
An Accurate Flip-flop Selection Technique for Reducing Logic SER

Eric L. Hill, Mikko H. Lipasti, Kewal K. Saluja
Department of Electrical and Computer Engineering

University of Wisconsin - Madison
{elhill, mikko, saluja}@ece.wisc.edu

Abstract

The combination of continued technology scaling and in-
creased on-chip transistor densities has made vulnerability
to radiation induced soft errors a significant design con-
cern. In particular, the effects of these errors on logic nodes
are predicted to play an increasingly large role in deter-
mining the overall failure rate of future VLSI chips. While
a myriad of techniques have been proposed to mitigate the
effects of soft errors, system designers must ensure that the
application of these solutions does not come at the expense
of other design goals. This work presents a heuristic to se-
lectively apply temporal redundancy to flip-flops within a
pipelined logic unit, achieving significant reductions in fail-
ures associated with soft errors with minimal overhead.

1. Introduction

As computing systems become increasingly ubiquitous,
architects strive to create robust systems capable of operat-
ing in a wide variety of environments. In addition to meet-
ing performance and power requirements, engineers now
have to spend a significant amount of time ensuring their
designs also meet reliability goals. The combination of
continued technology scaling and increased on-chip transis-
tor densities have made vulnerability to radiation-induced
soft errors a significant design concern [8]. The majority
of work on soft errors has focused on understanding and
mitigating their effects on storage structures [3]. In terms
of reducing the overall failure rate, protecting these struc-
tures is a sensible starting point, as the majority of transis-
tors on a conventional microprocessor die are dedicated to
some form of storage. However, as a consequence of both
the increased use of storage protection schemes and tech-
nology scaling, the fraction of the system failure rate due to
soft errors on logic nodes has been increasing dramatically.
A recent study has predicted that for the 50 nm technology
generation the contribution of particle strikes on combina-
tional logic nodes to the overall failure rate will be equiva-

lent to that of storage structures [11].

Since architects are concerned with satisfying multiple
design goals simultaneously, low cost reliability solutions
which provide error tolerance at minimal amounts of over-
head are increasingly attractive. This is especially true for
many commodity or embedded architectures, where solu-
tions relying on full or near-full system redundancy are not
practical. An area overhead of 10% has been suggested as a
reasonable target for academic researchers developing new
mitigation techniques [1]. In order to satisfy these con-
straints, the ability to accurately assess which subcompo-
nents of a system contribute most significantly to the overall
failure rate is essential.

In this work, a heuristic for placing soft error detectors
(time skewed redundant flip-flops in this work) within a
logic unit is presented and evaluated. The presented algo-
rithm is unique in that it enables both qualitative and quanti-
tatively accurate conclusions to be drawn about the effect of
each decision made. This accuracy enables logic designers
to devote resources toward reliability solutions in the most
cost-effective manner possible. We evaluate our technique
in the context of hardening pipelined functional units, using
the results of our heuristics to place the detectors. We find
that for the functional units studied in this work, in the best
case a greater than 20X reduction in the soft error rate can
be achieved at a cost of less than 10% additional area.

The rest of this paper is organized as follows. Section 2
provides background on soft errors in logic, as well as the
motivation for this study. A description of the soft error de-
tectors used for this work is provided in Section 3. Sections
4 and 5 outline our heuristic for detector placement, and the
infrastructure built for evaluation, respectively. An experi-
mental evaluation of our technique is presented in Section 6.
Related work and conclusions from this study are discussed
in Sections 7 and 8.



2. Background and Motivation

2.1. Background on Logic Soft Errors

Radiation induced transient faults, or soft errors, typi-
cally originate from two sources. Soft errors can be caused
by alpha particles present in packaging materials, or by
high-energy neutron particles from cosmic rays. The work
done in this study focuses on soft errors caused by neutron
particles, as recent studies have shown that cosmic radia-
tion is now the primary source[11]. Cosmic ray flux is de-
pendent on altitude, which means that systems that operate
at higher levels of the atmosphere have significantly higher
SER than those which operate at sea level[11].

Soft errors occur when radiation particles strike sen-
sitive regions of semiconductor devices, injecting charge.
Depending on the sizing of the affected transistor and the
amount of charge injected, a single event effect may be in-
duced. If the affected device is part of a memory cell (either
in a storage array or a latch), this injected charge could po-
tentially flip the current value stored. This type of event is
typically referred to as a single event upset (SEU). If the
device is part of a combinational logic gate, the charge in-
jected could trigger the generation of a single event transient
(SET). An SET is a transient voltage pulse appearing at the
output of the affected combinational gate. SETs only result
in errors if they propagate to and alter the value captured
by a downstream register (a latch or flipflop, depending on
the clocking strategy)[14]. The minimum amount of charge
needed to induce a single event effect is referred to as the
critical charge or Qcrit[11]. This work is specifically tar-
geted at looking at the effects of SETs, as the primary goal
is reducing the logic component of the soft error rate.

Soft error rates are generally expressed using the metric
of Failures in Time (FIT), which is defined as the number
of failures per 109 hours [8]. In general, the FIT rate can be
calculated in the manner shown in Equation 1.

FIT = (RawStrikeRate) ∗ (Derating) (1)

The FIT rate of a system is typically computed by multi-
plying the Raw Strike Rate (which is a function of the com-
ponent area and altitude-dependent neutron flux) by a derat-
ing factor. The derating factor is defined as the probability
that a particle strike on a component manifests itself as an
error at an output. There exist three well known masking
phenomena (logical, electrical, and timing window) which
prevent SETs from propagating to and being latched by cir-
cuit outputs [11]. Logical masking occurs when a transient
waveform is prevented from propagating from an input to
the output of a gate because of a controlling value at one of
the other inputs. Timing window masking can occur when
a SET propagates successfully from a gate to a downstream
flipflop, but does not arrive during the interval of time when

Figure 1. 16x16 multiplier derating per bit.

the flipflop is sampling its data. Electrical masking occurs
when the delay of a gate is larger than the duration of the
voltage transient at its input, such that the resulting transient
appearing at the output of the gate is attenuated in terms of
duration and height. Technology scaling has diminished the
significance of each of these masking agents, making soft
errors in logic a much larger concern [11]. This work is
specifically targeted at reducing the derating component of
Equation 1.

2.2 Motivation

As discussed previously, SETs only become errors when
they propagate from a combinational logic gate to an out-
put and alter the value that is captured by a downstream
flipflop. As particle strikes occur with equal probability at
any given point in time, individual output bits (flip-flops) in
a circuit timing window mask SETs uniformly. In contrast,
individual output bits can have differing fan-in cones, mean-
ing that SETs can potentially propagate to individual output
bits at varying rates. This essentially means that in contrast
to timing window masking, logical masking is not necessar-
ily uniform across output bits. A prior study on estimating
SER reports that in multipliers the center bits tend to have
an error rate that is orders of magnitude larger than those
of the bits closer to the most and least significant positions
[12]. The authors of this work refer to this phenomenon as
SER peaking [12]. We have also observed this phenomenon
by modeling a 16x16 integer multiplier and performing sta-
tistical fault injection. Figure 1 shows the amount of errors
that occur on each output bit of the multiplier. We believe
that this SER peaking phenomena presents an opportunity
for low cost soft error protection. Ideally, a combinational
multiplier with this behavior could easily be hardened from
logic soft errors by simply protecting the subset of output
flip-flops where SER peaking occurs.

For combinational circuits, the subset of output flip-flops
that need to be protected can be identified by performing
statistical fault injection and observing the number of times

2



Figure 2. Fault model for strikes on gates in
pipelined circuit.

each output bit is corrupted. Identifying a similar subset
of flip-flops in a pipelined circuit is a significantly harder
problem. Figure 2 shows our assumed fault model for a
SET occurring in a pipelined circuit. This is significantly
more complex than the model for a SET in a combinational
circuit, which would only consist of outcomes A, B, and
C. From this model, it is clear that even if a SET propa-
gates to and is latched by a flip-flop, that error could still
potentially be masked as it propagates through the ensuing
pipeline stages, never manifesting itself at a circuit output.
In addition to this, it is also possible for an SET to corrupt
multiple intermediate flip-flops in a circuit, and have only a
subset of the corrupted elements be responsible for propa-
gating that error to the outputs. Examples of these scenar-
ios are provided in Section 4. The methodology presented
in this work accurately identifies the flip-flops which most
significantly impact the failure rate (and thus are the best
location to place SET detectors) in the context of this more
complex fault model.

3. Overview of SET Detection Techniques

This section of the paper provides an overview of SET
detection techniques that could selectively be applied based
on the results of our heuristic. We primarily consider so-
lutions which detect SETs by taking multiple flipflop data
samples and comparing the values captured. This is ac-
complished by duplicating the capturing flip-flop, and ei-
ther time shifting the data input to the duplicate copy, or
time shifting the clock input. Both solutions are conceptu-
ally similar, but each have unique advantages and disadvan-
tages. This section discusses the trade-offs associated with
each option.

3.1. Time Shifted Clock Inputs

This method of SET detection was inspired by the Ra-
zor flip-flop proposed by Ernst et al. [6], although it should

Figure 3. SET detection with time shifted
clock.

be noted that the intention of the Razor flip-flop was to al-
low for more aggressive dynamic voltage scaling instead of
improving reliability. The principal idea behind this tech-
nique is to duplicate the flip-flop of interest, and supply a
delayed clock to one of the flip-flops, as shown in Figure 3.
As flip-flops take their input samples on the rising edge of
the clock, time shifting the clock inputs allows two differ-
ent data samples to be taken. A timing diagram of how this
technique detects the presence of errors is shown in Figure
4. Both flip-flops take their data samples during the inter-
vals specified by the vertical dotted lines (this work assumes
positive edge triggered flip-flops). If there is a mismatch be-
tween the two data samples, the pipeline is flushed, and in-
structions can be re-executed. The main trade-off that must
be considered when using a technique like this is related to
how much delay is placed between the main and duplicate
clock signals. A large amount of skew between the main
and shadow clocks detects a large fraction of SETs, but can
potentially create short path issues. If the skew between
clocks is longer than the shortest path in the circuit, the data
sample taken by the shadow flip-flop could be next unit of
data propagating through the pipeline, potentially resulting
in false positives. The original Razor work dealt with this
problem by manually padding short paths [6].

3.2. Time Shifted Data Inputs

Another equivalent method of SET detection, illustrated
by Figure 5, is to time shift the data rather than the clock
inputs to each flip-flop. This method was inspired by the
work presented in [7]. The timing diagram shown in Figure
6 illustrates how this technique can be used to detect errors.
Like the previously presented solution, there also exists a
trade-off concerning how much skew there should be be-
tween the main and shadow data inputs. A large amount
of skew can detect a large fraction of SETs, but if the aug-
mented flip-flop is on a critical path, the clock period must
be increased to accommodate the skewing delay.

The best technique for a particular logic unit can vary

3



Figure 4. Timing diagram for time shifted
clock SET detection.

Figure 5. SET detection with time shifted data
inputs.

depending on the characteristics of its timing paths. Time
shifting the clock inputs is not an optimal solution for a cir-
cuit with a large number of short or zero delay paths as a
significant amount of delay padding would be required. In
contrast, a circuit with balanced paths could potentially suf-
fer a great deal of delay overhead (in terms of the minimum
clock period achievable) if the data inputs were time shifted.
For the purposes of this work, all detectors applied used
time shifted data inputs, but we believe our results would
be applicable for either approach.

4. Flipflop Selection

In this section we present our heuristic for selecting flip-
flops to augment with soft error detectors. Prior to statisti-
cal fault injection, each flipflop in the circuit is allocated a
counter. This counter represents the overall contribution (of
the corresponding flip-fop) to the circuit failure rate. The
pseudo-code for our proposed selection heuristic is shown
in Figure 7. Referencing the fault model shown in Figure
2, an error is defined as a particle strike which results in ei-
ther outcome C (a SET occurring in the last stage of logic

Figure 6. Timing diagram for time shifted data
SET detection.

Figure 7. Selection heuristic pseudo-code.

and subsequently altering the value of captured by an output
flipflop) or outcome F (a SET occurring in an intermediate
stage and propagating to an output flipflop).

An example of outcome C (represented by lines 3-6 in
Figure 7) is shown in Figure 8. In the last stage, gate A
is affected by a SET, which subsequently causes outputs 4
and 5 to capture altered values. Let the set P (referenced in
line 4 of Figure 7) represent all of the flip-flops that store
an incorrect transient value. Because the transient in this
case occurred in the last stage of logic, all flip-flops in the
set P must be protected to remove this error. Lines 5-6 in
the pseudo-code record the role of each flipflop in caus-
ing the error by incrementing the corresponding counters
by (1/cardinality(P)). In this case, the counters for flip-flops
4 and 5 are each incremented by 1/2. The reason that each
counter is incremented by (1 / cardinality(P)) is to attach
extra weight (in terms of error contribution) to cases where
a smaller number of flip-flops capture altered values.

Consider the alternative example shown in Figure 9. In
this case, gate A is again affected by a SET, but due to dif-
ferent input stimulus, only output 6 in its fanout cone cap-
tures an erroneous value. In this example set P only has one
member, meaning that the counter for flipflop 6 is incre-
mented by 1. Updating counters in this manner ensures that

4



Figure 8. Example of SET in final pipeline
stage.

flipflop 6 is credited with having a more significant impact
on the overall error rate than flip-flops 4 and 5. If only one
flipflop can be protected, flipflop 6 is the correct choice as
that would eliminate the error in Figure 9. If either flipflop
4 or 5 was protected, the error in Figure 8 would still exist.

An example of outcome F (represented by lines 7-10 in
Figure 7) is shown in Figure 10. In this example, a SET is
formed at the output of gate B, resulting in transient values
being captured by the flip-flops 1 and 3. The incorrect value
stored by flipflop 1 eventually propagates to output flipflop
5. Let the set P again represent all flip-flops that store in-
correct values (in this case flipflop 1, 2, and 5), and let set S
(referenced in line 8) represent flip-flops that in addition to
capturing a transient value, are responsible for propagating
incorrect values to circuit outputs. For this injected fault,
only flipflop 2 belongs to set S (flipflop 1 does not propa-
gate it’s bad value, and flipflop 5 does not capture a transient
value). In this case, only the flip-flops in set S (in this case
flipflop 1) need to be protected in order to prevent this error.
Set S is computed by back propagating from all corrupted
outputs. The counter for each flipflop belonging to set S is
then incremented appropriately.

Following fault injection each counter contains (for its
corresponding flipflop) the overall contribution to the cir-
cuit error rate. The value stored by each counter represents
the number of times (across the fault injection campaign)
a flip-flop is responsible for either directly causing an er-
ror by capturing a transient value (output flip-flops in the
last stage) or indirectly causing an error by capturing a tran-
sient value and logically propagating that value to a circuit
output (flip-flops in intermediate stages). A counter with a
high value implies that the associated flipflop is more likely
to capture and/or logically propagate a transient value, and
thus would be an ideal candidate for protection. Sorting
these counters (performed on line 12 of Figure 7) creates
a list of flip-flops ranked according how much of an over-
all benefit could be obtained by augmenting a particular se-
quential element with a soft error detector.

By first normalizing and plotting these counter values, a

Figure 9. Alternate example of SET in final
pipeline stage.

cumulative density function is created, allowing a logic de-
signer to reason about the theoretical maximum of soft error
protection that can be achieved by protecting some subset of
flip-flops. The ranking technique presented in this work is
unique in that in addition to identifying which flip-flops are
the most likely to capture and propagate transient values,
our ranking also gives an accurate quantitative estimate of
how much protecting each flipflop impacts the overall er-
ror rate. Our heuristic implicitly assumes that the addition
of a soft error detector will catch all SETs which propagate
to that node. In reality, the fraction of SETs that can be
detected at a particular node is dependent on the skew be-
tween flipflop data input samples. The effect of this skew
parameter and verification of our technique is discussed in
more detail in Section 6.

Cumulative density functions (in terms of error cover-
age) are shown in Figures 11 and 12, corresponding to 4
stage pipelined integer and floating point multipliers, re-
spectively. Error coverage is defined as the number of out-
put errors in the baseline (unprotected) case that are caught
by SET detectors. For example, in Figure 11 protecting
20% of the flipflops can yield (in the best case) 60% error
coverage. From these figures it is clear that a significantly
smaller fraction of the flip-flops are responsible for prop-
agating the majority of error in the floating point unit, as
evidenced by the sharper rise in displayed error coverage.
This can be attributed to the unit’s lack of structural regu-
larity, compared to that of the integer multiplier.

5. Infrastructure

5.1 Simulator

The error modeling framework developed for this study
is a combination of circuit and gate level simulation. When
performing fault simulation, a trade-off must be made be-
tween accuracy and speed. Ideally to get the most accu-
rate results, simulation must be done at the lowest level of

5



Figure 10. Example of SET in intermediate
pipeline stage.

Figure 11. Multiplier Error Coverage CDF.

Figure 12. Floating Point Multiplier Error Cov-
erage CDF.

abstraction, using tools like SPICE. Unfortunately, tools at
this level are too slow to be able to evaluate a circuit of
a practical size. At the other extreme, while cycle accu-
rate simulators typically used in architectural studies can
be used to model performance of large systems, and even
relative comparisons regarding the vulnerability of storage
structures [8], details about gate level structure are often not
available at this level of abstraction.

With these concerns in mind, our simulation infrastruc-
ture consists of two parts. In order to obtain information

Figure 13. NAND structure used for SET
waveform characterization.

Figure 14. Charge deposition PDF. From [5].

about the waveform characteristics of SETs, particle strikes
on combinational logic gates were simulated in SPICE us-
ing the 65 nm predictive technology model [2]. Strike
events were simulated by first modeling two gates in se-
quence, injecting a pulse of current at the internal node con-
necting the the gates and observing the voltage transient at
the output, as described in [5]. Specifically we were inter-
ested in the duration of the resulting SET, or the amount of
time the output voltage was above Vdd/2. An illustration of
this setup is shown in Figure 13. The shape of the injected
pulse was modeled by a time-dependent exponential func-
tion, as described by [11]. The function used is shown in
Equation 2.

I(t) = Q/T ∗
√

t/T ∗ exp(−t/T ) (2)

Q and T refer to the amount of charge deposited, and the
time constant for charge collection, respectively. The pri-
mary goal for this portion of the infrastructure was to map
the charge deposition probability distribution function given
in [5] to a second function which quantifies the relationship
between SET duration and charge deposition. Figure 14
and Figure 15 show the charge probability density and SET
duration functions, respectively. These functions are used
to drive the gate level component of our simulation frame-

6



Figure 15. SET duration mapping function.

work.

The second component of our infrastructures is an event
driven gate-level simulator. This simulator uses 7-valued
logic to simulate the propagation of transients through
pipelined circuits. The simulator keeps track of the the
events shown in our assumed fault model in Figure 2. De-
rating can be calculated by dividing the sum of C and F
events by the total number of faults injected. It should be
noted that our simulator has the ability to accurately model
both logical and timing window, but not electrical mask-
ing effects. We chose not to model electrical masking ef-
fects in this work because the amount of electrical masking
that occurs is primarily dependent on the delays of individ-
ual gates. This implies that the effects would be similar
in both our baseline and protected simulations and would
be canceled out when a relative comparison is performed.
For each particle strike simulated, a gate, charge deposition
value, and an offset into the clock cycle is chosen. The time
during the clock cycle is randomly chosen, and the gate and
charge deposition values are chosen based on the gate area
estimates, and charge deposition probability density func-
tion, respectively.

5.2 Benchmarks

In order to create benchmark circuits for evaluation, Ver-
ilog behavioral representations of different functional units
were first synthesized to elementary logic gates using Syn-
opsis Design Compiler. The resulting net lists were then
converted to the ATPG net list format used by our gate level
simulator. Area estimates were taken from the correspond-
ing standard cells in the LSI Logic gflxp 0.11um library.
These area estimates were used during fault injection to de-
termine the probability of a particle strike occurring on a
particular gate. Ideally this area characterization needs to
only be done once, as the relative differences of areas be-
tween standard cells should remain constant across technol-
ogy generations.

6. Evaluation

In this section, we present the results of several experi-
ments designed to explore the degree of error tolerance that
can realistically be achieved by placing soft error detectors
in the manner described previously. In particular the trade-
off between the number of soft error detectors employed
and the time skew used to detect errors within each detector
is studied. Additionally, the performed experiments serve
to validate the CDFs shown in Figures 11 and 12.

The previously mentioned gate level simulator was used
to evaluate an integer and a floating point multiplier unit.
Each unit was synthesized from a Verilog behavioral rep-
resentation and pipelined into 4 stages. We felt that these
benchmarks are representative of the type of logic units that
would be present in a conventional microprocessor. Char-
acteristics of each benchmark circuit are shown in Table 1.

Benchmark Gates Flip-flops Clock Period (ps)

intmult 1981 205 702
fpmult 8194 378 2460

Table 1. Information on Benchmark Circuits

In each experiment, 100,000 faults were injected into
each benchmark circuit. Randomized vectors were used for
input stimulus. Experiments were performed using detec-
tors that took data samples skewed by 20, 50, 100, and 200
picoseconds, and protecting 5, 10, 25, 50, and 100 percent
of flip-flops in each unit. Flip-flops were assigned detec-
tors according to the ranking produced by CDF creation de-
scribed in Section 4, but different random seeds were used
to drive fault injection. The results of these experiments
are plotted in Figures 16 and 17 for the floating point and
integer multipliers, respectively. The y axis in each figure
represents the achieved error coverage and the x axis rep-
resents the fraction of flip-flops in the circuit that are aug-
mented with detection logic. The bold vertical line in each
graph represents the threshold of 10% area overhead, which
was suggested as a target for academic reliability solutions
[1].

Both of these figures show that the achievable amount
of error coverage increases progressively as both the num-
ber of detectors and time skew within detectors increases.
This affords logic designers increased flexibility during the
design cycle, as units can be augmented with more detec-
tors with less skew if clock cycle time is important, or con-
versely fewer detectors with larger skew if area is an issue.
The error coverage achievable is also significantly different
for each unit studied. Looking at Figure 16 adding detec-
tors to 40% of the flipflops (corresponding to a 10% area in-
crease) results in higher than 95% error coverage (over 20X
reduction in the SER). In contrast, for the same amount of
overhead in the integer multiplier, there is only 65% error

7



Figure 16. Error coverage vs number of pro-
tected flip-flops in floating point multiplier.
The vertical line represents a 10% increase
in area.

Figure 17. Error coverage vs number of pro-
tected flip-flops in integer multiplier. The ver-
tical line represents a 10% increase in area.

coverage (slightly less than 3X reduction the the SER). De-
pending on the particular unit being considered, our tech-
nique alone may be enough to meet reliability goals, or it
may need to be complemented with other mitigation tech-
niques. Additionally, designers also must consider the uti-
lization of the functional unit being hardened, which can
vary depending on the target applications of the system. The
results shown in Figure 16 and 17 also serve to validate the
CDF generated by our heuristic. The solid CDF line in both
figures tracks closely with the results for 200 ps of skew,
which is the maximum transient width used for our fault
injection experiments.

7. Related Work

There have been numerous prior works proposing tech-
niques designed to mitigate the effects of soft errors in logic.
At the device level, there have been several proposals which
reduce vulnerability in logic nodes by increasing the sizes

of transistors [15][13]. This raises the critical charge de-
posited (Qcrit) needed to induce a single event effect, effec-
tively meaning that a larger fraction of particle strikes don’t
result in errors. As this class of techniques takes a different
approach to handling particle strikes, these proposals are
complementary to our work. In addition to this, we feel that
flipflop based solutions have a significantly greater potential
to reduce the number of errors seen in logic. While resizing
transistors in a particular CMOS gate will affect particles
which strike that gate, augmenting a flipflop with a SET de-
tector can potentially catch any SET that occurs within the
fan-in cone of that flipflop.

Another class of techniques, focusing on modifying flip-
flops to mitigate soft errors, is more closely related to this
work. Rao et al. [9] present a combined approach where
both transistors are resized (to increase Qcrit) and flip-flops
on paths with timing slack are replaced with flip-flops with
larger setup times (to amplify the effects of timing window
masking). This work differs from our proposal in that it
deals with soft errors by detecting them, rather than increas-
ing the amount of masking. Additionally, approaches that
adjust gate or path delays essentially balance all paths in a
circuit, resulting in a design that is more susceptible to de-
lay faults which may occur as a result of process variation
or wearout.

Blome et al. [4] present a low cost approach to hard-
ening an embedded ARM microprocessor from soft errors
through a combination of duplicating a subset of frequently
accessed registers, and selectively utilizing time-delayed
shadow latches (as soft error detectors). This work also
presents a statistical methodology for placing these detec-
tors. This work differs from our work in several ways.
First, our work focuses on individual units rather than the
entire microprocessor pipeline. We feel that our unit-based
approach to hardening components is a good fit for indus-
trial design teams, as multiple analyses can be conducted in
parallel. Second, our presented heuristic considers a more
detailed fault model, which fully considers the behavior of
SETs in pipelined circuits. The use of this model gives our
heuristic greater accuracy, and allows for CDF construction
with a single simulation pass. Lastly, our study explores
trade-offs associated with implementing the SET detectors
themselves.

Mitra et al. [10] explore the efficient placement of soft
error detectors through the use of formal verification tools.
This work is targeted towards control logic, which in gen-
eral is finite state machine-based. In contrast, our technique
is best suited for data path units (like adders and multipliers)
and is complementary to this method that deals with control
logic.

8



8. Conclusion

In this work, a novel statistical methodology for reduc-
ing logic soft error rates is presented. Our methodology in-
volves selectively adding temporal redundancy to flip-flops
within a pipelined circuit to detect soft errors. This work
is unique in that the heuristic used for placement takes ad-
vantage of the previously studied SER peaking phenomena,
and that it is done in the context of pipelined units. Our
experimental results show reductions in the logic soft error
rate of up to 20X with less than 10% area overhead.

9. Acknowledgments

This work was supported in part by NSF Grant CCF-
0702272 and donations from Intel and IBM.

References

[1] Design Panel for SELSE Workshop 2006.
[2] HSPICE PTM – http://www.eas.asu.edu/ ptm.
[3] A. Biswas, P. Racunas, R. Cheveresan, J. S. Emer, S. S.

Mukherjee, and R. Rangan. Computing architectural vulner-
ability factors for address-based structures. InISCA, pages
532–543, 2005.

[4] J. Blome, S. Gupta, S. Feng, S. Mahlke, and D. Bradley.
Cost-efficient soft error protection for embedded micropro-
cessors. InInternational Conference on Compilers Archi-
tecture Synthesis for Embedded Systems, October 2006.

[5] H. Deogun, D. Sylvester, and D. Blaauw. Gate-level mit-
igation techniques for neutron-induced soft error rate. In
ACM/IEEE International Symposium on Quality Electronic
Design, March 2005.

[6] D. Ernst, N. S. Kim, S. Das, S. Pant, T. Pham, R. Rao,
C. Ziesler, D. Blaauw, T. Austin, and T. Mudge. Razor:
A low-power pipeline based on circuit-level timing specula-
tion. In ACM/IEEE International Symposium on Microar-
chitecture (MICRO), November 2003.

[7] S. Mitra, M. Zhang, N. Seifert, B. Gill, S. Waqas, and K. S.
Kim. Combinational logic soft error correction. InInterna-
tional Test Conference, November 2006.

[8] S. Mukherjee, J. Emer, and S. Reinhardt. The soft error
problem: an architectural perspective.High-Performance
Computer Architecture, 2005. HPCA-11. 11th International
Symposium on, pages 243–247, 12-16 Feb. 2005.

[9] R. Rao, D. Blaauw, and D. Sylvester. Soft error reduction in
combinational logic using gate resizing and flip-flop selec-
tion. In Proceedings of the ACM/IEEE International Con-
ference on Computer-Aided Design (ICCAD). ACM/IEEE
International Conference on Computer-Aided Design (IC-
CAD), November 2006.

[10] S. A. Seshia, W. Li, and S. Mitra. Verification-guided soft
error resilience. InProc. Design Automation and Test in
Europe (DATE), April 2007.

[11] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and
L. Alvisi. Modeling the effect of technology trends on the
soft error rate of combinational logic. InDSN ’02: Proceed-
ings of the 2002 International Conference on Dependable
Systems and Networks, pages 389–398, Washington, DC,
USA, 2002. IEEE Computer Society.

[12] M. Zhang and N. Shanbhag. A soft error rate analysis (sera)
methodology. InInternational Conference on Computer
Aided Design, November 2004.

[13] M. Zhang and N. Shanbhag. A cmos design style for logic
circuit hardening. InProc. IEEE International Reliability
Physics Symposium, pages 223–229, April 2005.

[14] M. Zhang and N. Shanbhag. An energy-efficient circuit tech-
nique for single event transient noise-tolerance. InIEEE In-
ternational Symposium on Circuits and Systems, pages 636–
639, May 2005.

[15] Q. Zhou and K. Mohanram. Cost-effective radiation hard-
ening technique for combinational logic. InICCAD ’04:
Proceedings of the 2004 IEEE/ACM International confer-
ence on Computer-aided design, pages 100–106, Washing-
ton, DC, USA, 2004.

9


