the

RANSAC method adopted a consensus check technique to

detect and reject outliers, which therefore, greatly improved

the accuracy of the transformation estimation. Second, the

CCV method outperformed the RANSAC and LSF methods

by a large margin under all levels of thresholds. For example,

with a strict threshold of 1dres, 39.17% of the range image

pairs can be correctly registered by the CCV method, while

only 26.70% can be registered by the RANSAC method with

5000 iterations. As the threshold increased to 5dres, 67.61%

of the range image pairs were correctly registered by the

CCV method, while 45.73% were registered by the RANSAC

method with 5000 iterations. In the rest of the paper, we used

a threshold of 5dres to ensure that the RANSAC method has

a relatively high percentage of correct registrations. Third,

the results achieved by the RANSAC method improved as

the number of iterations increased. For example, under a

threshold of 5dres, 32.82% and 47.92% correct registrations

were achieved by the RANSAC method with 500 iterations

and 10000 iterations, respectively. Fourth, the results achieved

by the RANSAC method with 10000 iterations were similar

to the results achieved by the variant proposed in [17]. Both

of them were inferior to those achieved by our CCV method.

Note that, with the traditional RANSAC method, three point

correspondences are randomly selected to derive a plausible

transformation. For the CCV method, a group of (usually more

than three) consistent correspondences are used to derive a

plausible transformation. The plausible transformation which

results in the maximum number of inlier point pairs is selected.

This transformation is then refined to get the final transforma-

tion estimate. Since the CCV method uses more than three

consistent point correspondences compared to three randomly

selected points for the RANSAC method, the CCV method

produces more accurate results compared to the traditional

RANSAC method.

(a) (b)

Fig. 3: An illustration of pairwise range image registration. (a)

A pair of range images with the correct point correspondences.

(b) Registered range images (Figure best seen in color).

2) Comparison with Other Features: We performed pair-

wise range image registration using different features including

the spin image, LSP, THRIFT, USC, FPFH and our RoPS.

The registration results are shown in Table II. Our RoPS

based algorithm achieved the best registration performance.

It produced the largest percentage of correct registrations. The

THRIFT based algorithm obtained the second best results in

terms of the percentage of correct registrations, followed by

the LSP, USC, FPFH and spin image based algorithms. The

rotation and translation errors achieved by all these features



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. X, XX 2013 8

TABLE I: Percentage of correct registrations using different transformation estimation methods.

1dres 2dres 3dres 4dres 5dres 10dres 15dres 20dres
CCV 39.17 57.99 63.90 65.86 67.61 68.05 68.05 68.05
LSF 1.09 1.53 2.63 3.06 3.94 5.03 6.13 7.22

RANSAC-500 20.57 29.76 31.73 31.95 32.82 35.01 35.67 36.54
RANSAC-1000 22.32 32.39 35.23 37.42 37.64 39.17 39.61 40.04
RANSAC-5000 26.70 37.86 45.67 44.86 45.73 46.83 48.36 48.36
RANSAC-10000 29.76 39.61 45.08 46.17 47.92 49.23 49.89 50.11
RANSAC [17] 29.32 40.92 45.30 46.17 46.61 49.02 50.11 50.33

were comparable. Note that, the superior performance of our

RoPS based algorithm is partly due to the high descriptiveness

of our RoPS feature descriptors. Since the RoPS feature

descriptor encodes more distinctive information of the local

surface (as demonstrated in our previous paper [19]) compared

to existing feature descriptors, it therefore, produces more

reliable and robust feature matching results. Consequently, the

registration performance is improved.

TABLE II: Pairwise registration results using different fea-

tures.

%registration Error ǫr (◦ ) Error ǫt (dres)

RoPS 67.61 0.6655 0.6756
Spin image 51.42 0.7562 0.6312

LSP 60.18 0.8944 0.7803
THRIFT 61.93 0.7541 0.6764

USC 58.21 0.7619 0.7046
FPFH 57.77 0.8592 0.7136

In order to further illustrate the performance of the RoPS

based algorithm, we present the histograms of the rotation and

transformation errors of the four objects in Fig 4. It can be

seen that our pairwise registration algorithm is very accurate.

Most of the registered range image pairs have a rotation error

less than 1.0◦ and a translation error less than 1.0dres.
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Fig. 4: Histograms of the rotation and transformation errors

of the four objects.

3) Robustness to the Degree of Overlap: We tested the

performance of our algorithm with respect to varying degrees

of overlap between range images to be registered. The degree

of overlap between any two range images is known a priori.

The numbers of correct and incorrect registrations of the

four individual objects are shown in Fig. 5. Our algorithm

achieved consistent results on the four individual objects.

Generally, all the range image pairs with an overlap more

than 60% were correctly registered (with rotation errors less

than 5◦ and translation errors less than 5dres). With an overlap

between 30% and 60%, about 75% of range image pairs were

correctly registered. Moreover, correct registrations can even

be achieved by several range image pairs with an overlap less

than 20%, as shown in Fig. 5(b-d).
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(c) Parasaurolophus
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Fig. 5: Robustness to the degree of overlap.

4) Robustness to Noise: We added a Gaussian noise to each

mesh along the x, y and z axes. The standard deviation of

noise was increased from 0 to 1.0dres (dres is the average

mesh resolution) with an incremental step of 0.1dres. We

then used our RoPS based algorithm to conduct pairwise

registration on all range image pairs. The percentage of correct

registrations of the four individual objects with respect to

different levels of noise are presented in Fig. 6(a). Our algo-

rithm is clearly very robust to noise, the percentage of correct

registrations was almost unaffected by noise for meshes with

a noise standard deviation less than 0.5dres. The algorithm

still achieved acceptable results even for meshes with a noise

deviation of 1.0dres. Note that, the surface of a mesh with

a noise standard deviation of 1.0dres is very spiky, and most

of its shape details are lost (as shown in Fig. 7). We also

compared our RoPS based algorithm to the spin image, LSP,

THRIFT, USC and FPFH based algorithms. The combined

results of all four objects achieved by different algorithms

are shown in Fig. 6(b). It can be seen that our RoPS based

algorithm achieved the best results at all levels of noise. The

USC based algorithm achieved the second best overall perfor-

mance. In contrast, both LSP and THRIFT based algorithms

were very sensitive to noise. Their performance deteriorated

rapidly as the standard deviation of noise increased. That is
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because both LSP and THRIFT features rely on the surface

normals or shape index values, which are very susceptible to

noise as they require a process of surface differentiation.
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Fig. 6: Pairwise registration performance with respect to

different levels of noise (Figure best seen in color).

(a) (b)

Fig. 7: An illustration of a range image of the Chef. (a) A

noise-free mesh. (b) A mesh with noise standard deviation of

1.0dres.

5) Robustness to Varying Mesh Resolutions: We simplified

each mesh to varying mesh resolutions such that the number

of points in a simplified mesh was 1

2
, 1

4
, 1

8
, 1

16
and 1

32
of its

original value. The average vertex counts of Chef, Chicken,

Parasaurolophus, and T-Rex meshes are 67737, 19019, 26193,

and 31765, respectively. We tested our RoPS based algorithm

with respect to varying mesh resolutions, the results for the

four individual objects are shown in Fig. 8(a). Our RoPS

based algorithm is shown to be very robust to varying mesh

resolutions. The percentage of correct registrations with 1

16
of

original mesh resolution was even comparable with the results

achieved on the original meshes. The performance started to

drop when the simplified meshes had less than 1

32
of their

original number of vertices. We also compared our RoPS based

algorithm to the spin image, LSP, THRIFT, USC and FPFH

based algorithms. The combined results of all four objects

achieved by different algorithms are shown in Fig. 8(b). The

RoPS based algorithm outperformed the other algorithms at

all levels of mesh resolution, followed by LSP, THRIFT and

spin image based algorithms. The USC based algorithm was

very sensitive to varying mesh resolutions. Its performance

declined sharply when the simplified meshes had less than 1

2

of their original number of vertices.

6) Results on a Synthetic Dataset: In order to further test

our algorithm on range images for which the ground truth
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Fig. 8: Registration performance with respect to varying mesh

resolutions (Figure best seen in color).

transformations are known, we synthetically generated a set

of range images from already built 3D models of the UWA

dataset [11], in a way similar to [16]. Specifically, 24 range

images were generated for each model from different view-

points that are 15◦ apart in azimuth. We performed pairwise

registration between any two range images of each object

which have an overlap of more than 10%. The histograms

of the rotation and transformation errors of the four objects

are shown in Fig 9. It is clear that most of the registered

range image pairs have a rotation error of less than 0.5◦ and

a translation error of less than 0.5dres. The results on the

synthetic dataset are more accurate compared to the results on

the real dataset, as shown in Figs. 4 and 9. This is mainly due

to the presence of noise (e.g., spikes) in the real range images.
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Fig. 9: Histograms of the rotation and translation errors on

synthetic range images of the four objects.

B. Multi-view Registration Results

In this section, we present the experimental results of our

multi-view range image registration algorithm on the UWA

3D Modeling dataset.

1) Multi-view Registration of a Single Object: We used

the range images of each object of the UWA 3D Modeling

Dataset as an individual input, and tested the performance

of our multi-view range image registration algorithm. Fig. 10

shows the range images and the multi-view coarse registration

results of the Chicken and Parasaurolophus. Different range

images are rendered in different colors. It can be observed

that, although these range images were scanned from differ-

ent viewpoints and presented in a random order, they were

accurately registered. No visually noticeable defects or seams

can be found in the registered range images (Fig. 10(b) and
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(d)), even in the featureless parts of the objects (e.g., the tail

of the Parasaurolophus in Fig. 10(d)).

(a) (b)

(c) (d)

Fig. 10: An illustration of multi-view coarse registration

results. (a) Range images of the Chicken. (b) Multi-view

registration result of the Chicken. (c) Range images of the

Parasaurolophus. (d) Multi-view registration result of the

Parasaurolophus (Figure best seen in color).

In order to quantitatively analyze the accuracy of our multi-

view coarse registration algorithm, we present the percentage

of registered range images, and the average registration errors

of each individual object in Table III(a). All range images

of the four individual objects were correctly registered. The

average rotation and translation errors of the four objects were

less than 1.5◦ and 2.5dres, respectively. These yet accurate

results were further refined by the subsequent fine registration

algorithm; the results are shown in Table III(b). The average

rotation and translation errors of the four objects were less

than 0.5◦ and 0.5dres, respectively. Generally, our algorithm

enables multi-view registration to be performed automatically

and accurately.

TABLE III: Multi-view registration results of range images of

four individual objects.

(a) Coarse registration

Chef Chicken Parasaurolophus T-Rex

#range images 22 16 16 21
%registration 100 100 100 100
Error ǫr (◦ ) 0.8559 1.1158 0.3456 0.5973

Error ǫt (dres) 0.9844 1.0595 1.3907 2.0051

(b) Fine registration

Chef Chicken Parasaurolophus T-Rex

#range images 22 16 16 21
%registration 100 100 100 100
Error ǫr (◦ ) 0.2712 0.3900 0.1771 0.3758

Error ǫt (dres) 0.3773 0.4508 0.0912 0.4161

2) Robustness to Image Orders: In order to test the ro-

bustness of our multi-view registration algorithm with respect

to different orders of the input range images, we randomly

changed the order of input range images. We tested our

algorithm on range images with five different orders. The

fine registration results of the four objects are shown in Table

IV. The results achieved with different image orders are very

close to each other. The average rotation and translation errors

were less than 0.6◦ and 0.6dres, respectively. We also present

the results of the connected graph based algorithm [11] and

the spanning-tree based algorithm [9] in Table IV. It is clear

that our multi-view registration algorithm outperformed the

connected graph based algorithm.

TABLE IV: Multi-view fine registration results on range

images.

%registration Error ǫr (◦ ) Error ǫt (dres)

Proposed (order 1) 100 0.4649 0.4854
Proposed (order 2) 100 0.3888 0.3922
Proposed (order 3) 100 0.3035 0.3339
Proposed (order 4) 100 0.5346 0.5182
Proposed (order 5) 100 0.4824 0.3909
Connected graph 100 0.5457 0.7477

Spanning tree 100 0.2796 0.2536

3) Efficiency w.r.t. the Number of Input Meshes: In order

to evaluate the computational efficiency of the multi-view

registration algorithm with respect to the number of input

meshes, we progressively selected a subset of the range

images to perform multi-view registration. For each fixed

number of input meshes, we counted the number of pairwise

registrations which were needed to complete the multi-view

registration. The results for each of the four objects are shown

in Fig. 11. We also present the results of the state-of-the-

art including the spanning-tree based algorithms [9], [17],

and the connected graph based algorithm [11]. Our shape

growing based algorithm showed a significant improvement

compared to both the spanning tree based and the connected

graph based algorithms. Taking the 20 input range images

of the Chicken as an example, the numbers of pairwise

registrations for the spanning tree based, connected graph

based and shape growing based algorithms were 190, 117 and

19, respectively. The improvement factor of our shape growing

based algorithm over the spanning tree based algorithm was
190

19
= 10. Note that, as the number of input range images

increases, the advantage of our algorithm becomes even more

significant. We also measured the processing time to register

all range images of each object. The timing experiments were

conducted on a computer with a 3.5 GHz Intel Core i7 CPU

and a 16GB RAM. The code was implemented in MATLAB.

The average computational times were 21.82min, 7.39min,

24.54min and 17.17min for Chef, Chicken, Parasaurolophus

and T-Rex, respectively. It should be noted that the running

speed can further be improved and optimized by implementing

the algorithms in C++.

4) Multi-view Registration of Multiple Objects: In order

to further demonstrate the capability of our algorithm to

simultaneously register multiple mixed range images corre-

sponding to multiple objects, we used all the range images

of the four objects at the input. These range images were

https://www.researchgate.net/publication/222219911_Log-polar_height_maps_for_multiple_range_image_registration?el=1_x_8&enrichId=rgreq-21add2e0-c794-40c3-aa93-cc68a8725c2f&enrichSource=Y292ZXJQYWdlOzI2MTMzMTYwMTtBUzoxMDc5OTY5MTkxMTE2ODBAMTQwMjc1OTg4MTEwMw==
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(d) T-Rex

Fig. 11: Efficiency with different number of input meshes

(Figure best seen in color).

mixed and were registered using our shape growing based

algorithm. As a result, four shapes were produced by our

algorithm. The totality of the 75 input range images are shown

in Fig. 12(a), and the coarse registration results for the four

shapes are respectively shown in Fig. 12(b-e). It can be seen

that, all these input range images were separately registered

according to their corresponding shapes. Moreover, although

fine registration was not applied to these registration results,

there were no visually noticeable seams in any of the registered

range images.

We also present the percentage of correctly registered range

images, and the average registration errors of each individual

object in Table V. These results were almost the same as those

reported in Table III. This observation clearly indicates that

the mixture of range images from multiple objects has very

few effect on the registration result of each object. This is

due to the reason that, for a specific shape, the range images

from different objects cannot be successfully registered with

it. Consequently, these range images have no contribution to

the final registration results. Generally, our algorithm is able

to perform multi-view registration correctly from a mixed and

unordered set of range images from several different objects.

C. 3D Object Modeling

We tested the 3D object modeling framework on both high-

resolution and low-resolution datasets.

1) Results on High-Resolution Range Images: We first

tested our 3D modeling framework on high-resolution range

images from two popular datasets: the UWA 3D Modeling

Dataset [11] and the Stanford 3D Scanning Repository [46].

The former consists of a set of range images of the Chef,

Chicken, Parasaurolophus and T-Rex. The latter consists of

a set of range images of the Armadillo, Bunny, Dragon and

Happy Buddha. The number of range images of the Armadillo,

Dragon and Happy Buddha are more than 50. The multi-

view registration results and reconstructed 3D models of these

TABLE V: Multi-view registration results of mixed range

images of the four objects.

(a) Coarse registration

Chef Chicken Parasaurolophus T-Rex

#range images 22 16 16 21
%registration 100 100 100 100
Error ǫr (◦ ) 1.8330 1.6183 1.2157 1.4149

Error ǫt (dres) 1.2674 1.3967 1.6750 1.8516

(b) Fine registration

Chef Chicken Parasaurolophus T-Rex

#range images 22 16 16 21
%registration 100 100 100 100
Error ǫr (◦ ) 0.3341 0.4286 0.4131 0.2369

Error ǫt (dres) 0.3975 0.3969 0.5258 0.1333

objects are shown in Fig. 13. These results clearly demonstrate

that our algorithm is capable of reconstructing 3D models by

seamlessly merging multiple range images.

In order to quantitatively analyze the performance of our 3D

modeling framework, we compared our reconstructed models

with the ground truth models. We use the term accuracy and

completeness (proposed by Seitz et al. [48]) to evaluate our

modeling results. To measure the accuracy, we calculated

the distance dac such that 90% of the points on the recon-

structed model are within the distance dac to the ground truth

model. The distance dac was further normalized by the mesh

resolution dres. To measure the completeness, we calculated

the percentage of points on the ground truth model that are

within 2 times the mesh resolution to the reconstructed model.

The accuracy and completeness results of the 8 reconstructed

models are shown in Table VI. It is clear that our reconstructed

3D models are very accurate and complete compared to their

corresponding ground truth models.

2) Results on Low-Resolution Range Images: We further

tested our 3D modeling framework on low-resolution range

images from the Bologna Reconstruction Dataset [18]. The

range images of Duck and Frog were acquired with a Mi-

crosoft Kinect sensor, while those of Squirell and Mario

were acquired with a Microsoft Space Time sensor. The low

resolution and high noise level of these range images make the

task of 3D modeling even more challenging. The input range

images and the reconstructed models are shown in Fig. 14.

The upper-left plot of each block corresponds to the input

range images, with the other three plots corresponding to

the reconstructed model observed from three different views.

It is clear that our framework was able to reconstruct the

3D shape of an object from noisy and low-resolution range

images without any manual intervention or assumption about

the initial poses.

VI. CONCLUSION

In this paper, we have presented an accurate and robust al-

gorithm for both pairwise and multi-view range image registra-

tion. A pairwise range image registration algorithm is proposed

by integrating four modules including RoPS feature extraction,

feature matching, robust transformation estimation and fine

registration. We performed extensive experiments to assess the
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(a) Input range images (b) Chef (c) Chicken (d) Parasaurolophus (e) T-Rex

Fig. 12: Multi-view coarse registration of range images corresponding to multiple objects (Figure best seen in color).

Fig. 13: 3D modeling results on high-resolution datasets (Figure best seen in color).

TABLE VI: Accuracy and completeness results of the reconstructed models.

Chef Chicken Parasaurolophus T-Rex Armadillo Bunny Dragon Happy Buddha

Accuracy (dres) 0.6231 1.1004 0.6942 0.9485 1.7977 1.4291 1.1545 0.7209
Completeness (%) 100.00 100.00 99.66 99.97 91.12 99.88 98.46 100.00

Fig. 14: 3D modeling results on low-resolution datasets (Figure best seen in color).

accuracy and robustness of our algorithm with respect to a

set of nuisances including small overlaps, noise, and varying

mesh resolutions. Comparative experimental results show that

our RoPS based algorithm outperforms the state-of-the-art. We

also propose a shape growing based algorithm for multi-view

range image registration. Experimental results show that the

proposed algorithm is very accurate. It can simultaneously

perform multi-view registration on a set of mixed range images

which correspond to several different objects. Finally, we

introduced a complete 3D modeling framework based on our

registration algorithms. Experimental results on both high-

resolution and low-resolution range images show that the

reconstructed 3D models are complete and accurate. In order

to improve the processing time of our algorithm for real-

life applications, our future work will aim to implement the

proposed algorithms in a Graphics Processing Unit (GPU) with

parallel computing techniques to achieve a faster performance.
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