
An Accurate Error Measure for Adaptive Subdivision Surfaces

Xiaobin Wu

University of Florida

xwu@cise.ufl.edu

Jörg Peters

University of Florida

jorg@cise.ufl.edu

Abstract

A tight estimate on the maximum distance between a sub-

division surface and its linear approximation is introduced

to guide adaptive subdivision with guaranteed accuracy.

1. Introduction

Subdivision provides a simple and powerful method for

modeling free-form surfaces: given a polygonal input mesh,

a sequence of refinements generates an ever denser mesh

with a generically smooth limit surface. For modern graph-

ics applications, input meshes can consist of thousands of

faces. If, at each step of refinement, every mesh facet is

split into a fixed number of new faces, the number of facets

increases exponentially and the complexity of the mesh

quickly exceeds the memory and processing limitations.

The obvious answer, adaptive refinement, requires a good

bound on how well planar triangles approximate the limit

surface. Loose bounds waste resources and overly aggres-

sive approximations can miss surface features. Due to the

procedural definition of the subdivision surface, adaptive re-

finement is more tricky than for standard spline surfaces.

In this paper, we leverage a new bound on the maximum

distance between the limit surface and its linear approxima-

tion. The bound can be computed locally and efficiently, and

yields a tight estimate with an error converging to zero un-

der subdivision. Figure 1 shows adaptive meshes for a given

threshold e and Figure 2 compares the new bound to con-

ventional ones.

1.1. Previous work

A number of error estimates have been used for adap-

tive subdivision: sampling the distance between mesh node

and its limit [8], oriented bounding boxes (directional dis-

tance between the limit surface and the interpolation of its

three corners) [6, 5], axis aligned bounding boxes (to de-

tect self intersection) [3]. Also various planarity tests have

been used to guide adaptivity. Müller et al. used the angle

Input e=0.5% e=0.2% e=0.1% e=0.1% (surface)

Figure 1. Adaptively subdivided chess piece.
(from left to right): input mesh; mesh with
maximal error e below 0.5%, 0.2%, 0.1% and

the resulting surface for e=0.1%.

between the limit normal of a vertex and the normals of its

adjoining faces [9, 10], Zorin et al. measure planarity at cor-

ners and edge midpoints of the next subdivision level [15],

Xu and Kondo [14] compute the angle difference between

the normal of a face and that of all its neighboring faces.

A comparison of the surface max-norm bounds and our

new bound is shown in Figure 2. Note that sampling and

planarity tests do not yield explicit guaranteed maximal

bounds between the mesh-polyhedron and the limit surface.

Such an error guarantee, however, is crucial for manufactur-

ing applications.

1.2. Overview

Our algorithm is as follows. For each facet of the in-

put mesh, for each coordinate x, y, z, say the x-component,

we compute two linear functions px and mx such that

px(u, v) ≤ x(u, v) ≤ mx(u, v) . The x-error is ex =
px−mx and the maximum error ‖(ex, ey, ez)‖ between the

subdivision patch and the facet guides the refinement.

In Section 2, we give the details of each step above ex-

cept for the important detail of parametrization discussed in

Section 3. The implementation and the data structures are

summarized in Section 4.

(A) (B)

(C) (D)

Figure 2. (A) A subdivision patch (shaded)
with its local control mesh. (B) Axis-aligned

bounding box (dotted) (C) Kobbelt’s estimate
(dotted) (D) Our estimate (dotted)

2. Bounding Subdivision

This section describes the central contribution of the pa-

per: efficiently determining the maximum distance between

for subdivision mesh, viewed as a polyhedron, and the limit

surface.

We take advantage of locality. Just like NURBS patches,

a mesh node (control point) only locally influences the sur-

face shape. Conversely, any point on the surface also de-

pends only on a small submesh. We will focus on Loop’s

subdivision scheme [7] – it is not difficult to apply the ideas

to other subdivision schemes. Loop subdivision is based on

a triangle mesh. Each triangle, together with all its direct

neighbor triangles, defines a curved triangular surface patch

as depicted in 2 (A). Our goal is to approximate the maxi-

mum error between the patch and the triangle.

The difficulty is a two-fold. First, it is hard to compute

the Hausdorff distance. Second, the limit surface is defined

by recursive procedure and lacks a closed form represen-

tation. The idea is to parametrize the patch, bound each of

the component functions: x(u, v), y(u, v), z(u, v) and com-

bine the component bounds to an overall bound.

We can defer the detailed discussion of the (u, v)
parametrization until the next section. For now, we as-

sume that we have a description of x(u, v), y(u, v), z(u, v).
In particular, after at most one (local) subdivision, we may

assume that at most one of the three vertices of the cen-

ter triangle (corresponding to the patch) has a valence

n 6= 6.

2.1. Bounding the Distance

To measure the maximum error between x(u, v) and its

linear approximation, we decompose x(u, v) into a linear

combination of n + 6 functions bi(u, v)

x(u, v) =

n+5
∑

i=0

xibi(u, v).

Each bi(u, v) is the limit, under Loop subdivision, of a local

control net (vj , xj) ∈ R3 with vj = (uj , vj) abscissae laid

out and indexed as in Figure 3 and all xj = 0 except for

xj = 1 if j = i. The values of (uj , vj) we chose and two

alternatives are discussed in Section 3.

By linear precision of Loop subdivision, the maximum

distance between the lower bound mx and the upper bound

px is zero for linear functions. Therefore we can remove a

linear function ℓ from the above equation without changing

the maximum error:

x(u, v) = ℓ(u, v) +

n+5
∑

i=3

dibi(u, v),

where ℓ interpolates (v0, x0), (v1, x1), (v2, x2) and di is

the vertical difference between ℓ and (vi, xi). By interval

arithmetic, we obtain an upper and a lower bound of x(u, v)
as the follows:

px := ℓ +
∑

n+5

i=3
max{di, 0} b+

i + min{di, 0} b−i ,

mx := ℓ +
∑

n+5

i=3
max{di, 0} b−i + min{di, 0} b+

i .

The error e(x) is bounded by the maximum difference

e(x) := max{px − mx} =
n+5
∑

i=3

|di|max{b+

i − b−i }

=

n+5
∑

i=3

|di|e(bi).

In order to efficiently compute e(x), we tabulate the error

bound Ei := e(bi) for each basis function bi (the linear

bound is defined by three scalar coefficients), as well as the

barycentric coordinates (si, ti) of vi, i = 3..n + 5 with re-

spect to the vertices v0,v1,v2 of the central triangle, i.e.

vi = (siv0 + tiv1 + (1 − si − ti)v2).

Then the distance di can be computed efficiently as

di = xi − (six0 + tix1 + (1 − si − ti)x2).

The following short algorithm sums up our process of

computing the maximum error. Here input cf is a one di-

mensional array, containing one component of the n+6 con-

trol points. Variables s, t, E are pre-tabulated 1-dimensional

floating point arrays of the values si, ti and Ei described

above.

7

8

9

10

3

5 64

n=5

12

11

n=7

k5
k7

654

3
21

0
10

9

8

7

0

21

Figure 3. Indices of the vertices vj of the (u, v)
domain mesh for n = 5 and n = 7; v0 is the
vertex with valence n. v1 and v2 are the other

two vertices of the center triangle and have 6
neighbors.

float patchError(int n, float* cf) {
float d, error=0;
for i from 3 to n+5
d := cf[i] - (s[i]*cf[0]+t[i]*cf[1]+

(1-s[i]-t[i])*cf[2]);
error += E[i]*abs(d);

end
return error;

}

For each patch, we call this function three times to get

ex, ey and ez . If ‖(ex, ey, ez)‖ < ǫ, the patch is rendered

using a single triangle. Otherwise, we subdivide this patch

into four subpatches and continue with the subpatches.

3. Parametrization

In this section, we discuss and compare three (u, v)
parametrizations of the surface patches, i.e. the layout of the

mesh points vi defining the parameters of each component.

The extra-ordinary node with valence n 6= 6 is v0. The com-

parison in Table 1 establishes that the carefully constructed,

exact parametrization is slightly more efficient than the uni-

form parametrization and dramatically better than the bi-

nary parametrization.

3.1. Exact Parameterization

The parametrization suggested in [13] reproduces linear

functions and is defined by the following construction (cf.

Figure 3):

1. Set v0 = 0, the origin of the (u, v) plane.

2. The direct neighbors vi of v0 form a regular unit n−gon.

3. Extend the edge v0v1 and v0v2 by kn to get v4 and v6.

4. v5 is the average of v4 and v6.

5. v3,v7 are the reflection of v5, across v0v4 and v0v6, re-

spectively.

n=3 n=10

Figure 4. The domains of uniform
parametrization for n=3 and n=10.

kn is defined by the following formula where c := cos π
n

:

kn :=

{

−4(c2 − 2)/(1 + 2c2) − 1 if n ≥ 6,

−6(2c2 − 7)/(15 + 2c2) − 1 if n < 6,

We can now obtain any patch x(u, v) by subdividing the

control net with vertices vi, xi. The shaded areas in Fig-

ure 3), which depend on the valence of v0, is the limit of

the vi-mesh under Loop subdivision. Note that The limit

of the mesh with vertices vj are the shaded areas in Fig-

ure 3. Note that these areas fit exactly into the center trian-

gle.

3.2. Uniform Parametrization

With the same construction as above, but kn=1 for all n

we obtain the uniform parametrization. The bottom bound-

ary of the domain will either, for n < 6, pull back from the

boundary of the center triangle or, for n > 6, push out of

the triangle (see Figure 4) and therefore requires careful ex-

trapolation to safeguard the bound.

3.3. Binary Parametrization

The parametrization proposed in [11, 12] associates the

vertices of the mesh under subdivision with a binarily re-

fined grid. While this allows deducing the number of subdi-

vision steps from the (u, v) position, it does not yield lin-

ear precision! This means, we cannot pull out the linear

term ℓ from the expansion of x(u, v) and cancel it when

we compute the distance between mx and px. Therefore, as

for axis-aligned bounding boxes, the relative position of the

object in space influences the local error and the error es-

timates can be dramatically worse as illustrated in Table 1.

The vertex based method [8] by measuring the distance be-

tween the vertices and their limit positions is also listed in

the Table 1 as ”v-error”.

model Head (200 triangles)

error 0.5% 0.2% 0.1%

exact 4,766 11,279 26,231

uniform 4,856 11,417 26,492

binary 291,782 n/a n/a

v-error 5,966 12,524 28,628

model Venus (1418 triangles)

error 0.5% 0.2% 0.1%

exact 6,764 19,295 36,851

uniform 7,088 20,330 38,198

binary 140,879 n/a n/a

v-error 8,255 22,559 39,602

Table 1. Numbers of resulting triangles for
different error measurements. Rows ”exact”,
”uniform”, ”binary” indicate three different

parametrizations. Row ”v-error” is for the
method based on measuring the distance be-
tween the vertices and their limit points. ‘n/a’

indicates out of memory.

4. Adaptive Subdivision

We support the adaptive subdivision process by a forest

of balanced quad trees. Balancing according to [1], assures

that neighboring faces differ only by one step of subdivi-

sion. The quad trees of this balanced adaptive subdivision,

one tree per original facet, are linked so that we can directly

access the neighbors for any given face at any level and

without ascending the tree to the common parent (herein

lies the difference to [15]).

The data structure has the following entries (cf. Figure

5).

• Each internal node has four pointers pointing to its

children. The order and orientation of the children is

shown in Figure 5 left.

• Each face, either internal or leaf, stores its three neigh-

boring half-edges, as shown in Figure 5 right.

• Each half-edge is stored as pair [f, i], where f is the

face and and i is an integer from 0 to 2 indicating the

index of the edge.

• Each face has an integer indicating the subdivision

level.

1 2

0

0

1

1

0

20

2

0

1

3

0

0

2

221

1

2

21

1

Half−edges

Neighboring
Pointers

0

Figure 5. Data structure. (left) The indices
of the parent face and its 4 children. (right)

Halfedge pointers for fast neighboring ac-
cess.

Now, for any leaf face f , we can access its neighbors via

the halfedge [n, i] in constant time. If the face n is a leaf,

then it is the neighbor of f on side i. Otherwise, its children

i and (i + 1 mod 3) are the two neighbors to f on side i.
Due to tree balancing, they must be leaf nodes. In C code,

our data structure is as follows:

struct patch{
// subdivision level
int level;

// children
struct patch* children[4];

// neighbors
struct patch* neighbors[3];
// neighboring edges
int neighidxs[3];

}

The field entries can be filled by a depth first traversal of

the quadtree forest. The time to build the data structure is

therefore O(N) where N is number of leaf faces.

4.1. Gap Prevention

When two neighboring faces have different subdivision

levels, a gap appears between them as illustrated in Figure

6 left. Rendering such a mesh results in irritating visual arti-

facts. Moreover, gaps spell serious trouble for the mesh pro-

cessing and finite element computations.

We follow the standard recipe for removing the gaps by

splitting the patch on the coarser side as illustrated in Fig-

ure 6 right. Such a process is done top to down recursively

for each pair of original neighboring faces. The time com-

plexity of this step is also O(N) where N is number of leaf

faces.

gap

level i
level i

level i+1 level i+1

Figure 6. (left) A gap between adjacent faces

at different levels of subdivision. (right) The
gap is removed by splitting the coarse trian-

gle.

5. Extensions

5.1. View dependent adaptation

So far our focus was on true error control in 3 di-

mensions. For rendering, we can project our error vectors

(ex, ey, ez) into the view plane and compute the projected

size as adaptive refinement criterion.

5.2. Creases and Boundaries

Subdivision surfaces become a lot more exciting with

Pixar’s semi-sharp creases ([2, 4]): a few steps of smooth-

ing in only one direction followed by smooth subdivision. A

simple way to avoid special bounds for the different crease

configurations is to locally perform the uni-directional sub-

division steps regardless of the error and then apply the reg-

ular bounds. Alternatively, since we only use upper and

lower bounds, we need not generate new tables for ev-

ery combination of two subdivision rules: if one rule re-

sults consistently in higher values than the other, say a uni-

directional rule and a generic subdivision rule, we bound

the upper function above and the lower function below to

enclose the range of combinations. The same technique ap-

plies to boundaries that follow a spline curve.

6. Results

In Figure 7, the 500-facet deer model is subdivided to

meet error bounds of 0.5% and 0.1%, respectively. The to-

tal times to subdivide the model, including the error estima-

tion, are 172ms and 906ms, respectively. The number of tri-

angles generated are 4834 and 25980.

In Figure 8, we raytrace the subdivided mesh, on a P4

2.8G PC with 1G RAM. The total time to raytrace the input

cat model of 671 triangles is 8 seconds. The time to adap-

tively subdivide the model to within a 0.2% bound and ray-

trace is 9 seconds. The total time to uniformly subdivide the

model to the same bound and raytrace is 12 seconds.

7. Conclusion and Future Work

We presented a tight estimate on the maximum distance

between a subdivision surface and its linear approximation

and applied it to adaptive subdivision. The computation is

efficient and the algorithm is easy to implement.

We are currently applying the approach to Catmull-Clark

surfaces and develop a similar tight bound for patch normals

to help silhouette and self-interference detection.

Acknowledgements:

We thank Jianhua Fan for her help to implement uni-

form Loop subdivision in Pov-Ray. Pov-Ray is a free ray-

tracing package downloadable from http://www.povray.org.

The original deer and cat models are achieved from 3D

search engine at: http://3d-search.iti.gr/3DSearch. We used

the qslim package that to simplify the deer model to 500

faces.

A. Convergence of the error estimate

We need to show that e(x) → 0 under subdivision where

e(x) :=
n+5
∑

i=3

|di|e(bi).

Since the terms e(bi) are constant, it suffices to prove di →
0 where

di := st(xi − x0) + ti(xi − x1) + (1 − si − ti)(xi − x2).

This follows from (xi − xj) → 0 under subdivision.

References

[1] M. Berg, M. Kreveld, O. Overmars, and O. Schwarzkopf.

Computational Geometry: Algorithms and Applications.

Springer-Verlag, Berlin, Heidelberg, New York, 1997.

[2] T. DeRose, M. Kass, and T. Truong. Subdivision surfaces

in character animation. In M. Cohen, editor, Siggraph 98,

pages 85–94, 1998.

[3] E. Grinspun and P. Schröder. Normal bounds for subdivision-

surface interference detection. In T. Ertl, K. Joy, and

A. Varshney, editors, Proc Visualization, pages 333–340.

IEEE, 2001.

[4] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin,

J. McDonald, J. Schweitzer, and W. Stuetzle. Piecewise

smooth surface reconstruction. Computer Graphics, 28(An-

nual Conference Series):295–302, July 1994.

[5] L. Kobbelt. Tight bounding volumes for subdivision sur-

faces. In B. Werner, editor, Pacific-Graphics’98, pages 17–

26. IEEE, 1998.

[6] L. Kobbelt, K. Daubert, and H.-P. Seidel. Ray tracing of sub-

division surfaces. In Rendering Techniques ’98 (Proceed-

ings of the Eurographics Workshop), pages 69–80. Springer-

Verlag, 1998.

Figure 7. (from left to right) input; e=0.5%; e=0.1%; and the surface with e=0.1%.

Figure 8. Ray-traced images at 800x600 resolution. (left) Input mesh (671 triangles). Ray-tracing time:
8s. (middle) Adaptive subdivision with e=0.2%. Resulting number of triangles = 9662 and maximum

subdivision level: 4. Ray-tracing time: 9s. (right) uniformly subdivided 4 times. Resulting number of
triangles = 171776. Ray-tracing time: 12s.

[7] C. T. Loop. Smooth subdivision surfaces based on triangles,

1987. Master’s Thesis, Department of Mathematics, Univer-

sity of Utah.

[8] H. Müller and R. Jaeschke. Adaptive subdivision curves and

surfaces. In F.-E. Wolter and N. M. Patrikalakis, editors, Pro-

ceedings of the Conference on Computer Graphics Interna-

tional 1998 (CGI-98), pages 48–58, Los Alamitos, Califor-

nia, June 22–26 1998. IEEE Computer Society.

[9] K. Müller and S. Havemann. Subdivision surface tesselation

on the fly using a versatile mesh data structure. In M. Gross

and F. R. A. Hopgood, editors, Computer Graphics Forum

(Eurographics 2000), volume 19(3), 2000.

[10] V. Settgast, K. Müller, F. Fuenfzig, and D. Fellner. Adaptive

tesselation of subdivision surfaces. Computers and Graph-

ics, 28(1):73–78, Feb. 2004.

[11] J. Stam. Exact evaluation of catmull-clark subdivision sur-

faces at arbitrary parameter values. In M. Cohen, editor, SIG-

GRAPH 98 Proceedings, pages 395–404. Addison Wesley,

1998.

[12] J. Stam. Evaluation of loop subdivision surfaces, Aug. 27

1999.

[13] X. Wu and J. Peters. Interference detection for subdivision

surfaces. Computer Graphics Forum, Eurographics 2004,

23(3):577–585, 2004. acceptance rate ca 18%.

[14] Z. Xu and K. Kondo. Local subdivision process with doo-

sabin subdivision surfaces. In Shape Modeling International,

Proceedings, 2002.

[15] D. Zorin, P. Schröder, and S. Sweldens. Interactive multires-

olution mesh editing. In T. Whitted, editor, SIGGRAPH 97

Conference Proceedings, Annual Conference Series, pages

259–268. ACM SIGGRAPH, Addison Wesley, Aug. 1997.

ISBN 0-89791-896-7.

