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By combining particle swarm optimization (PSO) and genetic algorithms (GA) this paper o�ers an innovative algorithm to
train arti	cial neural networks (ANNs) for the purpose of calculating the experimental growth parameters of CNTs. �e paper
explores experimentally obtaining data to train ANNs, as a method to reduce simulation time while ensuring the precision of
formal physics models.�e results are compared with conventional particle swarm optimization based neural network (CPSONN)
and Levenberg–Marquardt (LM) techniques. �e results show that PSOGANN can be successfully utilized for modeling the
experimental parameters that are critical for the growth of CNTs.

1. Introduction

Increasing requirements for high manufacturing e
ciency
such as low throughput time, better product quality, and
cheaper 	nished parts are still driving the equipment man-
ufacturers and the fabrication industries in their search
for new technologies. �e increasing requirements drive
the industry to search for smaller transistors, where size
reductions result in higher clock frequencies and lower power
dissipation. CNTs show promise in satisfying the need for
smaller transistors as a result of their physical and electrical
properties [1, 2]. �e mechanisms involved in growing CNTs
are o�en complex with numerous experimental parame-
ters that need precise control and o�en the growth-rate is
very slow. Moreover, the growth process involves precursor
materials, hydrocarbons, carrier gases, expensive equipment,
and high thermal budget. Generating a simulator platform
that allows us to optimize the growth parameters before
conducting trial and error optimization through experiments
will greatly save time and money. �erefore, in this paper,
we present a novel algorithm by combining both particle

swarm optimization (PSO) and genetic algorithm (GA)
which predicts the experimental growth results of CNT and
allowsmaking parameter optimization less cumbersome. Ton
et al. [3] have presented a numerical piecewise nonlinear
approximation of the nonequilibrium mobile charge density
to be used in the modeling of CNT transistors. Similarly,
Yamacli andAvci [4] have developed a parameterisablemodel
of CNTFET nanoelectronics. Recent advances in ANNs have
beenmade possible through the e�orts tomodel and simulate
the behaviour of CNTS. �rough the imitation of biological
systems and analysis of brain structures these ANNs have
developed human-like performance [3–6].

However, ANNs used for pattern classi	cation and opti-
mization problems o�en su�ered from issues such as 	nd-
ing appropriated architecture to perform the satisfactory
modeling performance [7]. Considerable research has been
conducted in the development of new architectures and
learning algorithms of the neural networks to achieve this
objective, such asmodular neural networks [8], hybrid neural
networks [9], and evolutionary algorithms and evolutionary
programming [10].
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Seeking improved performance of conventional neural
networks, researchers [11, 12] have turned toGA.�ree evolu-
tionary operations are required to implement aGA: selection,
crossover, and mutation. It has been found in experiments
that, with large training samples, the convergence speed for
the GA would be signi	cantly reduced [13]. Furthermore,
application of the crossover operation in GA to neural
networks can result in what is known as the “permutation
problem.” Consequently, the employment of GA is seen as
a generally complicated process. Recently, other evolutionary
techniques such as PSO have been applied in other branches
of engineering [14, 15]. By contrast, the PSO algorithm does
not have two of the evolutionary operators of GA (crossover
and mutation). �e reduction in parameters yields a faster
convergence which is easier to implement [16]. Accordingly,
PSOs are suitable for approaching dynamic or problems that
change rapidly over time [17].

�e superiority of PSO and GA to the BP algorithm
stems from the ability of PSO and GA trained ANNs to deal
with nondi�erentiable functions and work without gradient
information. But one of the most notorious problems with
the application of crossover to neural networks is known
as falling in the local minimums and failing to converge.
�is problem is more visible when the number of data sets
is not enough. Another common problem in conventional
NNs is over	tting. If the number of weights of NN exceeds
the number of data sets for the training of NN to some
extent, “over	tting” may occur. GA are capable of isolating
global optimums and, however, converge at low speed to
this optimum. On the other hand, PSOs converge quickly
albeit at a greater risk of isolating and being trapped at a
local optimum. �e optimization problem that arises from
attempts to balance these two techniques can be solved
by particle swarm intelligence. In order to overcome the
downsides associated with each algorithm a combination of
GA and PSO may be used which is referred to as GAPSO.

In GA, the binary strings of the initial population are
generated randomly, so di�erent runs ofGAo�en give similar
results. �e idea of PSOGANN is to select these initial
populations appropriately by using PSONN.

As mentioned before, in the case of lack of enough
training data for network, neither conventional PSO nor
GA based NN can provide a proper learning method for
trainingNNs.Having a robust algorithm that could be trained
with less training data could be a promising method for
the application of NNs in microelectromechanical system
(MEMS) fabrication and many other engineering 	elds.

In this study, a novel PSO-GA based neural network is
proposed for improving the training capacity of neural net-
work. To evaluate the performance of the proposed PSO algo-
rithm, the training capacity of improved PSO-based ANN is
	rst tested and then compared to that of a conventional PSO-
based ANN and a back propagation-based ANN, using the
experimental data obtained from carbon nanotube growth
process. Optimal back propagation-based neural network
architecture is designed using MATLAB Neural Network
Toolbox. Programs of PSOGANN and conventional PSO-
based ANN are accomplished in C++.

2. Genetic Algorithm

A GA emulates the evolutionary characteristic of survival of
the 	ttest. At each phase, encoded chromosomes are simu-
lated; the algorithm establishes the strength of each chromo-
some. �e chromosomes mutate with crossover producing
the next generation. �en the process repeats. �e input
parameters for GA are a set of solutions (the chromosomes of
theGA) and a 	tness function de	ning success characteristics
and stopping criteria. At each step of the algorithm chromo-
somes are 	rst evaluated for suitability against the success
characteristics. Subsequently successful chromosomes are
randomly pooled to mate. Pairs of chromosomes in this
pool randomly share genetic information with each other.
�e chromosomes are evaluated against the stopping criteria.
�en the process repeats if the criteria are not met. �ese
features of GAmake it adequate for handling large, nonlinear
problems with unpredictable results. Relying on multipoint
search and algorithmic features, the chance of convergence to
the universal optimal solution ismuch higher than the chance
of falling into a local optimal solution. GA has a positive track
record successfully having dealt with problems in a variety of
	elds, including but not limited to optimization, fuzzy logic,
NN, expert systems, and scheduling [11].

3. IPSOGA Based ANN

Particle swarm optimization is a population based stochastic
optimization algorithm. In PSO algorithm the potential
solutions, called particles, including weights and thresholds
vectors �y through the problem space by following the cur-
rent optimal particles. During training, a�er initializing PSO
parameters using a group of random particles (solutions),
optimal solution is achieved through the solution space [9].
�erefore, the velocity and position of the obtained optimal
solution are updated according to its own experience and
global cooperation. Despite regular PSOs converging rapidly
on solutions, they may o�en become trapped within local
maxima and minima [12]. To obviate this problem and
improve its training capacity, a developed PSO algorithm is
proposed. An improvement to the PSO algorithm is proposed
by considering best and worst case particle positions. By
nature of the algorithm best case positions will gravitate
towards the optimal positions, away fromworst case positions
[13, 18].

Individual particles in the swarm are represented by �-
dimensional position and velocity vectors contained in �, the
search space:

�� = [��1, ��2, . . . , ���] ���,

	� = [V�1, V�2, . . . , V��] ���.
(1)

�e evaluation of each particle is performed against
the success function, with individual best positions being
cumulatively stored in a position vector:


� = [
�1, 
�2, . . . , 
��] �. (2)

A global optimum position, 
�, is established from an
evaluation of individual positions.
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Between each iteration the new velocity of each particle
is calculated from the distance to the global best position, the
local best position, and an inertia weight from the previous
velocity:

	 (� + 1) =  ∗ 	 (�) + �1�1 (
� (�) − �� (�))

+ �2�2 (
� (�) − �� (�)) ,
(3)

where �� ∗ �� yields a randomly distributed acceleration
coe
cient.

�e updated position can be given by taking the sum
of the previous position and current velocity over the next
iteration:

�(� + 1) = � (�) + 	 (� + 1) . (4)

�e proposed algorithm (PSOGANN) is developed by taking
advantage of both PSO and GA into the training process.
A stopping criterion (which can be either the maximum
number of iterations or reaching to a certainMSE) is imposed
and if the PSO is unable to meet the stop criteria, the
best population for GA (including weights and biases) is
determined by PSO and GA will again search for the best
parameter set. �is process will continue until the stop
criterion is satis	ed. Figure 1 shows the �ow chart of the
proposed algorithm and details are presented below.

Step 1. Initialization of PSOGANNparameters:�is includes
(a) determination of the initial PSONN parameters (�1, �2,
�3, , 	max, and 	min); (b) select weights and biases for
the network randomly (	rst iteration); (c) selecting initial
position and velocity vectors for all the particles (randomly);
(d) selecting initial values of 
�(�) and 
�(�) randomly; (e)
determination of number of circuits of group 1, which is
number of generations where PSO can try to meet the
stopping criteria in each step before its current best particle
(
�(�)) is saved as one of the GA’s populations; (f) number of
circuits of group 2, which is number of initial populations in
GA.

Step 2. Compute 	tness of individual particles by the feedfor-
ward network.

Step 3. (a) Perform PSO operators to 	nd the best PSONN
parameters. (b) Update weights and thresholds according to
equations (1) and (2) until “counter 1 > number of circuits of
group 1” is satis	ed.

Step 4. (a) Best position of PSO algorithm saves as an
initial population for GA; (b) counter 1 resets; (c) algorithm
continues to search for the optimal PSO parameters for the
current set of network weights and biases until the tolerance
is met in Step 3.

Step 5. (a) If the tolerance is not met a�er the maximum
number (counter 2), performGA algorithmby initial popula-
tions which are saved by PSO in previous steps. (b) Continue
until stop criterion is met in Step 4.

4. Carbon Nanotube Growth Process

4.1. Sample Preparation. A 4�� silicon wafer was oxidized
with an oxide layer of 1�m thickness on both sides, which
could function as a bu�er layer to circumvent the interaction
of catalyst particles with the silicon during CNT growth
process. �en a layer of Fe catalyst was deposited onto its top
surface with the nominal thickness of 2 nm by electron beam
evaporation. A�er slicing the wafer into small samples, the
samplewas kept in theCVDquartz chamber forCNTgrowth.

4.2. Growth Process. In these experiments, we set the initial
temperature ramping rate as 50∘C/min and the 	nal CNT
growth temperature �� = 725∘C in the control program, and
the pressure inside the chamber was maintained at about
11 Torr. Based on the temperature pro	le of the substrate as
shown in Figure 2(A), the growth could be divided into 3
steps. Similar to our previous CVD processes [16, 17, 19], the
gas mixture of hydrogen (H2) and argon (Ar) was provided
throughout the 3 steps: Ar functions as the carrier gas and
helps to dilute the acetylene (C2H2) concentration, while
H2 acts as the reductive agent to refresh the activity of
catalyst particles during the growth [20]; the carbon source
C2H2 was only introduced in the second step to initiate and
maintain the CNT growth. �e gas �ow rate was controlled
and monitored in situ with mass �ow controller.

To begin with (starting from time � = �0), the temperature
� increases dramatically from initial temperature �0 (usually
its room temperature) towards the growth temperature ��
(725∘C here). �e temperature ramping rate is not constant
with time; instead it decreases as � is approaching ��.

When the temperature reached �� (�1), the second step
began. �e catalyst layer went through some minutes of
pretreatment (annealing), so as to further turn its thin
	lm morphology into isolated small particles by increas-
ing surface tension. �en at time �2, the C2H2 gas was
introduced into the chamber to initiate the CNT growth.
A�er 30 minutes of growth, C2H2 supply was stopped at
�3, and the system started to cool down until below 200∘C,
when the samples could be taken out for characterizations.
�e surface morphology and the length of the as-grown
CNTs on substrate were characterized with scanning electron
microscopy (SEM), Hitachi S-3500N. Typical SEM image
of the CNT mat is shown in Figure 2(B)(a), the as-grown
CNT mat is perpendicular to the substrate top surface,
with uniform thickness of about 320�m, and the closer
look in Figure 2(B)(b) reveals that these CNTs are densely
packed with a bit wavy entanglement between them. �e
transmission electron microscopy (TEM, model: FEI Titan)
is used to characterize the structure of CNTs with very high
resolution. As shown in Figure 2(B)(c)-(d), the CNTs grown
here are multiwall carbon nanotubes (MWCNTs) with 10–30
walls and 10–30 nm in outermost diameter.

5. Modeling Results and Discussions

In this study, 	ve input patterns were used during the CNT
growth (values of C2H2, Ar, H2, pretreatment, and growth
duration) and length of CNT is considered as the only output.
�e set of training data is comprised of 90% experimental
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Figure 1: Flow chart of the proposed neural network trained by hybrid PSO and GA algorithms.

data (43 groups). 10% (5 groups) of data was randomly set
aside for testing purposes. Stop criteria were selected with
either 1500 as iterations or 0.005 as minimum error (MSE)
condition for all networks. A preliminary analysis was per-
formed on conventional NNs which has not been presented
in this paper to establish a control for comparison with the
proposed PSOANN.�e LM-NNperformed best in both the
training and test data sets out of traditional NNs, yielding the
lower mean-square-error, MSE. Tables 1 and 2 compare the

performance of CPSONN LM-NN and IPSOGANN. In both
training and testing phases IPSOGANN proved superior to
CPSONN and LM-NN. �e data suggests IPSOGANN can
provide a 55% (MSE) improvement over CPSONN and 80%
(MSE) improvement over LM-NN. During the training it is
also found that in terms of speed of convergence (number
of needed iterations to meet the stop criteria) PSONNGA
is approximately 80% faster as compared to CPSONN (see
Figure 3).
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Table 1: Optimized parameters for LM-NN, CPSONN, and PSOGANN parameters.

	
max

	
min

�1 �2 � Number of particles Architecture

LM-NN — — — — — — 5-6-3-1

CPSONN 6 −6 2.0 1.9 0.9 30 5-4-4-1

PSOGANN 7 −5 1.5 2.1 0.9 30 5-7-3-1

Table 2: Comparison between LM-NN, CPSONN, and IPSONN for (a) Model I and (b) Model II.

LM-NN CPSONN PSOGANN

Train Test Train Test Train Test

MSE (m2) 0.244 0.269 0.091 0.106 0.041 0.057

�2 0.760 0.789 0.895 0.873 0.918 0.902

NS 0.712 0.745 0.807 0.778 0.886 0.854
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6. Conclusion

�is study proposed a novel algorithm based on PSO and GA
for trainingANNs (PSOGANN). Application of the proposed
algorithm for modeling growth of CNTs is discussed. In
particular, proposed model has demonstrated about 40%
improvement in o�ine training average error in comparison
to those of conventional PSO-based ANN algorithm. PSO-
GANN can be trained extremely quickly, which makes it
possible to perform a large number of evaluations required
by GA. �is method is less sensitive to the permutation
problem and improves the results of the evolved networks.
�is method can highly solve some critical issues associated
with traditional neural network systems such as over	tting
and falling in local minimum.
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