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Abstract

This paper applies the Heydari–Hosseininia nonsingular fractional derivative for

defining a variable-order fractional version of the Sobolev equation. The orthonormal

shifted discrete Legendre polynomials, as an appropriate family of basis functions, are

employed to generate an operational matrix method for this equation. A new

fractional operational matrix related to these polynomials is extracted and employed

to construct the presented method. Using this approach, an algebraic system of

equations is obtained instead of the original variable-order equation. The numerical

solution of this system can be found easily. Some numerical examples are provided

for verifying the accuracy of the generated approach.

Keywords: Variable-order time fractional Sobolev equation; Orthonormal shifted

discrete Legendre polynomials; Nonsingular variable-order fractional derivative

1 Introduction

Over the past decades, the subject of fractional calculus (as a generalization of the classical

calculus) has been widely studied [1–3]. In fact, fractional derivative and integral opera-

tors, due to higher degree of freedom in comparison to the classical operators as well as

their memory and nonlocal properties, have received many applications in various prob-

lems [4]. For instance, some important works related to recent developments in fractional

calculus and its applications can be found in [5–10]. The reader should note that the most

important issue about problems involving such operators is finding their exact solutions,

which is often very difficult and may even be impossible. This fact has led to the use of

numerical methods as a convenient alternative to solve this drawback. Some numerical

methods that have recently been applied to solve such problems can be found in [11–18].

Given that the order of fractional operators is permissible to take any value, a more

general generalization is that the order of fractional operators be a definite function of

the variables in the problem [19]. In fact, fractional operators of variable order (VO) can

be utilized for more accurate modeling of real-world phenomena [20, 21]. The remark-

able point about such operators is that their memory property is more evident [22]. Some
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problems that have recently been modeled by such operators can be found in [23, 24].

However, similar to constant-order fractional equations, the major challenge in dealing

with VO fractional equations is finding their analytical solutions, which is often impossi-

ble. For this reason, in recent years, many numerical approaches have been constructed

to solve this category of problems. For instances, see [25–29].

The Sobolev equation is a well-studied partial differential equation which has been fre-

quently utilized in the fluid dynamics to express the fluid motion through rock or soil,

and other media [30]. This equation is a special form of the Benjamin–Bona–Mahony–

Burgers problem, where the coefficients of nonlinear term and both first-order derivatives

are zero [31]. Many applications of the Sobolev equation have been reported in moisture

migration in soil [32], thermodynamics [33], and fluid motion [33]. There are many ap-

proaches that have been applied to solve various types of the Sobolev equation in recent

years. For instances, see [30, 31, 34–37].

Recently, the author of [38] introduced a new nonsingular VO fractional derivative,

where the Mittag-Leffler function is its kernel. As far as we know, there is no previous

VO fractional version of the Sobolev problem. This motivates us to pursue the following

goals:

• Defining a VO fractional prescription of the Sobolev equation using the nonsingular

fractional derivative expressed in [38].

• Constructing a highly accurate method based upon the orthonormal shifted discrete

Legendre polynomials (DLPs) for this equation.

So, we concentrate on the problem

HH
0 ∂ζ (τ )

τ θ (y, τ ) –μHH
0 ∂ζ (τ )

τ θyy(y, τ ) – νθyy(y, τ ) = ϕ(y, τ ),

ζ (τ ) ∈ (0, 1), (y, τ ) ∈ [0, yb]× [0, τb], (1.1)

under the initial and boundary conditions

θ (y, 0) = θ̂ (y), θ (0, τ ) = θ̃0(τ ), θ (yb, τ ) = θ̃1(τ ), (1.2)

where θ (·, ·) is the undetermined solution, μ and ν are positive constants, ζ (·) is a con-

tinuous function in its domain, and ϕ(·, ·), θ̂ (·), θ̃0(·), and θ̃1(·) are given functions. Also,
HH
0 ∂ζ (τ )

τ θ (y, τ ) is theVO fractional derivative of order ζ (τ ) with respect to τ in theHeydari–

Hosseininia (HH) sense of the functions θ (y, τ ) [38]. This equation can have useful appli-

cations in many applied problems, such as the transport phenomena of humidity in soil,

the heat conduction phenomena in different media, and the porous theories concerned

with percolation into rocks with cracks. Note that in the case of ζ (τ ) = 1, this problem

reduces to the classical Sobolev problem.

One good idea for solving fractional functional equations is employing polynomials as

basis functions to construct numerical methods. This is important for two reasons: First,

the computation of the fractional derivative and integral of these functions is easy; and

second, if the solution of the problem under study is sufficiently smooth, high-precision

solutions can be achieved. Basis orthogonal polynomials are classified into discrete and

continuous kinds regarding the method of calculating their expansion coefficients [39].

Unlike continuous polynomials, the expansion coefficients of which are calculated by in-

tegrating (in most cases numerically), the expansion coefficients of discrete polynomials
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are calculated accurately using a finite summation. In recent years, discrete polynomials

have been extensively applied for solving diverse problems. For instances, see [39–47].

This study applies the orthonormal shifted DLPs for solving the Sobolev equation (1.1)

subject to conditions (1.2). To this end, a new fractionalmatrix related to theVO fractional

differentiation of these polynomials is obtained and applied for generating a numerical

technique for this problem. The intended approach is constructed using these polynomi-

als expansion and the tau technique. This technique converts the VO fractional problem

into an algebraic system of equations that readily can be handled. Note that since it is eas-

ier to obtain the operation matrix of VO fractional derivative of the orthonormal shifted

DLPs than continuous polynomials, we have considered these discrete polynomials as ba-

sis functions for solving this VO fractional problem.

Organization of this article is as follows: The VO fractional derivative in the HH sense is

reviewed in Sect. 2. The orthonormal shifted DLPs are reviewed in Sect. 3. Some matrix

equalities are obtained in Sect. 4. The computational approach is explicated in Sect. 5.

Numerical examples are given in Sect. 6. Conclusion of this study is provided in Sect. 7.

2 Preliminaries

Here, we review the definition of the VO fractional differentiation used in this study. First

of all, we express the definition of the Mittag-Leffler function that is given in [4] by

Ea,b(τ ) =

∞
∑

j=0

τ j

Ŵ(ja + b)
, a,b ∈R

+, τ ∈C. (2.1)

Please remember that for b = 1 it is considered as Ea(τ ) = Ea,1(τ ). The VO fractional

derivative of order ζ (τ ) ∈ (0, 1) (where ζ (τ ) is a continuous function on its domain) in

the HH sense of the function θ (τ ) is given in [38] as follows:

HH
0 Dζ (τ )

τ θ (τ ) =
1

1 – ζ (τ )

∫ τ

0

E1

(
–ζ (τ )(τ – s)

1 – ζ (τ )

)

θ ′(s)ds, τ > 0. (2.2)

The above definition results in

HH
0 Dζ (τ )

τ τ r =

⎧

⎪
⎨

⎪
⎩

0, r = 0,

r!

1 – ζ (τ )
trE1,r+1(–

τζ (τ )

1 – ζ (τ )
), r ≥ 1,

(2.3)

where r ∈ Z
+
⋃

{0}.

3 Orthonormal shifted discrete Legendre polynomials

The orthonormal shifted DLPs are defined over [0, τb] as follows [44]:

Lτb ,i(τ ;N) =
1√

σ (i,N)

i
∑

k=0

k
∑

m=0

(–1)k
(
i

k

)(
i + k

k

)(
N

τb

)m S
(m)
k

N (k)
τm, i = 0, 1, . . . ,N , (3.1)

where

σ (i,N) =
(N + i + 1)(i+1)

(2i + 1)N (i)
, (3.2)
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S
(m)
k s are the first type Stirling numbers,

N (k) =

⎧

⎨

⎩

1, k = 0,

N(N – 1)(N – 2) . . . (N – k + 1), k ≥ 1,
(3.3)

and
(
i
k

)

is the binomial coefficient. These polynomials can be utilized for approximating

any continuous function θ (τ ) over [0, τb] as follows:

θ (τ ) ≃
N

∑

i=0

eiLτb ,i(τ ;N)� ET
τb ,N (τ ), (3.4)

where

E = [e0 e1 . . . eN ]
T ,

in which

ei =

N
∑

r=0

θ

(
τb

N
r

)

Lτb ,i

(
τb

N
r;N

)

, (3.5)

and


τb ,N (τ ) =
[

Lτb ,0(τ ;N) Lτb ,1(τ ;N) . . . Lτb ,N (τ ;N)
]T
. (3.6)

Likely, a continuous function θ (y, τ ) defined over [0, yb]× [0, τb] can be approximated by

the orthonormal shifted DLPs as

θ (y, τ ) ≃
M

∑

i=0

N
∑

j=0

θijLyb ,i(y;M)Lτb ,j(τ ;N)� 
yb ,M(y)T�
τb ,N (τ ), (3.7)

in which � = [θ(i–1)(j–1)] is a matrix with (M + 1)× (N + 1) entries as

θ(i–1)(j–1) =

M
∑

r=0

N
∑

l=0

θ

(
yb

M
r,

τb

N
l

)

Lyb ,i

(
yb

M
r;M

)

Lτb ,j

(
τb

N
l;N

)

,

1≤ i≤ M + 1, 1≤ j ≤ N + 1. (3.8)

4 Matrix relationships

Here and in what follows, we give some matrix relationships related to the orthonormal

shifted DLPs.

Theorem 4.1 ([44]) Differentiation of the vector 
τb ,N (τ ) introduced in (3.6) satisfies the

relation

d
τb ,N (τ )

dτ
=D

(1,τb)
N 
τb ,N (τ ), (4.1)
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where D
(1,τb)
N = [d

(1,τb)
ij ] is a matrix of order (N + 1) with entries

d
(1,τb)
ij =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

1√
σ (i – 1,N)

N
∑

l=0

i–1
∑

k=1

k
∑

r=1

(–1)k
(
i – 1

k

)(
i + k – 1

k

)

× N

τb

S
(r)
k

N (k)
rlr–1Lτb ,j–1

(τb

N
l;N

)

,
2 ≤ i≤ N + 1,

1 ≤ j ≤ i – 1,

0, otherwise.

Moreover, for any integer n, we have

dn
τb ,N (τ )

dτ n
=D

(1,τb)
N ×D

(1,τb)
N × · · · ×D

(1,τb)
N

︸ ︷︷ ︸

n times


τb ,N (τ )�D
(n,τb)
N 
τb ,N (τ ). (4.2)

Theorem 4.2 Suppose that ζ : [0, τb]−→ (0, 1) is a given continuous function and
τb ,N (τ )

is the vector expressed in (3.7). Then we have

HH
0 Dζ (τ )

τ 
τb ,N (τ )≃Q
(ζ ,τb)
N 
τb ,N (τ ), (4.3)

where Q
(ζ ,τb)
N = [q

(ζ ,τb)
ij ] is a matrix of order (N + 1) with entries

q
(ζ ,τb)
ij =

⎧

⎨

⎩

a
(ζ ,τb)
ij , 2≤ i≤ N + 1, 1≤ j ≤ N + 1,

0, otherwise,

in which

a
(ζ ,τb)
ij =

1√
σ (i – 1,N)

N
∑

l=0

i–1
∑

k=1

k
∑

m=1

(–1)k
(
i – 1

k

)(
i + k – 1

k

)

× S
(m)
k

N (k)

m!lm

1 – ζ (
τb
N
l)
E1,m+1

(
–(

τb
N
l)ζ (

τb
N
l)

1 – ζ (
τb
N
l)

)

Lτb ,j–1

(
τb

N
l;N

)

.

Proof Regarding (2.3), we have HH
0 Dζ (τ )

τ Lτb ,0(τ ;N) = 0. So, in the matrix Q
(ζ ,τb)
N , the first

row should be zero. Assume î≥ 1 and ζ : [0, τb]−→ (0, 1) be a continuous function. From

(2.3) and (3.1), we get

HH
0 Dζ (τ )

τ Lτb ,î
(τ ;N) =

1
√

σ (î,N)

î
∑

k=0

k
∑

m=0

(–1)k
(
î

k

)(
î + k

k

)(
N

τb

)m S
(m)
k

N (k)
HH
0 Dζ (τ )

τ τm

=
1

√

σ (î,N)

î
∑

k=1

k
∑

m=1

(–1)k
(
î

k

)(
î + k

k

)(
N

τb

)m S
(m)
k

N (k)

m!

1 – ζ (τ )

× τmE1,m+1

(

–
τζ (τ )

1 – ζ (τ )

)

.
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The above result can be approximated as

HH
0 Dζ (τ )

τ Lτb ,î
(τ ;N)≃

N
∑

ĵ=0

q̂
(ζ ,τb)

îĵ
Lτb ,ĵ

(τ ;N), (4.4)

where, regarding (3.5), we have

q̂
(ζ ,τb)

îĵ
=

N
∑

l=0

(
HH
0 Dζ (τ )

τ Lτb ,î
(τ ;N)

)

Lτb ,ĵ
(τ ;N)|

τ=
τb
N l

=
1

√

σ (î,N)

N
∑

l=0

î
∑

k=1

k
∑

m=1

(–1)k
(
î

k

)(
î + k

k

)
S
(m)
k

N (k)

lmm!

1 – ζ (
τb
N
l)

× E1,m+1

(

–
(
τb
N
l)ζ (

τb
N
l)

1 – ζ (
τb
N
l)

)

Lτb ,ĵ

(
τb

N
l;N

)

.

Eventually, via the change of indices î = i–1 and ĵ = j–1, and considering q
(ζ ,τb)
ij instead of

q̂
(ζ ,τb)
i–1j–1, we obtain

q
(ζ ,τb)
ij =

1√
σ (i – 1,N)

N
∑

l=0

i–1
∑

k=1

k
∑

m=1

(–1)k
(
i – 1

k

)(
i + k – 1

k

)
S
(m)
k

N (k)

m!lm

1 – ζ (
τb
N
l)

× E1,m+1

(
–(

τb
N
l)ζ (

τb
N
l)

1 – ζ (
τb
N
l)

)

Lτb ,j–1

(
τb

N
l;N

)

for 2≤ i ≤ N + 1 and 1 ≤ j ≤ N + 1. Thus, the expressed claim is proved. �

For example, whenever ζ (τ ) = 0.5 + 0.25 sin(τ ), we obtain

Q
(ζ ,2)
5 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0 0.0 0.0 0.0 0.0 0.0

–1.45297090 0.61950634 0.34505555 0.10604946 –0.02074431 –0.01425841

–0.07721547 –1.86890658 1.68369319 0.62293619 0.00763093 –0.05902572

–0.63012499 0.20031328 –1.56749609 2.41761593 0.51704726 –0.09569810

0.16799373 –0.53602371 0.52366685 –1.58744491 2.84614045 0.31438495

–0.10105451 0.93727364 –1.13652072 0.69242364 –1.92755571 3.29194139

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

5 Computational method

In order to use the orthonormal shifted DLPs for problem (1.1) with initial and boundary

conditions (1.2), we express the unknown solution as

θ (y, τ ) ≃ 
yb ,M(y)
T
�
τb ,N (τ ), (5.1)

where � is an (M + 1)× (N + 1) matrix, and its elements are undetermined. Theorem 4.1

results in

θyy(y, τ ) ≃ 
yb ,M(y)
T
(

D
(2,yb)
M

)T
�
τb ,N (τ ). (5.2)

Besides, Theorem 4.2 together with the above relations yields

HH
0 ∂ζ (τ )

τ θ (y, τ ) ≃ 
yb ,M(y)
T
�Q

(ζ ,τb)
N 
τb ,N (τ ) (5.3)
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and

HH
0 ∂ζ (τ )

τ θyy(y, τ ) ≃ 
yb ,M(y)
T
(

D
(2,yb)
M

)T
�Q

(ζ ,τb)
N 
τb ,N (τ ). (5.4)

In addition, we represent ϕ(y, τ ) using the orthonormal shifted DLPs as follows:

ϕ(y, τ ) ≃ 
yb ,M(y)
TΦ
τb ,N (τ ), (5.5)

where Φ is an (M + 1)× (N + 1) given matrix, and its elements are evaluated like in (3.8).

By inserting (5.2)–(5.5) into (1.1), we obtain


yb ,M(y)
T
(

�Q
(ζ ,τb)
N –μ

(

D
(2,yb)
M

)T
�Q

(ζ ,τb)
N – ν

(

D
(2,yb)
M

)T
� –Φ

︸ ︷︷ ︸

�

)


τb ,N (τ )≃ 0. (5.6)

The functions given in (1.2) can also be approximated via the orthonormal shifted DLPs

as

θ̂ (y) ≃ 
yb ,M(y)
T
�̂, (5.7)

and

θ̃0(τ ) ≃ �̃
T

0 
τb ,N (τ ),

θ̃1(τ ) ≃ �̃
T

1 
τb ,N (τ ),

(5.8)

in which �̂ is an (M + 1)-order column vector, �̃0 and �̃1 are (N + 1)-order column vec-

tors, and their elements are evaluated like in (3.5). Now, from (1.2), (5.1), (5.7), and (5.8),

we obtain


yb ,M(y)
T
(

�
τb ,N (0) – �̂
︸ ︷︷ ︸

�1

)

≃ 0 (5.9)

and

(


yb ,M(0)
T
� – �̃

T

0
︸ ︷︷ ︸

�2

)


τb ,N (τ )≃ 0,
(


yb ,M(yb)
T
� – �̃

T

1
︸ ︷︷ ︸

�3

)


τb ,N (τ ) ≃ 0. (5.10)

Utilizing (5.6), (5.9), and (5.10), we generate the following system:

⎧

⎪
⎪
⎨

⎪
⎪
⎩

[�]ij = 0, i = 1, 2, . . . ,M – 1, j = 2, 3, . . . ,N + 1,

(�1)i = 0, i = 1, 2, . . . ,M + 1,

(�2)j = 0, (�3)j = 0, j = 2, 3, . . . ,N + 1.

(5.11)

Finally, by solving (5.11) and finding the elements of the matrix �, we find a numerical

solution for the primary VO fractional problem by inserting � into (5.1).
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6 Numerical examples

The approach generated using the orthonormal shifted DLPs is applied in this section for

solving some numerical examples. The L2-error of the numerical results is measured as

eθ =

(∫ τb

0

∫ yb

0

(

θ (y, τ ) – θ̃ (y, τ )
)2
dydτ

)1/2

,

where θ and θ̃ are the analytic and numerical solutions, respectively. The convergence

order (CO) of this approach is computed as follows:

CO = log N̄1
N̄2

(
ε2

ε1

)

,

where εi and ε2 are the first and second L2-error values, respectively. Furthermore, N̄i =

(Mi + 1) × (Ni + 1) for i = 1, 2 is the number of the orthonormal shifted DLPs utilized in

the ith implementation. In addition, we have applied Maple 18 (with 15 digits precision)

for obtaining the results. Meanwhile, the series generating the Mittag-Leffler function is

applied for 25 terms.

Example 1 Consider problem (1.1) on [0, 3]× [0, 1] with μ = ν = 1 and

ϕ(y, τ ) = sin(τ ) sinh(y – 3).

This example has the analytic solution

θ (y, τ ) = sin(τ ) sinh(3 – y).

So, we have

θ (y, 0) = 0, θ (0, τ ) = sin(τ ) sinh(3), θ (3, τ ) = 0.

We have applied the expressedmethod for this example with three choices of ζ (τ ). The ex-

tracted results are listed inTable 1. This table shows the high-precision of the proposed ap-

proach in solving this example. It also confirms that the results have a high degree of con-

vergence. The last column of this table confirms the low computational works of the pre-

sented algorithm. Graphical behaviors of the extracted results for ζ (τ ) = 0.50 + 0.25 sin(τ )

where (M = 9,N = 8) are illustrated in Fig. 1. This figure shows the high accuracy of the

presented method for obtaining a smooth solution for this example.

Table 1 Results extracted via the presented approach for Example 1 with three choices of ζ (τ )

M N ζ (τ ) = 0.50 + 0.25 sin(τ ) ζ (τ ) = 0.85 – 0.25e–τ ζ (τ ) = 0.65 + 0.25τ 3 cos(τ ) CPU time

eθ CO eθ CO eθ CO

5 4 4.8716E-03 – 4.8703E-03 – 4.8704E-03 – 02.54

6 5 4.3022E-04 07.2127 4.3018E-04 07.2122 4.3018E-04 07.2122 05.29

7 6 3.2230E-05 09.0078 3.2171E-05 09.0139 3.2179E-05 09.0130 12.71

8 7 2.6413E-06 09.9541 2.6412E-06 09.9470 2.6379E-06 09.9529 31.04

9 8 1.9235E-07 11.7400 2.1424E-07 11.2568 2.1424E-07 11.2512 64.64
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Figure 1 Achieved results for θ (y, t) whenever ζ (τ ) = 0.50 + 0.25 sin(τ ) with (M = 9,N = 8) in Example 1

Table 2 Results extracted via the presented approach for Example 2 with three choices of ζ (τ )

M N ζ (τ ) = 0.50 + 0.25 sin(τ ) ζ (τ ) = 0.85 – 0.25e–τ ζ (τ ) = 0.65 + 0.25τ 3 cos(τ ) CPU time

eθ CO eθ CO eθ CO

4 4 1.6710E-03 – 1.6731E-03 – 1.6713E-03 – 05.70

5 5 1.6538E-04 06.3430 1.6555E-04 06.3436 1.6540E-04 06.3431 12.96

6 6 6.7121E-06 10.3935 6.7288E-06 10.3887 6.7221E-06 10.3890 23.78

7 7 6.8627E-07 08.5388 6.8598E-07 08.5496 6.8298E-07 08.5623 51.53

8 8 1.5974E-08 15.9628 1.5855E-08 15.9928 1.5414E-08 16.0939 92.15

Figure 2 Achieved results for θ (y, t) whenever ζ (τ ) = 0.65 + 0.25τ 3 cos(τ ) with (M = N = 8) in Example 1

Example 2 Consider problem (1.1) on [0, 1]× [0, 2] with μ = 1
2
, ν = 1 and

ϕ(y, τ ) =

(

4e–τ –
1

1 – ζ (τ )

∞
∑

l=0

(–τ )l+1E1,l+2

(

–
τζ (τ )

1 – ζ (τ )

)
)

sin(2y).

This example has the analytic solution

θ (y, τ ) = e–τ sin(2y).

Thus, we have

θ (y, 0) = sin(2y), θ (0, τ ) = 0, θ (1, τ ) = e–τ sin(2).

The technique established upon the orthonormal shifted DLPs is implemented for this ex-

ample. The gained results are provided in Table 2, and they confirm the high-precision and
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low computations of the approach. It can also be seen that as the number of the orthonor-

mal shifted DLPs increases, the accuracy of the results increases rapidly. The obtained

results with (M = N = 8) whenever ζ (τ ) = 0.65 + 0.25τ 3 cos(τ ) are shown in Fig. 2. This

figure illustrates that the proposed method can provide a highly accurate solution for this

example across the domain.

7 Conclusion

In this study, the Heydari–Hosseininia fractional differentiation as a kind of nonsingu-

lar variable-order (VO) fractional derivative was utilized for generating a VO fractional

version of the Sobolev equation. The orthonormal shifted discrete Legendre polynomials

(DLPs) as a convenient family of basis functions were employed to generate a numerical

algorithm for this equation. A new fractional operational matrix related to VO fractional

differentiation of these polynomials was obtained. The established scheme converts solv-

ing the problem under consideration into solving an algebraic system of equations. The

validity of this technique was investigated by solving two numerical examples. The ob-

tained results confirmed that the established method is able to generate numerical so-

lutions with high accuracy for such problems even by applying a small number of the

orthonormal shifted DLPs. As future research direction, the VO fractional derivative ap-

plied in this study can be utilized for generating VO fractional version of other applicable

problems, such as Schrödinger equation and advection-diffusion equation.
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