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ABSTRACT To efficiently manage the cloud resources, improve the quality of service, and avoid the

violations of Service-Level Agreement (SLA) agreements, it is very important to make accurate forecast

for cloud workload. Prior works concerning cloud workload forecasting are mainly designed based on

Recurrent Neural Networks (RNN). However, when it comes to a highly-dynamic cloud workload scenario

where resource utilization changes faster and more frequently, these RNN-based methods are not effective

in obtaining the linear and non-linear relationships and cannot give accurate forecast, because classic

RNN has the problem of vanishing gradient. To address this issue, we propose an Ensemble Forecasting

Approach (EFA) for highly-dynamic cloud workload by applying Variational Mode Decomposition (VMD)

and R-Transformer. Specifically, to decrease the non-stationarity and high randomness of highly-dynamic

cloud workload sequences, we decompose the workload into multiple Intrinsic Mode Functions (IMFs)

by VMD. The IMFs are then imported into our ensemble forecasting module based on R-Transformer

and Autoregressive model, in order to capture long-term dependencies and local non-linear relationship of

workload sequences. The effectiveness and adaptability of proposed EFA is verified on real-world workload

from Google and Alibaba cluster traces. Moreover, the performance evaluation results show that the EFA

performs higher forecasting accuracy than prior related works over various forecasting time lengths for

highly-dynamic cloud workload.

INDEX TERMS Workload forecasting, cloud computing, deep learning, variational mode decomposition.

I. INTRODUCTION

One of the main outstanding properties of cloud computing

system is elasticity [1]. The elasticity implies that the sys-

tem can automatically provision or de-provision resources

to adapt to workload changes [2]. An efficient resource

management scheme can proactively identify the possible

resource usage patterns to predict the future workload of

the cloud center and provide the required resources [3].

However, conducting proactive resource management is not

easy, for instance, some hot events may attract lots of

traffic in a short period in social networks. If the cloud

service providers cannot provide enough resources in time,

The associate editor coordinating the review of this manuscript and

approving it for publication was Quan Zou .

i.e., under-provisioning, it would reduce the Quality of

Service (QoS) and violate the Service-Level Agreement

(SLA), which would lead to customer churn. On the other

hand, if the cloud service provider offers excess available

resources all the time, i.e., over-provisioning, it would waste a

lot of energy, and incur extra costs on network traffic, device

cooling and maintenance [4]. Therefore, accurate workload

forecasting is a key factor in implementing efficient proac-

tive resource management schemes and quickly allocating

resources to what users need [3].

Moreover, for large-scale cloud centers, the workload pat-

terns are very diverse and random [5], which makes it chal-

lenging to compute accurate forecast results on workload.

Analysis of the Alibaba cluster dataset shows that the CPU

usage of the entire cluster changes from 5% to 80% in a day
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with high fluctuations [6]. Similarly, in the Google Cloud

Data Center, changes in CPU, memory, and other resources

are highly dynamic and random [7]. Therefore, an accurate

workload forecasting approach is required. The approach can

effectively capture the linear and non-linear correlations of

workload, and can be adapted to highly variable workload.

In addition, corresponding to the randomness of the work-

load, the characteristics of the original workload data should

be further analyzed and extracted. The goal of our research

is to extract characteristics from the historical sequence of

workload and accurately forecast future workload changes.

In recent years, there have been many studies on cloud

workload forecasting [12]–[25]. However, most of these

researches are based on traditional regression methods or

classic machine learning methods. In general, they have

accurate results only in specific scenarios, such as when

workload sequences have significant periodicity or regularity.

Specifically, the traditional back-propagation neural network

has considerable ability to capture the non-linear features of

the sequence, but it does not make full use of the correlation

between neurons [8], and it is mostly used for low variance

cloud workload. In addition, in the cloud workload fore-

casting scenario, deep learning methods based on Recurrent

Neural Networks (RNN) [9] have become popular due to

its excellent ability to process sequence data. RNN is very

suitable to forecast random workload, but traditional RNNs

cannot accurately capture the dependency information of long

sequences because of the vanishing gradient problem. The

vanishing gradient means that when RNN is used to train

long-sequence data, the weights of the previous neural units

in the network cannot be updated, which eventually leads to

the failure of network training [10], [11]. Variants of RNN,

such as Long Short-TermMemory network (LSTM) [12] and

Gated Recurrent Unit (GRU) [13], have been proposed to

solve this problem. However, these RNN-based deep learning

methods cannot give accurate forecast results when it comes

to the highly-dynamic cloud center workload.

To address the above mentioned problems, we proposed an

Ensemble Forecasting Approach (EFA) for highly-dynamic

cloud workload based on Variational Mode Decomposition

(VMD) and R-Transformer. The main contributions of this

paper are summarized as follows:

• In order to decrease the non-stationarity of highly-

dynamic cloud workload sequences, the Variational

Mode Decomposition is used to preprocess workload

data sequence and decompose it into multiple Intrin-

sic Mode Functions (IMFs) with good characteristics.

In particular, nonlinear features in the original sequence

are also effectively extracted.

• In order to overcome the shortcomings of RNN, IMFs

will be input to an ensemble cloud workload forecast-

ing module based on R-Transformer and Autoregres-

sive model. This module uses LocalRNN to obtain the

local non-linear relationship of the sequences, and cap-

tures long-term dependencies through the multi-head

attention mechanism. Moreover, The Autoregressive

model can obtain the linear relationship of workload

and improve the robustness and forecasting accuracy of

proposed EFA.

• To demonstrate the effectiveness of the proposed

EFA, we apply this methodology to real-world cloud

center workload datasets from Google’s cluster and

Alibaba’s cluster. The experimental results show that

the proposed approach can capture local and global

information and achieve higher forecasting accuracy

than prior related works over various forecasting time

lengths.

The rest of the paper is organized as follows. Section II

reviews the most relevant related works to cloud workload

forecasting. Section III describes the system architecture of

EFA. In Section IV, the proposed EFA is discussed in detail.

Performance evaluation is presented in Section V. Finally,

Section VI concludes this paper.

II. RELATED WORK

At present, there are many researches on workload forecast-

ing in cloud computing, which can be divided into traditional

regression models, classical machine learning methods and

deep learning models. They all extract patterns from histori-

cal workload data to forecast future changes.

A. TRADITIONAL REGRESSION METHODS

Traditional regression methods mainly include Autoregres-

sive (AR), Moving Average (MA), Autoregressive Moving

Average (ARMA), Autoregressive Integrated Moving Aver-

age (ARIMA). Hu et al. [14] proposed an Autoregressive-

based approach to forecast the workload, but the model is

strictly linear in nature and lacks adaptability to workload

in complex cloud environments. Amekraz and Hadi [15]

used an adaptive ARMA model and validated it on a web

dataset. However, this model is limited to cloud environments

that have significant periodicity. Calheiros et al. [16] used a

predictor based on the ARIMA to proactively configure vir-

tual machine (VM) instances. They demonstrated ARIMA’s

ability to perform short-term forecasting and used the results

to dynamically provision resources for SaaS applications.

Saripalli et al. [17] proposed a two-step approach, including

load trace (LT) and load forecasting (LF). The proposed

cubic-spline LT can model the high fluctuations of the loads

better than the other linear LTs based on Moving Average.

In another work, Guo et al. [18] proposed a type-aware

workload forecasting strategy, which dynamically determines

the type of workload and relies on its type to adaptively switch

forecasting algorithms.

Traditional regression methods make time series forecast-

ing model less complex compared to other methods such

as artificial neural networks. Although the model based on

regression methods are simple, they are based on oversim-

plified assumptions (linear relationships) of workload [4].

Therefore, they are unable to capture nonlinear changes in

workload.
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B. CLASSICAL MACHINE LEARNING METHODS

Classic machine learning technology has been widely used

in many large and complex data-intensive fields, especially

in the field of data processing and workload forecasting [19].

The classical machine learning methods mainly include

Markov-based models, Bayesian models, support vector

regression (SVR), decision tree, and traditional artificial

neural networks. Ghobaei-Arani et al. [20] proposed a hybrid

approach using the Markov Decision Process (MDP) model.

The Markov decision process is present with finite states

and transitions among states. Shyam and Manvi [21] pro-

posed a Bayesian model to determine short and long-term

virtual resource requirement of the CPU/memory intensive

applications on the basis of workload patterns at several

data centers in the cloud during several time intervals.

Singh et al. [22] proposed an adaptive forecasting model

called TASM by using linear regression, ARIMA, and SVR

for web applications, and they proposed a workload classifier

that can select models based on workload characteristics.

Rahmanian et al. [23] proposed an ensemble cloud

resources usage forecasting algorithm based on Learning

Automata (LA) theory. The algorithm employed two

methods, namely SingleWindow (SW) andMultipleWindow

(MW) for cloud resource forecasting.

Most traditional machine learning or classic artificial neu-

ral network workload forecasting methods do not require

restrictive assumptions about the form of workload, and can

extract non-linear characteristics of workload. However, they

require workload with obvious regularity or trends to achieve

accurate forecast because they rely mostly on heuristic

algorithms.

C. DEEP LEARNING METHODS

Over the past few years, researchers have applied several

deep learning algorithms to forecast workload in the cloud,

mainly including Recurrent Neural Network (RNN), Long

Short-TermMemory network (LSTM), Convolutional Neural

Network (CNN) and Deep Belief Network (DBN) [9].

Duggan et al. [24] used the classic RNN architecture to fore-

cast the future workload of cloud data centers. It turned out

that RNN can work well when coping with short-term depen-

dencies. Zhu et al. [25] proposed a forecasting approach

using attention-based LSTM encoder-decoder network. The

method extracts the characteristics of historical workload data

through an encoder. They integrate an attention mechanism

in the decoder to obtain the weight of predictions at different

historical time steps. [26] designed and proposed an improved

LSTM-based model N-LSTM to solve the problem of virtual

machine workload forecasting, and it could make forecast at

irregular time intervals. Guo and Yao [27] proposed a method

for workload prediction based on GRU [13]. The model can

learn temporal patterns and long-term dependencies of large

sequences of arbitrary length, and the model training time

is shorter than that of LSTM. Zhang et al. [28] proposed an

efficient deep learningmodel based on the canonical polyadic

decomposition to forecast the cloud workload for industry

informatics. They compressed the parameters significantly

by converting the weight matrices to the canonical polyadic

format, and designed a learning algorithm to train the

parameters.

However, most deep learning algorithms, including LSTM

and GRU, are designed based on RNN architecture. Although

these algorithms are excellent at capturing non-linear infor-

mation for cloud workload, they cannot adapt to workload

with high dynamics and high random, which might lead to

low accuracy and high computational complexity for work-

load forecasting.

III. SYSTEM ARCHITECTURE

In order to accurately and efficiently adjust resources in a

cloud environment, cloud service providers need to forecast

workload changes in the future based on historical workload

data. In response to the highly-dynamic workload, we pro-

pose the EFA in cloud systems. The details of EFA are shown

in Fig. 1.

FIGURE 1. The architecture of proposed EFA in cloud systems. The data
preprocessing part uses VMD to decompose the normalized historical
workload, the forecasting module consists of R-Transformer and
Autoregressive model.

115994 VOLUME 8, 2020



S. Zhou et al.: Accurate EFA for Highly Dynamic Cloud Workload With VMD and R-Transformer

First, the monitoring system in the cloud center records the

workloads of the system in real time. In proposed EFA, these

historical workloads are from the monitoring system. Then,

historical data is processed using Z-score normalization and

VMD, which will be explained in detail in Section IV-A.

The results are considered as inputs to the ensemble fore-

casting module. Next, use the ensemble forecasting module

composed of R-Transformer and Autoregressive model to

forecast different IMF, and we will explain this process in

Section IV-B. Finally, the forecasting results of each IMF are

added to obtain the final forecasting result, and this result is

input to the resource management system of the cloud center

for resources allocation or recovery.

Generally, cloud workload data includes various indica-

tors about the operating status of the system, like CPU and

memory usage, disk space, disk I/O time, bandwidth, etc.

CPU load can be regarded as the most important and limited

resources in a computer system, and also the main bottleneck

in cloud platforms [29]. Therefore, the industry regards CPU

usage as a key factor in improving the resource allocation of

cloud centers.

In this paper, we focus on CPU usage. In order to capture

information from historical data, the historical CPU usage of

the cloud center can be presented in the form of a time series

Ex = (x1, x2, . . . , xt ) which is a sequence of recorded values

arranged in chronological order with constant time intervals,

and the CPU usage record value at time t is xt . The EFA

use sliding window forecasting method to predict future CPU

usage xt+h based on Ex, where h is the forecasting length ahead
of the current time stamp t . Moreover, the EFA predict the

future CPU usage of xt+h+n based on (x1+n, x2+n, . . . , xt+n),
n ∈ R

+.

IV. THE ENSEMBLE FORECASTING APPROACH FOR

CLOUD WORKLOAD

This section presents the proposed EFA, an ensemble fore-

casting approach for cloud workload. In Section IV-A we

describe the process of data preprocessing. In Section IV-B,

the ensemble forecasting module is described in detail.

A. DATA PREPROCESSING

In this section, details of data preprocessing is given as

follows. We will detail the process of data preprocessing,

including Z-score normalization and VMD.

1) Z-SCORE NORMALIZATION

According to the actual highly-dynamic cloud workload,

the value of CPU usage varies greatly in different time inter-

vals, so the original time series datas need to be normalized.

In addition, this can also accelerate the convergence of deep

learning algorithms. Considering the large range of fluctu-

ations in cloud workloads, such as in the Google cluster

dataset, where most of the data values are in a small range,

using Min-Max normalization would cause these large num-

bers of smaller values to be concentrated in some small

range, which is not conducive to training and convergence of

the forecasting module. Therefore, in this part, Z-score nor-

malization is used to normalize the original sequences. The

processed data conforms to the standard normal distribution,

that is, the mean is 0 and the standard deviation is 1. The

formula for Z-score normalization is below:

x ′ = x − mean(X )

σ
, (1)

where X is the set of x, mean(X ) is the mean value of X and

σ is the standard deviation
√

E((X − E(X ))2) of X .

2) VARIATIONAL MODE DECOMPOSITION

The VMD is a non-recursive signal processing algorithm,

the purpose of VMD is to decompose an input signal into

k discrete number of sub-signals (modes), where each mode

has limited bandwidth in spectral domain [30]. Each mode

can be compacted around a center pulsation ωk determined

during the decomposition process. To obtain the bandwidth

of a one dimension signal, three steps should be fulfilled [30]:

Step 1, for each mode, adopt Hibert transform to obtain a

unilateral frequency spectrum. Step 2, for eachmode, transfer

the mode’s frequency spectrum to the baseband by apply-

ing an exponential tuned to the respective estimated center

frequency. Step 3, for each mode, estimate the bandwidth

by utilizing the Gaussian smoothness of the demodulated

signal. The constrained variational problem can be given as

follows [30]:

min
uk ,ωk

{

∑

k

∥

∥

∥

∥

∂t

[(

δ(t) + j

π t

)

∗ uk (t)
]

e−jωk t
∥

∥

∥

∥

2

2

}

,

s.t.
∑

k

uk = f , (2)

where ∂ is the Dirac distribution, f is the original signal and

u is its mode, uk denotes the k-th mode, ωk is the center

frequency, t is time script, and ∗ is the convolution operator.

The mode u with high-order k represents low frequency

components.

The components obtained after usingVMDare often called

Intrinsic Mode Function (IMF) signals. In the context of this

paper, they can also be seen as a set of different time series.

Compared with the original time series, the instability of

IMFs is reduced, and the information contained in each IMF

covers different parts of the original time series [31].

In the proposed EFA, VMD is used to decompose

highly-dynamic cloud workload data into stable and pre-

dictable IMFs. Similar to [32] and [33], each IMF can be

regarded as a new time series. Usually the first IMF contains

the low-frequency part of the original workload sequence,

which can be regarded as a smooth trend change of the

original sequence. The high-frequency part is included in the

remaining IMF, which can accurately identify small details

of the original sequence. Each IMF is independently input

into the ensemble forecasting module, which will output the

forecasting result of this IMF. The forecasting results of these

IMFs are added to obtain the final workload forecast result.
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B. ENSEMBLE WORKLOAD FORECASTING MODULE

In this part, we continue to describe the proposed ensemble

forecasting module in detail, which can make accurate fore-

cast for the IMFs from the previous part.

1) R-TRANSFORMER

Models based on RNN and its variants such as LSTM

are widely used in the field of time series forecasting.

However, these models cannot capture long-term depen-

dencies well and cannot perform parallel calculations on

sequences. Transformer [34] has been proposed and has

proven to be extremely efficient at capturing long-term

dependencies in various sequence modeling tasks especially

in NLP [35]. Nevertheless, standard Transformer is not very

suitable for time series forecasting, this is because it highly

relies on position embedding for solving the loss of position

sequence information, and it also lacks necessary components

to model local structures in sequences, which can make the

model prone to anomalies in time series [36], [37]. Inspired

by [36], we use R-Transformer to obtain local and global

information of time series. R-Transformer takes the advan-

tages of RNN and multi-head attention mechanism while

avoiding their respective shortcomings.

The architecture of R-Transformer is shown in Fig. 2.

The R-Transformer is introduced in detail from three parts:

LocalRNN layer, Multi-Head Attention layer and Feed-

forward layer.

FIGURE 2. The architecture of one layer of R-Transformer. In particular,
LocalRNN layer captures the local short-term dependencies; Multi-head
attention layer captures the global long-term dependencies;
Feed-forward layer performs non-linear feature transformation.

Step 1: LocalRNN reorganizes the original long workload

sequence into many short sequences, so these short sequences

contain only local information. These local sequences are

processed independently and identically using RNN that

share weights. Specifically, LocalRNN constructs a local

windows of size M for each target position, so that the local

window includesM consecutive positions and ends at the tar-

get position, and each window contains only local short-term

dependencies. It is worth noting thatM is always smaller than

the length of the original long sequence. Fig. 3 shows how

LocalRNN works.

FIGURE 3. LocalRNN obtains local correlation information, it only
operates on positions within a local window.

Concretely, given the positions (xt−M+1, xt−M+2, . . . , xt )

of local sequences of length M . LocalRNN processes these

short sequences and outputs M hidden states, then uses the

last hidden states as a feature of the local sequence:

ht = LocalRNN(xt−M+1, xt−M+2, . . . , xt ), (3)

where t is the target time stamp, and RNN represents any

RNN unit, such as LSTM and GRU. For an entire long

workload sequence, to ensure that the hidden state represen-

tation of each time step is obtained and does not contain

any future information, LocalRNNLayer first performs zero

padding of lengthM−1 before the start of the sequence [36].

Then LocalRNN slides each window and outputs a hidden

representation sequence containing local information:

h1, h2, . . . , hT = LocalRNNLayer(x1, x2, . . . , xT ), (4)

where T denotes the length of input sequence. Then, the rep-

resentation of local hidden states is input to multi-head atten-

tion layer to capture long-term global dependencies.

Step 2:According to recent works, the multi-headed atten-

tion mechanism is very effective at learning the long-term

dependencies of sequences, as it can establish a direct connec-

tion between each pair of positions. The multi-head attention

mechanism relies on scaled dot-product attention [34]:

Attention(Q,K ,V ) = softmax(
QKT

√
dk

)V , (5)

among them, Q, K and V are the matrix of query, key and

value, and dk is the key dimensionality. The queries, keys and

values are from the output of LocalRNN layer.

The multi-head attention mechanism obtains h different

representations of (Q,K ,V ) respectively, h can also be

regarded as the number of heads, then calculates a scaled

dot-product attention of each representation, and finally con-

catenates the results. Specifically, the current representations
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h1, h2, . . . , hT is input into the multi-head attention layer, and

the new representation ut is calculated as follows:
ut = MultiHeadAttention(h1, h2, . . . , hT )

= Concatenation(head1(hT ), head2(hT ),

. . . , headi(hT ), . . . , headh(hT ))W
o, (6)

where headi(hT ) is the result of i
th attention head:

headi = Attention(QW
Q
i ,KWK

i ,VWV
i ), (7)

where theW o andWi are parameter matrices and each atten-

tion head headi has its own mapping matrices Wi. As can

be seen from Eq. (6), let hT participate in all past positions

to get each headi, so any long-term dependencies can be

captured. And different heads can focus on obtaining different

correlations.

Step 3: The layer behind the multi-head attention layer is

the feed-forward layer, which is used to linearly transform

features. Feed-forward layer is a fully connected layer, and it

is applied to each position separately and identically. It con-

sists of two linear transformations and uses a ReLU activation

function between them. Feed-forward layer is defined as

follows:
mt = FeedForward(ut )=max(0, utW1+b1)W2+b2, (8)

where mt is the output of the feed-forward layer, W1 and W2

are two different parameter matrices, b1 and b2 are the biases.

Finally, according to [34], a residual [38] and layer-

norm [39] connection is added between all sub-layers of

R-Transformer.

2) AUTOREGRESSIVE MODEL

Due to the non-linear nature of both Recurrent and

Multi-Head Attention components, the scale of neural net-

work model output is not sensitive to the scale of input. And

in cloud systems, the scale of workload constantly changes in

a non-periodic manner, which greatly reduces the forecasting

accuracy of forecasting models. To address the shortcoming,

we use a mixture of linear and non-linear components as the

final forecasting result. In our forecasting module, the classic

Autoregressive model [40] is used as the linear component,

and the Autoregressive model is formulated as follows:

lt =
T−1
∑

k=0

W ar
k xt−k + bar , (9)

where lt denote the forecasting result of Autoregressive com-

ponent,W ar is the parameters matrix, T is the length of input

window.

The final forecast result of the forecastingmodule is a com-

bination of the outputs of R-Transformer part andAutoregres-

sive part:
Ŷt = mt + lt , (10)

where Ŷt denotes the final forecast result of the forecasting

module at time stamp t .

Overall, the EFA consists of two parts: data preprocessing

and forecasting module. (1) The data preprocessing part can

standardize the highly dynamic workload of cloud center

and use VMD to divide the original sequence into different

components (IMFs), which contain the low-frequency and

high-frequency information of the original sequence. After

using VMD, the interference between different types of infor-

mation is reduced. (2) The forecasting module composed

of R-Transformer and AR model can accurately extract the

hidden representations of these components. Among them,

R-Transformer uses LocalRNN and the multi-head attention

mechanism to obtain the local and global nonlinear relation-

ship of the IMFs, and the AR model is used to obtain the

linear relationship of the IMFs. The combination of these

components effectively improves the accuracy of forecasting

highly dynamic workload in cloud environment.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed

EFA using two real-world cloud center datasets and compare

it with RNN-based workload forecasting models and other

classic methods [16], [25], [27], [41].

A. DATASETS

Two real-world datasets are used in the experiments. The first

one is Google cluster trace dataset [42], which contains the

running information approximately an 12.5k-machine cluster

with a span of 29 days during May 2011. The second one

is Alibaba cluster trace dataset [6], which includes about

4000 machines with the runtime resource usage in a period

of 8 days. In the experiments, we used CPU usage (also

known as CPU rate) as the primary performance index of

workload.

In addition, to ensure the efficiency and generality of the

forecasting methods, two different data types are used for

validation. Specifically, for the Google dataset, the target

of forecast is the sum of CPU usage of all machines used

by a single task. For example, a long-running job with an

ID of 6176858948, the job called multiple machines at dif-

ferent times within 29 days. Fig. 4(a) shows the sum of

the CPU usage of all these machines at each time point.

For the alibaba dataset, we forecast the CPU usage of each

individual machine, such as a machine with ID 649 (as shown

in Fig. 4(b)). As we can see from Fig. 4, Google workload

appears more random and has no obvious periodicity, but

its peak is very significant and more difficult to forecast.

Alibabaworkload displays periodicity, and it varies from 20%

to 80% with more frequent changes. Fig. 5 shows the origi-

nal sequence and its IMFs decomposed by VMD (Alibaba

dataset, 3 IMFs).

B. EXPERIMENTAL SETTING

1) BASELINE METHODS

In order to verify the effectiveness of the EFA, several base-

line methods are chosen for comparison as follows:
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FIGURE 4. Examples of CPU usage from Google and Alibaba cluster trace datasets. For (a) Google dataset, the CPU usage is the sum of all machines
used by one task. For (b) Alibaba dataset, the CPU usage is from one single machine.

FIGURE 5. Use VMD to decompose a sample of the Alibaba dataset. IMF1
can be regarded as a smooth trend change of the original sequence,
which belongs to the low frequency part. IMF2 and IMF3 are high-
frequency parts that contain small details of the original sequence.

ARIMA [16]: Autoregressive integrated moving aver-

age (ARIMA) model is a traditional statistical model for

time series forecasting. ARIMA converts non-stationary time

series into stationary time series data by using d-order differ-

ence method. The autocorrelation and partial autocorrelation

plots of the historical data are analyzed to determine the order

p for the lags of the autoregressive model and the order q

for the lags of the moving average model. Finally, ARIMA

uses the determined parameters p, d , and q to predict future

workload values.

GRU [27]: The basic gate recurrent unit (GRU) [13] net-

work is a recurrent neural network using GRU cell as the

calculation unit. The historical data will be input to the

multi-layer GRU network, and the last output value of the last

layer will be taken as the forecast value.

LSTM-ED [41]: The long-short term memory (LSTM)

encoder-decoder network is similar to the sequence-

to-sequence model [43]. LSTM-ED uses LSTM as the basic

calculation unit. The historical data is fed into the LSTM

encoder network sequentially, and the hidden state and cell

state at the end of the encoder are sent to the context vector.

The decoder network composed of LSTM outputs the pre-

dicted sequence by iteratively decoding the context vector.

LSTM-ED with Attention [25]: Attention based LSTM

encoder-decoder network introduces attention mechanism on

LSTM-ED. The attention module is part of the decoder net-

work. This module calculates the attention weight of the

output of the encoder and the current time step in the decoder.

Each weight represents the impact of historical workload on

the current workload.

2) PARAMETERS SETTING

All methods are implemented in Python 3.6, where the neural

network and deep learning methods are implemented using

PyTorch 1.3.1 [44]. The experiments are performed on a

machine with Intel Core i7-7800X CPU, NVIDIA GeForce

RTX 2080 Ti GPU, and 24 GB RAM.

All datasets are divided into training set (80%), validating

set (10%) and testing set (10%). The training set is used for

forecasting module training, the validating set is used for

parameters selection, and the testing set is used to evaluate

the performance. Mean square error (MSE) is selected as the

loss function during training.

For the proposed EFA, the Adam optimizer is used as the

training optimizer and GRU is selected as the calculation

unit of LocalRNN. We use grid search to select the length

of the history window, the hidden state dimension, the win-

dow length of LocalRNN and the number of heads h in

the multi-head attention. In detail, search the history win-

dow length in {12, 18, 24, 30, 36}, search the hidden state

dimension in {64, 128, 256, 512}, search the window length

of LocalRNN in {3, 4, 5, 6} and search for the value of h

in {4, 8, 12}. In addition, the forecasting length of Google

dataset is fixed at 10 minutes, which is 2 time steps while the

forecasting length of Alibaba dataset is fixed to 3 minutes,

which is 3 time steps. The number of IMFs in both datasets

is set to 3. The impact of forecasting length and number of
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TABLE 1. Hyper parameters of the proposed EFA.

IMFs on performance will be discussed in Section V-D. Some

other parameters, such as batch size and learning rate, are

determined based on some tuning. The hyper parameters of

proposed EFA for Google and Alibaba datasets are shown

in Table 1 in detail.

The parameters of the comparison methods are determined

based on previous works [16], [25], [27], [41] and some tun-

ing to ensure that each method exhibits its best performance.

We perform ten experiments on each method and take the

average value as the final result.

3) EVALUATION METRICS

To assess the approach considered in this paper, we used three

conventional evaluation metrics defined as follows.

• Mean Squared Error (MSE):

MSE = 1

n

n
∑

i=1

(Yi − Ŷi)
2 (11)

• Root Relative Squared Error (RRSE):

RRSE =

√

∑n
i=1(Yi − Ŷi)2

√

∑n
i=1 (Yi − mean(Y ))2

(12)

• R-Squared (R2):

R2 = 1 −
∑n

i=1(Yi − Ŷi)
2

∑n
i=1 (Yi − mean(Y ))2

(13)

where Y , Ŷ are original values and forecast values, respec-

tively. The RRSE is a scaled version of the Root Mean

Square Error (RMSE) that makes the evaluation results more

readable at any data scale [40]. For MSE and RRSE, lower

values are better, and for R2, higher value is better.

C. EVALUATION RESULTS

Table 2 shows the performance of the proposed EFA and

baseline methods on Google and Alibaba datasets. Fig. 6

shows the forecasting curves of these methods on the Google

and Alibaba datasets. As mentioned in the parameter settings

above, for the Google dataset, the default sampling interval

is 5 minutes and the forecasting length is 10 minutes. For

the Alibaba dataset, the default sampling interval is 1 minute,

and the forecasting length is 3 minutes. It can be seen from

Table 2 that on the Google and Alibaba datasets, the four deep

learning based methods (GRU, LSTM-ED, LSTM-ED with

Attention and our proposed EFA) are better than traditional

statistical method (ARIMA) in terms of forecasting accuracy.

Fig. 6 shows that ARIMA only forecasts future trends and

cannot capture sudden changes in cloud workloads.We found

that although the ARIMA model is widely used and has

a perfect theoretical basis, it is difficult to adapt to the

high dynamic load in the cloud environment, resulting in

an increase in forecasting error. For deep learning based

methods, the performance of the network using encoder-

decoder structure and EFA is better than basic GRU. Because

the encoder-decoder structure can extract hidden features of

the entire sequence. In addition, the attention-based encoder-

decoder network (LSTM-EDwith attention) can pay attention

to the impact of each time step on the forecasting results,

enhancing the basic encoder-decoder network. Regarding the

proposed EFA, VMD decomposes the sequence into multiple

IMFs for independent forecast, reducing the interference

between different IMFs. And R-Transformer can not only

extract hidden information in a small local window, but

also use the multi-head attention mechanism to obtain the

TABLE 2. The evaluation results on Google and Alibaba dataset.
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FIGURE 6. The forecasting performance of the baseline methods and proposed EFA on Google and Alibaba datasets. The EFA can make more
accurate forecasting in the face of each time step that changes significantly. This shows that the EFA can adapt to random changes in highly dynamic
cloud workloads.

global information of the entire sequence, which signifi-

cantly improves the accuracy of the forecasting results. More

importantly, VMD separates the low-frequency and high-

frequency parts of the original sequence. The low-frequency

part contains the trend and seasonal characteristics of the

sequence, and the high-frequency part contains the details

of the sequence. In EFA, the forecasting module trains these

IMFs containing different information separately, which can

effectively improve the forecasting accuracy. For example,

in Fig. 6(a), there was a small drop before the CPU usage

surged, and only the EFA predicted this change.

Fig. 7 shows the average training time (each epoch training

time) and total training time of each method on the Google

and Alibaba datasets. In particular, ARIMA is not like deep

learning methods that need to update the weights in an iter-

ations manner (training), so the ARIMA is omitted from the

comparison of training time. It can be seen that the fastest

training speed of a single epoch is the GRUmodel, which has

a simple structure. The single epoch training of LSTM-ED

with Attention model is the slowest. Although the EFA also

FIGURE 7. Comparison of training time for baseline methods and the
proposed EFA on Google and Alibaba dataset. Sub-figure (a) shows the
training time of each epoch of these methods, and sub-figure (b) shows
the total training time of these methods. For the Google dataset,
the number of training epochs of baseline methods is 500. For the Alibaba
dataset, the number of training epochs of baseline methods is 400.

has an attention mechanism, its LocalRNN part uses a GRU

unit with shared weights, which is faster than LSTM, so a

single epoch training speed is faster than LSTM-ED with

Attention. Since EFA requires separate training for different

IMFs, the total training time is slower than the baseline meth-

ods. In addition, we found that IMF converges faster than the

original sequence during training, so the number of epochs

for a single IMF can be less, which has a positive effect on

reducing the total training time of EFA.

D. DISCUSSION ON THE NUMBER OF IMFs AND

FORECASTING LENGTH

In this part, we use VMD to decompose the original workload

sequence into {0, 2, 3, 4, 5, 6} IMFs respectively, and explore

the impact of the number of IMFs on the forecasting results

and forecasting efficiency. All experiments used the Google

cluster dataset. The model parameters are consistent with

Table 1 except for the number of IMFs, and the predicted

length is 10 minutes.

Table 3 shows the variance of each IMF and the total train-

ing time of the corresponding model under different number

of IMFs. The variance of the original workload sequence

is 5.075. The variance of each IMF after using VMD is

lower than that of the original sequence, which shows that

VMD reduces the randomness and volatility of the original

sequence. Moreover, the greater the number of IMFs decom-

posed byVMD, the smaller themean variance of IMFs, which

facilitates the training of deep learning models and achieves

more accurate forecasting results. Fig. 8 shows the effect of

different number of IMFs on the model forecasting results

(measured using MSE). When VMD is not used to process

the original data, the forecasting results is the worst. After

using VMD, the forecasting accuracy has been significantly

improved. And as the number of IMFs increases, the MSE

will become smaller. But the cost of improving forecasting

accuracy is longer training time, because the greater number

of IMFs means training more models.
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TABLE 3. The variance of each IMF and the influence of the number of
IMFs on the total training time.

FIGURE 8. The mean square error of the forecasting results for different
number of IMFs. 0 means no VMD is used.

In order to study the forecasting accuracy at different

forecasting lengths, more cases are discussed in Table 4.

For the Google dataset, the default sampling time length is

5 minutes, and we resample it to 10 minutes and 30 minutes.

Similarly, for the Alibaba dataset, the default sampling time

is 1 minute, and we resample it to 5 minutes and 10 minutes.

The experimental results were evaluated using mean square

error (MSE), and other parameters are the same as in Table 1.

From Table 4, we can see that with the same sampling

rate, the model that predicts the longer the future has a higher

MSE. This means that the model becomes worse when deal-

ing with longer forecasting intervals. At different sampling

rates, overall, the proposed EFA can maintain a low MSE

level, which means that if the original sequence is resampled,

or using a larger time interval during data collection, the fore-

casting accuracy can still be guaranteed.

TABLE 4. Mean square error of different forecasting lengths at different
time sampling rate on Google and Alibaba datasets.

E. ABLATION STUDY

To demonstrate the effectiveness of our approach design,

we perform an ablation study. Specifically, in order to verify

that the improvement in forecast accuracy comes from each

component rather than a specific hyper-parameter, we remove

each component one at a time in the proposed EFA and

compare it with the complete EFA. In addition, we replaced

R-Transformer component with GRU to prove the ability of

R-Transformer to extract local and global nonlinear informa-

tion. We name these models as follows:

• Model w/o VMD: The model without the VMD compo-

nent.

• Model w/o AR: The model without the Autoregressive

component.

• Model with GRU : Themodel without the R-Transformer

component and replace it with a basic GRU network.

The ablation study results are shown in Fig. 9. It can be

seen that no matter which proposed component is removed

FIGURE 9. The ablation study results on Google and Alibaba datasets.
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from the model, performance will decrease. For example,

for the 15-minute forecast length of the google dataset,

using GRU instead of R-Transformer raises the MSE from

0.00838 to 0.00885. We have discussed the effect of VMD

in Section V-D. Similarly, for the Google dataset, in the case

of a forecasting length of 15 minutes, we get worse results

with the MSE of 0.00923 without VMD, and the same is

true for all results, which shows that VMD can decrease the

non-stationarity of highly-dynamic cloud workload and this

is beneficial for forecasting module to extract correlations.

Overall, the proposed EFA can achieve stable and competitive

results on different datasets.

VI. CONCLUSION

In this paper, we propose a novel Ensemble Forecasting

Approach (EFA) for highly-dynamic cloud workload.

To reduce the impact of high variance and unstable workload

on forecast accuracy, we use VMD to decompose workload

into multiple IMFs. To extracted the nonlinear correlation of

the input IMF, we further develop a forecasting module com-

posed of R-Transformer, which uses LocalRNN and multi-

head attention mechanism to obtain the local and global inter-

nal representation of sequences. In addition, we also added an

autoregressivemodel in parallel with R-Transformer to obtain

the linear correlation of IMF to improve the robustness of the

EFA. Compared with existing forecasting methods, simula-

tion results have demonstrated the effectiveness of proposed

approach on real-world datasets from multiple large-scale

cloud centers. Finally, we discussed in detail the impact of

different numbers of IMFs and the length of the forecasting

time on the forecasting results.

One open problem is how to use a non-decomposition and

efficient method to reduce the instability and randomness of

highly-dynamic workload data, which is a good solution for

reducing the training cost of deep neural networks.
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