
 
 

Abstract 
This paper proposes a novel and more accurate iris 

segmentation framework to automatically segment iris 

region from the face images acquired with relaxed imaging 

under visible or near-infrared illumination, which provides 

strong feasibility for applications in surveillance, forensics 

and the search for missing children, etc. The proposed 

framework is built on a novel total-variation based 

formulation which uses l
1
 norm regularization to robustly 

suppress noisy texture pixels for the accurate iris 

localization. A series of novel and robust post processing 

operations are introduced to more accurately localize the 

limbic boundaries. Our experimental results on three 

publicly available databases, i.e., FRGC, UBIRIS.v2 and 

CASIA.v4-distance, achieve significant performance 

improvement in terms of iris segmentation accuracy over 

the state-of-the-art approaches in the literature. Besides, 

we have shown that using iris masks generated from the 

proposed approach helps to improve iris recognition 

performance as well. Unlike prior work, all the 

implementations in this paper are made publicly available 

to further advance research and applications in biometrics 

at-d-distance. 

1. Introduction 

Iris recognition is one of the most accurate and widely 

employed approaches for the automated personal 

identification. The performance of iris recognition 

algorithms is highly dependent on the effectiveness of 

segmenting iris region pixels [7]. However, the traditional 

iris segmentation and feature matching approaches adopt 

only to near-infrared illumination and require the subjects 

to be sampled under strictly constrained condition [6], 

which is the major difficulty for deploying iris recognition 

system in civilian and surveillance applications on a larger 

scale. Automated iris segmentation has been a topic of 

considerable research in recent past [21]-[22] and many 

methods [2]-[6] have been proposed to address the problem. 

However the accuracy of currently available iris 

segmentation algorithms is still below the expectations and 

requires further improvement for the deployments. 

This paper proposes a new framework to automatically 

and accurately segment iris images from the distantly 

acquired face images. The developed approach can robustly 

operate using face or eye images acquired under 

less-constrained environments, i.e., using images acquired 

from a distance (typically 3-8m) and under near-infrared 

(NIR) or visible-wavelength (VW) illumination. The key 

contributions from this paper can be summarized as 

follows: 

1. With the help of earlier studies on gradient dependent 

regularizer, such as relative total variation regularizer 

[10], we develop a new total variation formulation for 

iris segmentation in which the eye structure and 

surrounding texture are differently penalized. This 

formulation incorporates with an l
1
 norm which is more 

effective and also computationally efficient. Our 

experimental results on three publicly available 

databases achieve significantly superiors results over 

previous approaches presented in the most recent 

literature [2]-[3]. Moreover, the method developed in 

this paper does not require any training and therefore is 

more attractive for the deployment in surveillance 

applications. 

2. We develop a series robust post-processing operations to 

accurately localize limbic boundaries in noisy iris 

images. The adaptive and self-correcting methodology 

introduced in these operations can independently exploit 

the local features as much as possible, and helps to 

significantly reduce global errors. The post-processing 

operations can effectively use the intermediate results 

and adopt dynamic threshold mechanisms. Such robust 

strategies help to improve the overall accuracy in the 

segmentation of noisy iris images and can also be applied 

in other challenging problems in surveillances and 

remote sensing. 

The performance of the proposed approach
*
 have been 

evaluated on three publicly available databases, i.e., 

UBIRIS.v2 [8], FRGC [17] using visible imaging and 

CASIA.v4-distance [16] under near infrared. The 

experimental results suggest average improvements of 

28.82%, 30.98% and 16.05% on iris segmentation accuracy 

over state-of-the-art method on respective databases. 

Besides, we also illustrate from the experiments that using 

iris masks generated from our approach helps improve iris 

recognition performance. 

1.1. Related Work 

Most of the earlier work on iris segmentation uses NIR 

 
* The implementation codes for our algorithm are available via [24]. 
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images which are acquired from close distances. 

Duagman’s Integro-differential operator [1] is one of the 

most classical algorithms for iris segmentation under NIR 

illumination and is adopted in most of the commercial 

systems nowadays. It searches for a maximum response of 

an integro-differential expression and then locates the 

circle of iris. However, as explored and addressed in [6]-[7], 

etc., under VW illumination or less-constrained 

environment, quality of images drops and such traditional 

approach performs poorly. 

The iris segmentation approach developed by Tan et al. 

[5] first adopts an iterative technique to cluster the iris and 

non-iris region coarsely, and then uses an improved 

integro-differential operator to locate the iris and pupil 

circle coarsely. One key limitation of this algorithm is that 

it relies highly on the coarse clustering result so that the 

final accuracy will be heavily affected if the first step is not 

accurate. Another promising approach by Proença [4] 

proposes to exploit local color features and classify iris 

pixels using a neural network. However, the color features 

are not very stable, which often leads to lower reliability. A 

recent work detailed in [3] also offers highly competitive 

alternative for the iris segmentation under less constrained 

imaging environment. This approach first adopts a Random 

Walker [13] to coarsely segment the iris region to locate the 

iris circle, then applies a set of gray level statistics based 

operations to refine the boundary. This method reports a 

better accuracy than previous ones. However, this approach 

also relies on the coarse segmentation result too much, and 

in its post-processing operations, one common threshold 

value is used for the whole iris, which may not fit local 

features and is possible to cause global error.  

Another promising work in relevant domain has been 

proposed by Li and Savvides [2]. In this method, a 

Gaussian Mixture Model (GMM) was adopted to simulate 

iris pixel distribution and an unsupervised training method 

was used to obtain the parameters for the GMM. It has 

shown very high segmentation accuracy and reliability. 

However, a critical step for iris segmentation, which is the 

localization of iris and pupil circles, was performed 

manually in the experiments presented in this paper, while 

other methods mentioned above locate the circles 

automatically. In other words, the performance of [2] will 

highly depend on the accuracy of iris and pupil circle 

localization. In practice, iris and pupil circle localization is 

not only used in iris segmentation, but also necessary for 

the iris normalization, which unwraps the iris region into a 

polar coordinate system and is an essential step for most of 

the iris recognition algorithms. 

2. Iris Segmentation Under Less-Constrained 

Imaging 

This section details the methodologies used in the proposed 

iris segmentation approach. The overall framework of the 

developed approach is illustrated in Figure 1.  The proposed 

approach adopts a coarse-to-fine strategy to segment iris 

region pixels from the background (region pixels 

surrounding the iris) and foreground (noisy pixels in the iris 

region) pixels in the acquired eye images. Our approach 

assumes that each of the eye images may be acquired under 

a relaxed imaging environment, i.e., at-a-distance and 

under variable spectrum bands. 

2.1. Preprocessing 

Under less-constrained imaging, several factors such as 

varying illumination intensity and the angle of the 

illumination source can have adverse impact on the 

accuracy and quality of iris segmentation. Such unexpected 

changes yield severe challenges in not only the iris 

biometrics but also many other image understanding tasks. 

We use the Single Scale Retinex (SSR) approach [12] for 

normalizing eye image illumination. The SSR 

enhancement method is able to improve color consistency 

under severe illumination variance. A sample image after 

applying SSR enhancement is shown in Figure 2 (b).  

After enhancement, we apply a median filter on the 

image to suppress isolated noisy pixels. Moreover, we only 

use the red channel in the following process because the 

imaging spectrum of red channel is closest to NIR, which 

retains better image quality. In Figure 2 (c) we can see a 

sample result from the pre-processing stage. 

2.2.  Total Variation-Based Iris Structure 

Extraction 

One common characteristic for the eye images acquired 

under less-constrained environments is the sensitivity to 

noisy and complex details such as reflection and eyelashes, 

which are not needed in the initial structure analysis. The 

above factors are the major reason why the traditionally 

effective integro-differential operator or circular Hough 

Figure 1: The block diagram for the proposed iris segmentation.

Figure 2: Sample image from the pre-processing stage: (a)

original image, (b) enhanced image, (c) smoothed red channel. 

(a)                               (b)                             (c) 
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transform perform poorly on images acquired under 

less-constrained environments, because both methods 

require clear contrast of structure components and least 

interference from noise. We exploit the total variation (TV) 

model to address such a problem. There have also been 

studies on using the total variation model for other 

biometric segmentation problems such as fingerprint 

segmentation [18]. 

2.2.1 Theoretical Foundation of Total Variation Model 

There are several total variation (TV) regularizers for 

image structure separation in the literature, of which most 

are extended from TV-L
2
 [14]. A recent reference in [10] 

proposed relative total variation (RTV) to measure and 

regularize local pixel variation. Such local gradient 

descriptors offer the strong capability to distinguish key 

image structure from the background image details. 

Motivated by such prior studies, we propose to use an 

improved RTV model to first localize the key eye structure, 

i.e., eyelid, pupil and sclera boundaries, in the noisy eye 

images. Such localization of eye structure can be used to 

accurately locate pupillary and limbic boundaries for 

accurate iris segmentation. In the following, we provide 

brief review on the theoretical principles of RTV which are 

later used to develop an improved RTV model incorporated 

with l
1
 norm regularization to more effectively locate eye 

structure of key interest. 

The windowed total variation of an image S within a 

local rectangle region R is expressed as follows: 
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where Gσ  is a Gaussian kernel with standard deviation σ , 

x
∂  and y∂  are the partial derivatives on image S in two 

directions and ∗  represents the convolution operation. By 

the convolution, which gives a weighting sum of nearby 

absolute gradients, we can observe that ,S xD  and ,S yD  

represent absolute spatial difference within a rectangular 

window. In earlier studies in [10], both the detail and 

structure patches in an image with salient textures yield 

large D , which indicates that the windowed total variation 

is responsive to visual saliency. 

Another effective measure to help distinguishing 

prominent structures from the texture elements is to use 

windowed inherent variation, expressed as: 
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Different from D, L measures overall spatial variation 

because 
x
S∂

 
and yS∂

 
may be positive or negative, and 

therefore such values may eliminate or offset others by the 

convolution in frequently varying gradient region. As a 

result, structure patches are typically expected to yield 

larger L than those from texture patches. 

The contrast between texture and structure can be further 

enhanced by combining D and L as RTV, expressed as 

follows: 
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where p  is the pixel index, ε  is a small positive number to 

avoid division by zero. From expression (3) we can observe 

that texture region is typically expected to yield larger 

RTV  than structure since the denominator of the 

formulation, L , responses smaller value for texture. 

Making use of such a property of RTV , reference [10] 

proposed to minimize following energy to remove the 

texture (e.g., details and noise) from the input image: 

( )
2

,arg min S p p p
S

p

RTV S Iλ ⋅ + −∑              (4) 

where I  is the input image and S  is the output image. 

Notice that equation (4) incorporates the square of an l
2
 

norm to enforce the similarity between the input and output 

image, which is similar to many other variants of TV 

regularization. We will refer to such a method as RTV-L
2
 

for short. 

2.2.2 Extracting Eye Structure Using RTV-L
1
 

Each of the iris images acquired for conventional iris 

recognition includes surrounding eye structure. This 

structure essentially includes curved regions representing 

eyelid, pupil and sclera boundaries. Our objective is to 

locate the iris by automatically extracting such elements 

representing eye structure and other non-structural 

elements such as eyelash, and iris texture can be treated as 

noise because they could have interference on our iris 

localization. Therefore, the RTV-L
2
 approach which can 

remove details and texture while maintaining main 

structure of the input image is a good choice for our 

purpose. However, it has been studied in several references 

[20], [21] that using l
1
 norm instead of l

2
 in such energy 

regularizers has better performance in some applications 

and presents more important geometric properties. We have 

studied the difference between l
1
 and l

2
 norm in RTV 

regularization, and propose to adopt l
1
 norm instead of the 

original l
2
 norm, i.e., we solve the following problem which 

we refer to as RTV-L
1
:  

,arg min S p p p
S

p

RTV S Iλ ⋅ + −∑               (5) 

The difference between the output images by solving 

problems (4) and (5) is illustrated in Figure 3. We can 

observe from Figure 3 that while both RTV-L
1
 and RTV-L

2
 

can suppress texture and noise, the results from RTV-L
1
 are 

sharper at critical edges than those from RTV-L
2
. This 

confirms the arguments that using l
1
 norm in the energy 

regularizer can present more important geometric 

properties, which is considered helpful for the subsequent 

iris localization process. The detailed numeric solution for 

problem (5) will be introduced in following sections.  
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2.2.3 Numeric Solution for RTV-L
1
 

The objective function in problem (5) is non-linear and 

non-convex. A trivial solution for this problem is not 

available. In addition, by replacing the l
2
 norm with l

1
 

norm, the structure of the objective function has changed 

that the approximating solution proposed in [10] becomes 

unusable. Here we propose an effective dual formulation 

based solution similar to [19] for the RTV-L
1
 problem. 

First, we approximate the minimization for problem (5) as 

minimizing the following new problem:  

( )
2

,
,

1
arg min

2
S p p p p p

S V
p

RTV S V I Vλ
θ

⋅ + + − +∑     (6) 

where V  is a new variable in matrix form and the positive 

parameter θ  is small, thus we have V I S≈ − . As a result, 

S  presents the structural information and V  captures the 

texture information from the input image. The 

minimization for problem (6) is performed with respect to 

S  and V  separately and iteratively. Thus, it boils down to 

the following two sub-problems: 

(i) S  being fixed, search for V  for the problem: 

( )
21

arg min
2

p p p p
V

p

S V I V
θ

+ − +∑             (7) 

(ii) V  being fixed, search for S  for the problem: 

( )
2

,

1
arg min

2
S p p p p

S
p

RTV S V Iλ
θ

⋅ + + −∑
     

(8) 

Problem (7) and (8) are solved alternately and iteratively, 

and then the energy function in problem (6) keeps reducing 

until it converges to a satisfying level. Following we will 

give solutions for (7) and (8): 

(a) Solution for (7): 

Since the objective function at each pixel is independent 

from others, this problem is a 1-D minimization problem 

and can be easily solved by calculus. The solution is given 

by: 
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  if  

0   if | |

p p p p

p p p p p

p p

I S I S

V I S I S

I S

θ θ

θ θ

θ

− − − >⎧
⎪

= − + − < −⎨
⎪ − ≤⎩

              (9) 

Such solution is also given in [19]. 

(b) Solution for (8): 

 The objective function in problem (8) has a quadratic 

term, which is very similar to the original RTV-L
2
 problem 

in [10]. Therefore, we can use a similar iterative solution 

proposed in [10] to solve problem (8) approximately. As 

shown in [10], the objective function in (8) can be 

approximated with a matrix form: 
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where Qv  is the vector representation of matrix Q , ( )x yC  

is a Toeplitz matrix from gradient operator in x  or y  

direction. 
,S xU  and 

,S xW  are diagonal matrices, whose 

values on the diagonals are respectively 

,

,

1
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S x p
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              (11) 

where p  is the pixel index in the vector representation of 

the image, ε  and 'ε  are newly introduced small positive 

constants for preventing division by zero. After the 

approximation, let: 

, , , ,

T T

x S x S x x y S y S y yL C U W C C U W C= +           (12) 

Considering L  as a constant and compute the value of L  

using the results from last iteration, then the minimization 

problem (8) boils down to the following: 

( 2 )
S I V

L v vθλ −+ ⋅ =1                        (13) 

The problem in (12) is easy to be solved using knowledge 

of linear algebra. As the number of iteration increases, the 

output approaches to the optimal solution and the value of 

the energy function in (6) keeps reducing until it converges 

to a stable level. Currently we iterate five times for each eye 

image based on the observation on the output and receive 

satisfying noise removal effect, as shown in Figure 3. 

2.3. Coarse Iris Localization Using a Circle 

As discussed in section 1.1, a simple circular model cannot 

be employed to accurately segment iris images acquired 

under less constrained environments. However, it is widely 

observed that the human iris can be coarsely approximated 

as a circle [1], [15]. A circular boundary that coarsely but 

closely fits the limbic boundary can be used to further 

refine the boundaries for accurate iris segmentation using a 

series of efficient post-processing algorithms. In this paper, 

we refer to such a coarse localization circle as an iris circle. 

Similarly, the pupil circle describes the circular boundaries 

that coarsely fit the pupillary boundary of iris images 

acquired for the segmentation. 

Figure 3: Sample results of RTV-L1 and RTV-L2 for eye images 

under (a) visible illumination and (b) NIR illumination. 

(a) 

(b) 

Original image                 RTV-L1                     RTV-L2 
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After structure extraction, the noise of the eye images is 

highly suppressed and it is possible to use the circular 

Hough transform (CHT) based approach to detect the iris 

and pupil circles coarsely, which highly relies on the clarity 

of the image structure. We implemented an improved 

version of CHT based on the two-phase CHT introduced in 

[9]. Firstly, we only detect the lower half circles to prevent 

possible interference from the eyelashes or eyebrow. 

Secondly, after the first phase in [9] which estimates the 

circle center, we enabled re-searching for the circle center 

within a rectangular region around the estimated center, to 

more accurately detect the center position and the radius. 

The robustness for coarsely localizing the iris region 

increases with the improved CHT. We detect the circles 

with empirically proper radius ranges, whose sample 

results are shown in Figure 4. The possible ranges of radius 

for the databases we used, i.e., UBIRIS.v2, FRGC and 

CASIA.v4-distance, are [35, 120], [25, 40] and [60, 100] 

respectively.  

2.4. Iris Pixel Identification by Local Gray Level 

Analysis 

Automated boundary refinement approach has to be 

developed to accurately identify the limbic boundaries after 

the iris circle is detected. We developed an adaptive 

histogram-based binarization approach to firstly process 

lower half pixels of the iris circle in the image. 

2.4.1 Adaptive Detection of Lower Half Iris and Sclera 

Boundary 

The reason for processing lower part firstly is that the lower 

half iris is less likely to be affected by eyelash and eyelid. 

Therefore, accurately identifying the iris pixels in the lower 

half region is firstly considered in identifying noisy pixels 

using the thresholding. Firstly processing the lower half not 

only can improve segmentation accuracy but also help to 

detect the thresholds for accurately segmenting the upper 

half.  

 The lower half circle is firstly processed by performing N 

sector thresholdings. In one thresholding, pixels in a certain 

sectorial region as expressed in the following are identified: 

{ }1 2, 1 2 1 2   and  ir ir pC p t r cp t rφ φ φ θ φ= ≤ ≤ ≤ ≤     (14) 

where c  and 
ir

r  are the center and radius of iris circle 

respectively, pθ  is the angle from x axis to the vector cp , 

says the central angle at point p , 
1 2

[ , ]φ φ  is the range of 

central angles with 
1 2

0 φ φ π≤ < ≤ , 
1 2

[ , ]t t  is the constant 

ratio range to the iris radius restricting the region of the 

sector, and is empirically set to [0.6, 1.35]. In our approach, 

N is set to 3, and the sequence of ranges of central angels 

are [0, ]
4

π
, 

3
[ , ]

4 4

π π
 and 

3
[ , ]

4

π
π  respectively. These 

sectorial regions are also shown in Figure 5 (a).  

If the edge is clear and the iris circle is accurate, we can 

choose a threshold value that separates the low end and 

high end of the pixel values inside the sectorial region.  

Otsu’s method is a good approach for such purpose. It can 

automatically locate valley point between two peaks in the 

histogram of a set of pixel values using two-class 

separation metric. The significant aspect of our strategy is 

that we adopt different threshold values at each of the 

different sectors, which ensures that the overall error in the 

identification of iris pixels is significantly reduced. In 

addition, the number of sectors and range of angle 

sequences can be varied to accommodate iris images of 

degraded quality.  Note that the acquired eye images suffer 

from serious noise and occlusions. If each segment is too 

small (N is large), the computed threshold may not be 

robust and the computational time will also increase. 

Therefore, 3N =  is a reasonable choice. In [3], the 

threshold is obtained from statistical information of pixel 

values within a region near the pupil. Such method applies 

only one fixed threshold for the whole circular boundary, 

which may not fit local features very well. Figure 6 shows 

the sample results from the post-processing of lower half of 

iris region pixels.  

Figure 4: Sample results from the iris and pupil circle localization 

for (a) VW images and (b) NIR images. 

(a) 

(b) 

Figure 5: Illustration of three sectorial regions to be processed (a)

and the Otsu’s thresholding result for one sectorial region (b). 

(a) (b)

Figure 6: Sample iris images and corresponding results from post

processing of lower half iris pixel region. 
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2.4.2 Coarse-to-Fine Localization for Upper-Half Iris, 

Pupil Region and Reflection 

The upper half part is expected to be highly noisy, which is 

caused by the eyelash and shadow, and quite a significant 

part of the iris is occluded by eyelid and therefore the sector 

thresholding may not work well here. We can reuse the 

previous thresholds from the sectorial thresholding 

described in section 2.4.1. We just segment the upper-left 

1/4 circle using threshold determined in 
3

,
4

C π
π

, and the 

upper right one using threshold determined in 
0,

4

C π . This 

approach is not expected to cause big error because two 

pairs of these regions are continuously connected, and 

further refinement regarding eyelid, eyelash and shadow 

will be performed.  

  Since we have already detected the pupil circle earlier, 

the pupil removal step is to eliminate the pupil region pixels 

from the iris circle in previous step. Another effect of the 

sector thresholding is that the detected threshold can be 

used to identify source reflections that usually exist in the 

images acquired under less-constrained imaging 

environment and occlude the iris region. We eliminate 

pixels whose gray levels are higher than the highest 

threshold among all the three sectors in the lower half iris 

processing section (Figure 5). In summary, the pixels which 

are brighter than the brightest pixels in lower half of iris 

region are considered as source reflection. Figure 7 

illustrates some sample results after masking upper half 

iris, eliminating pixels belonging to pupil and source 

reflection. 

2.4.3 Identifying Eyelid, Eyelash and Shadow (ES) 

As discussed earlier, the ES region brings much  noise and 

ambiguity in the segmentation process. It is important to 

carefully identify this restricted region to perform any 

refinement. Therefore, the position of upper eyelid should 

be accurately located. 

1. Eyelid Fitting 

Using a parabola to approximate the eyelids is a popular 

approach in many iris segmentation algorithms and is found 

to have higher performance than other approaches [26]. 

Therefore we also propose to fit the eyelid with a parabola, 

which is in the following form: 

( )
2

y c a x b− = −                        (15) 

Considering the shape of the upper eyelid and in order to 

fasten the parameter searching, we limit the ranges of a, b 

and c as follows: 

0 1/

2 2

1.5 0.3

ir

c ir c ir

c ir c ir

a r

x r b x r

y r c y r

< <⎧
⎪

− ⋅ < < + ⋅⎨
⎪ − ⋅ < < − ⋅⎩

              (16) 

where ( , )
c c

x y  and 
ir

r  are the center and radius of iris 

circle respectively. The range of a  ensures that the 

parabola is orienting downwards and will not be too sharp, 

and the ranges of b  and c  make the vertex of the parabola 

not too far away from the iris. 

The approach we propose to search the parabola is 

simple and yet very effective in terms of speed and 

accuracy. First, we define a rectangular region as the 

candidate eyelid area as follows: 

{( , ) , 0.3 }c ir ir c ir c irR x y x r x x r y r y y r= − ≤ ≤ + − ≤ ≤ − ⋅
 

 (17) 

A canny edge detector is applied in R  and let us donate the 

set of detected edge points as E. We assume that among the 

edge points in E, some are close to the position of eyelid, 

which we refer to as eyelid points, and some points belong 

to noise such as eyelashes and shadow, which we refer to as 

non-eyelid points. The spatial distribution of the non-eyelid 

points is highly random and less regular, while the positions 

of the eyelid points are very close to the parabola that can 

accurately fit the real eyelid. Therefore, we search for a 

parabola with the parameters { , , }a b c  that has maximum 

number of points in E lying on it. Moreover, we actually 

search for { , , }a b c  at discrete interval so the speed can be 

greatly fastened. Figure 8 illustrates two sample results of 

the proposed eyelid fitting approach, which is highly 

accurate. 

2. Eyelash and Shadow Processing 

Having located the upper eyelid, the next step is to mask 

Figure 7: Sample results after upper half masking, pupil removal

and source reflection removal for (a) VW images and (b) NIR

images. 

(a) 

(b) 

Figure 8: Sample results of the proposed eyelid fitting approach. 

Green curve is the fitted parabola representing upper eyelid, and 

the red points are the edge points detected by the canny edge 

detector in region R. 
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out those pixels which are belonging to the eyelashes and 

shadow at a certain distance below the eyelid. This step is 

the same as described in [3] and we choose the distance as 

0.3
ir

r× . The pixel values within lower half of the currently 

processed iris mask are used to detect thresholds to identify 

those belonging to ES region. Figure 9 illustrates the idea.  

We choose the limiting thresholds that exclude 1% of the 

darkest pixels and 20% of the brightest pixels as the low 

and high thresholds respectively. Only the pixels between 

these two thresholds are retained. In order to eliminate 

isolated noisy pixels, the iris mask is subjected to an 

opening operation. Figure 10 illustrates some sample iris 

segmentation results from the databases used in this work.  

3. Experiments and Results 

3.1. Databases 

We have used three publicly available databases, 

UBIRIS.v2 [8], FRGC [17] and CASIA.v4 [16] to perform 

the experiment for the iris segmentation and recognition 

under VW and NIR imaging. The images from these 

databases were acquired under less-constrained 

environment. It is judicious to expect that good 

performance on these databases indicates higher 

probability for the proposed approach to work well in 

surveillance and forensics applications. The summary of 

the employed subsets is presented in Table 1. We selected 

these subsets subject to the availablity of the ground truth 

iris masks (explained in section 3.2). Please see enclosed 

supplementary file for more details on eye detection and the 

experimental process. 

As for the parameter tunning, there are mainly two types 

of parameters. The first one is those related to the proposed 

RTV-L
1
 solution. We use the same set of parameters 

( 0.2, 0.05, 3, ' 0.005λ θ σ ε ε= = = = = ) for all three 

databases, which illustrates that the proposed RTV-L
1 

is 

highly generalizable for images captured in various 

condition. Other parameters are mainly database-specific, 

such as the range of radius of iris circle. Such parameters 

should be adjusted according to the image resolution. 

3.2. Performance Evaluation 

3.2.1 Segmentation Accuracy 

The accuracy of iris segmentation is evaluated using the 

same protocol as in the NICE. I competition [11], in which 

the average segmentation error rate is computed as follows: 

1
e ( , ) ( , )

x w y h
T x y M x y

N w h ∈ ∈
= ⊕

× ×
∑ ∑

     

 (18) 

where N  is the total number of images, w  and h  are 

width and height of one image, T
 
and M  are the ground 

truth mask and generated iris mask respectively. The 

symbol ⊕  represents an exclusive OR operation to 

identify the segmentation error. While ground truth of 

UBIRIS.v2 are manually labeled and publicly provided by 

NICE.I, ground truth for the other two datasets is also 

manually generated by authors of [3] and made publicly 

available. Therefore, we can use the NICE.I protocol for the 

consistent segmentation accuracy evaluation. 

Table 2 provides summary of the performance from 

state-of-the-art approaches in the recent literature while 

using above protocol
†
. The proposed approach achieved 

 
† The average error rate of algorithm in [2] is also produced from our 

implementation and is made available via [24]. 

Table 1: Summary of databases employed in the experiments. 

 UBIRIS.v2 CASIA.v4-distance FRGC 

Imaging illumination visible near-infrared visible 

Standoff distance 4 – 8m ≥3m N/A 

Eye image size 400×300 about 780×400 300×150

No. of subjects 171 77 163 

No. of images 1,000 581 540 
Table 2: Comparison of average segmentation error rates for 

different approaches. 

 Iris Segmentation Error,  e (%) 

Approaches UBIRIS.v2 
CASIA.v4 

-diatance 

FRGC 

Proposed RTV-L1 1.21 0.68 1.27 

RTV-L2 1.41 0.75 1.28 

T-PAMI, 2013, [2] 1.92 0.85 1.34 

T-IP, 2013, [3] 1.70 0.81 1.84 

T-IP, 2012, [6] 1.90 1.13 1.84 

T-PAMI, 2009, [4] 3.75 1.61 2.42 

ImVis, 2010, [5] 3.49 1.71 3.30 

Figure 9: Illustration of ES processing. Pixels in the blue region 

are collected to calculate thresholds to process the pixels in the

yellow region. 

Figure 10: Sample source images and corresponding final

segmentation results (non-iris region is masked with blue color)

for (a) VW images from UBIRIS.v2, (b) NIR images from

CASIA.v4-distance and (c) VW images from FRGC. 

(a) 

(b) 

(c) 
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average segmentation error rates of 1.21%, 0.70% and 

1.29% for UBIRIS.v2, CASIA.v4-distance and FRGC 

respectively.  

It can be observed from the statistics that the proposed 

approach consistently outperforms other iris segmentation 

methods developed in the literature. As compared with the 

recent approach published in [3], the proposed method can 

achieve average improvement of 28.82%, 16.05% and 

30.98% for UBIRIS.v2, CASIA.v4-distance and FRGC 

databases respectively, in iris segmentation accuracy. It 

may be noted that the method described in [5] was ranked 

first in NICE I competition [11] and therefore provides a 

good benchmark for the comparison. We have also 

evaluated the performance when using the original RTV-L
2
 

approach for structure extraction and keeping other steps 

exactly the same. The results in Table 2 show that the 

proposed RTV-L
1
 has noticable superiority over RTV-L

2 

due to its ability to preserve sharpness of important edges. 

3.2.2 Recognition Performance 

The recognition performance is always the first concern in 

iris recognition systems. In order to ascertain that our 

accurate iris segmentation approach can also contribute to 

improving recognition performance, we have performed 

the experiments on iris recognition as well. We adopt the 

1D log-Gabor filter as the feature encoding method, which 

is widely used in the deployed iris recognition systems, and 

use iris masks generated from different segmentation 

approaches for comparison. The parameters of the log- 

Gabor filter are optimized from a separate training set and 

kept the same within one database for different masks. 

Therefore the only factor that impacts the recognition 

performance is the iris segmentation approach. The training 

and testing protocols are detailed in supplementary file [24].  

The Receiver Operating Characteristic (ROC) curves for 

the employed datasets using iris masks from comparative 

approaches are shown in Figure 11. From Figure 11 we can 

see that the experiments using the proposed iris 

segmentation approach produce better ROC than those 

using other segmentation approaches, clearly for FRGC 

and CASIA.v4-distance. For UBIRIS.v2, the proposed 

approach also improves the verification rate at lower false 

accept rate (FAR). Above experiments illustrate that the 

proposed iris segmentation approach not only provides the 

best segmentation accuracy but also offers noticeable  

improvements in the final iris recognition performance. 

4. Conclusions 

This paper has developed a more accurate iris segmentation 

framework to automatically segment iris image acquired 

under less-constrained imaging environment. The proposed 

approach introduces a new total-variation based energy 

regularizer incorporated with an l
1
 norm, in which the 

slowly varying components of image structure such as 

eyelid, limbic boundaries, etc., and the surrounding texture 

and noise are differently penalized. In addition, an efficient 

solution for the proposed energy regularizing formulation 

is given. Such an approach allows us to reliably extract the 

eye structure for more accurately localizing iris and pupil 

circles for further segmentation. Our work also introduced 

a series of novel post-processing operations that exploit 

local (but often varying) distribution characteristics to 

adaptively refine pupillary and limbic boundaries. The 

overall framework has shown to be highly robust to achieve 

significant improvement in segmentation accuracy as well 

as iris recognition performance from publicly available iris 

databases that are under both VW and NIR spectrum. 

The RTV-L
1
 texture removal approach introduced in this 

paper is not only significant for the noisy iris segmentation 

but can also be potentially employed to solve other texture 

or object segmentation tasks which require removal of 

accompanying noise. The adaptive local intensity analysis 

developed in our work has been greatly successful in 

increasing the robustness of the proposed approach under 

less-constrained imaging. Such adaptive decision-making 

strategies can also be effectively used in other challenging 

problems in surveillances and remote sensing that often 

suffer from less stable illumination conditions and 

unwanted occlusions. The framework developed in this 

work provides robust and effective prerequisite for 

researchers and applications which attempt to perform 

accurate iris recognition on noisy images acquired under 

less-constrained environment and at-a-distance. 
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Figure 11: ROC curves of iris recognition experiments using iris masks generated from different segmentation approaches for (a)

UBIRIS.v2, (b) CASIA.v4-distance and (c) FRGC. 
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