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In recent years, cancer has become a severe threat to human health. If we can

accurately identify the subtypes of cancer, it will be of great significance to the research

of anti-cancer drugs, the development of personalized treatment methods, and finally

conquer cancer. In this paper, we obtain three feature representation datasets (gene

expression profile, isoform expression and DNA methylation data) on lung cancer and

renal cancer from the Broad GDAC, which collects the standardized data extracted from

The Cancer Genome Atlas (TCGA). Since the feature dimension is too large, Principal

Component Analysis (PCA) is used to reduce the feature vector, thus eliminating the

redundant features and speeding up the operation speed of the classification model. By

multiple kernel learning (MKL), we use Kernel target alignment (KTA), fast kernel learning

(FKL), Hilbert-Schmidt Independence Criterion (HSIC), Mean to calculate the weight

of kernel fusion. Finally, we put the combined kernel function into the support vector

machine (SVM) and get excellent results. Among them, in the classification of renal cell

carcinoma subtypes, the maximum accuracy can reach 0.978 by using the method of

MKL (HSIC calculation weight), while in the classification of lung cancer subtypes, the

accuracy can even reach 0.990 with the same method (FKL calculation weight).

Keywords: cancer subtypes classification, SVM, multiple kernel learning, gene expression profile, isoform

expression, DNA methylation

INTRODUCTION

Cancer is one of the most severe diseases endangering human life and health in the world. Among
them, lung cancer and kidney cancer, which are the top ten killers of cancer, are the leading
causes of cancer death. Lung cancer includes small cell lung cancer (SCLC) and non-small cell
lung cancer (NSCLC). Lung adenocarcinoma (LUAD) and Lung squamous cell carcinoma (LUSC),
two subtypes of NSCLC, accounting for about 85% of lung cancer (Herbst et al., 2018). Among the
common types of renal cell carcinoma (RCC), Kidney renal clear cell carcinoma (KIRC) (75–80%),
Kidney renal papillary cell carcinoma (KIRP) (10–15%), and Kidney Chromophobe (KICH) (5%)
account for the vast majority. Correct diagnosis of cancer subtypes is helpful to find potential
therapeutic targets and new drug development, so that reduce the mortality of cancer. At present,
it is challenging to classify subtypes by traditional pathological analysis. The mature sequencing
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technology makes it possible for people to obtain a large
number of gene expression profiles. According to the above gene
expression data, early diagnosis of cancer can be made based on
gene expression profiles even if some tissues of organisms have
not changed significantly. Moreover, it also provides an excellent
help for the classification of cancer subtypes.

In the classification of NSCLC subtypes, some studies
have shown that the characteristics of mRNA expression or
gene histology contribute to the conventional histopathological
classification (Jun, 2010; Girard et al., 2016). In addition,
we can also consider the relationship between genes, not
just individual genes (Su et al., 2019). However, in the
subtype classification of renal cell carcinoma, MiRNA signature
obtained using quantitative reverse transcription-polymerase
chain reaction (QRT-PCR) analysis has been proved to be
effective in the classification of RCC subtypes (Youssef et al.,
2011). Furthermore, using ensemble classification methods can
get better results than a single machine learning algorithm (Park
et al., 2018). All methods only focus on one feature of cancer or
the correlation of one feature to classify cancer subtypes, while
ignoring the influence of other characteristics.

At present, computational methods (Zeng et al., 2018; Qi
et al., 2019) have been widely applied to biological problems. It is
mainly divided into two directions: one is the traditional machine
learningmethod, which includesmostly Logistic Regression (LR),
K-Nearest Neighbor (KNN), RF (Random Forest), SVM, etc.; and
the other is multiple kernel learning (Ding et al., 2020b; Guo
et al., 2020; Liu et al., 2020; Zou et al., 2020). It maps different
feature components of heterogeneous data with different kernel
functions so that the data can be better expressed in the new
feature space, and the classification performance is significantly
improved. Multiple kernel learning has been widely used in the
field of computational biology, for example, protein function
identification (Ding et al., 2020a), drug-side effect association
(Ding et al., 2018; Yijie et al., 2019), drug-target interactions
(Ding et al., 2019), etc.

In this paper, we use the classical machine learning
algorithm SVM to classify cancer subtypes based on gene
expression, isoform expression and methylated expression.
Because gene expression profiles are generally obtained by gene
chip sequencing in biological systems. However, there are a huge
number of genes in the cells of organisms, so the microarray data
we get will also present the characteristics of small samples, high
latitude, high noise, uneven distribution and so on. Therefore, it
is necessary to use the PCA method to extract effective data from
massive cancer features. It is worth mentioning that PCA is used
to reduce the dimension of features data used in this experiment,
and the dimension of features can differ by thousands of times. In
addition, we use cross-validation method to make the algorithm
more robust and get more accurate and reliable results. Finally,
we construct the kernel function by features, and then apply
multiple kernel learning (weight is calculated by HSIC, FKL,
KTA, meanmethods) to combine the kernel functions of multiple
features into SVM, to get more excellent results. The flowchart is
shown in Figure 1.

In the classification of lung cancer and kidney cancer subtypes,
we have achieved the excellent results (the accuracy of kidney

cancer: 0.978, the accuracy of lung cancer: 0.990). Identifying
more accurate cancer subtypes will not only help to provide more
appropriate individualized treatment suggestions for diseases in
real life, but also promote the discovery of potential therapeutic
targets and the development of new drugs, so as to improve the
survival rate of patients.

In the section of “Materials and Methods,” we mainly
introduced the data source, subtype types and data set size of
lung cancer and renal cancer. Next, the dimension reduction
method PCA and machine learning algorithm SVM used in
the experiment are described in detail. Then, it is introduced
the feature kernel construction method applied in SVM and
the kernel fusion method applied in multi-kernel learning. The
next section result shows the method of establishing model and
evaluation criteria used in the experiment. After that, we draw
the TSNE visualization graph of the reduced features and show
the experimental results of different features in random forest,
different classifiers, single-kernel SVM and multi-kernel SVM.
In the last section of the paper, the conclusion summarizes the
specific process of the experiment and the prospect of the paper.

MATERIALS AND METHODS

Datasets
We obtain the cancer subtype data from the experiment in
Broad GDAC (Xiao and Yang, 2016), which collects and analyzes
the standardized data extracted from The Cancer Genome
Atlas (TCGA) (Tomczak et al., 2015). We extract two cancer
datasets, including renal cancer (RCC) and non-small cell lung
cancer (NSCLC). RCC has three subtypes: Kidney Chromophobe
(KICH), Kidney renal clear cell carcinoma (KIRC), Kidney renal
papillary cell carcinoma (KIRP), where 113 samples in KICH,
537 in KIRC and 323 in KIRP. NSCLC has two subtypes: Lung
adenocarcinoma (LUAD) and Lung squamous cell carcinoma
(LUSC), where 585 samples in LUAD and 504 in LUSC. In
addition, we remove the redundant data from the features
(retain the cancer samples with sample number of 01–09), and
get the sample cases with three dimensions information (gene
expression, isoform expression and methylated expression) at
the same time. We added tag information to each case. Finally,
the lung cancer data set consists of two background subtypes,
LUSC and LUAD, with a total sample number of 824; the renal
cancer data set consists of KICH, KIRC and KIRP, with a total
number of 658 samples.

Feature Dimension Reduction
We use three different feature sets, such as gene expression,
isoform expression and methylation expression. However, the
feature dimensions are too large that the smallest dimension
has reached more than 20,000, so it is necessary to reduce the
dimension of features. We mainly use Principal Component
Analysis (PCA) (Jolliffe, 2002) to reduce characteristic
dimensions of gene expression, isoform expression and
methylated expression. We find that the dimension of gene
and meth feature for kidney and lung is the best at about 40.
Compared with isoform feature, the dimension of kidney feature
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FIGURE 1 | The flowchart of our proposed method.

FIGURE 2 | Feature dimension reduction.

is reduced to 20, and the dimension of lung feature is reduced to
30. The dimension of feature reduction can be shown in Figure 2.

Support Vector Machine
Support Vector Machine (SVM) was proposed by Cortes and
Vapnik (1995), by calculating the maximum margin hyperplane,
be mainly applied to classification and regression problems. SVM
is one of the kernel learning methods. It can be used to solve
non-linear problems by mapping the low-dimensional feature to
high-dimensional space.

In our experiment, we mainly use Pearson Correlation
Coefficient, Cosine Similarity and Tanimoto Similarity to make
kernel function, and build multi-kernel learning method to
calculate the weights of kernel function throughHSIC, KTA, FKL,
andMeanmodels, so as to classify the subtype data of renal cancer
and lung cancer.

Kernel Construction
Tanimoto Similarity

Tanimoto similarity (Rogers and Tanimoto, 1960) is mainly
used to calculate the similarity between individuals measured by
symbols or boolean values. The larger the coefficient value is, the
higher the sample similarity is. Now it has been widely used in
biological data analysis. If the value is a binary vector, then the
Tanimoto similarity coefficient is equal to the Jaccard distance.
The tanimoto similarity can be computed as Eq. 1:

Ej(A,B) = A·B
|A|2+|B|2−A·B

A · B = ∑
i AiBi |A|2 = ∑

i A
2
i

(1)

where A and B are two vectors,A · B representing vector product,
|A|2 and |B|2 are norms of the vector.
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Pearson Correlation Coefficient

Pearson correlation coefficient (Williams, 1996) reflects
the degree of correlation between the two variables, with
the value between [−1, 1]. As the correlation coefficient
approaches the value of -1 or 1, the linear relationship
increases. If the coefficient is equal to 0, there is no linear
relationship. Pearson correlation coefficient is expressed
in the mathematical formula (2) as the covariance of two
variables divided by the standard deviation of two variables
as follows:

ρa,b = cov(a, b)

σaσb
(2)

where cov (a, b) is the covariance of variables a and b,
σaσb represents the standard deviation of variables a and
b, respectively.

Cosine Similarity

Cosine similarity is used to measure the difference between
two individuals. Compared with the first two kernel function
making methods, cosine similarity pays more attention to
the difference between vector positions in direction than in
distance or length. In essence, it is to calculate the cosine
value of the angle between two vectors, which can be expressed
as Eq. 3:

s(M,N) = cos θ = Em · En
|m| · |n| (3)

Multiple Kernel Learning
Compared with a single kernel function, multi-kernel learning
(Gönen and Alpaydın, 2011) must be more flexible and
developable. The mapping space of multiple kernel function
is composed of the feature space for each single kernel
function. Obviously, the combination space canmap the different
feature components of heterogeneous data through a suitable
kernel fusion model, which has more accurate and reasonable
expression, so as to improve the classification accuracy. We
mainly use the multi-kernel linear combination method, which
is essentially a linear combination of all kernel functions. Given

Ki is the i-th kernel matrix, β i is the i-th weight of the matrix, the
multi-kernel fusion function can be described as Eq. 4:

K =
∑

i

βiKi (4)

∑

i

β i = 1βi ≥ 0

Hilbert-Schmidt Independence Criterion

Hilbert-Schmidt Independence Criterion (HSIC) is to measure
the distribution difference between two variables (Gretton et al.,
2005; Wang et al., 2016), which is similar to covariance. The
construction method depends on the covariance operator in
Hilbert space as Eq. 5:

HSIC(Z(a)Z(b)) = (n − 1)−2tr(KaHKbH) (5)

where Z(a) and Z(b) are two different data sets, n is the number
of samples, tr(x) is the trace of matrix X, Ka , Kb

, H∈ℜm×m , Ka ,

Kb
is gram matrix of data set, Hij=δij − 1

m is a matrix with a
mean value of 0.

Fast Kernel Learning

Referring to the description of fast kernel learning (FKL) (Shen
et al., 2019a), in multi-kernel learning, we think that the target
similarity matrix K should be close to the label similarity
matrix Y, where Y=yyT . To prevent overfitting, we usually add a
regularization term |α|2 . Therefore, the solution of multi-kernel
fusion weights can be sorted into a quadratic programming
problem as Eq. 6:

min
α,k

|K−Y|2F + λ |α|2 (6)

s.t.

J∑

w=1

αw = 1

Where F is Frobenius norm, λ is an equilibrium coefficient, and J
is the number of kernel functions.

The formula can be further derived. Since the Frobenius norm
of a matrix is equal to the trace of the product of the matrix and
its transposed matrix, |A|2F=tr(AAT). The formula can be simplified
as Eq. 7:

min
α

αT(A + λI)α − 2bTα

s.t.

J∑

w

αw = 1 (7)

αw ≥ 0,w = 1, ..., J

Here I is the identity matrix of the same size as A.

Kernel Target Alignment

Kernel target alignment (KTA) (Shen et al., 2019b) is mainly used
to calculate the weight of kernel in multi-core learning. If wα

is
used to represent the score of KTA, the greater the value ofwα

,
the greater the correlation between the two kernels, which makes
a higher contribution to the composite kernel with Ftrain aligned
kernel matrix, and vice versa. The alignment between Kα

andKideal

is called kernel target alignment (KTA). The ideal kernel matrix
(Kideal

) is calculated as Eq. 8:

Kideal = FtrainF
T
train (8)

Fraction formula (9) for calculating KTA:

wα = 〈Kα,Kideal〉F
|Kα|F |Kideal|F

(9)

Where 〈X,Y〉F represents Frobenius inner product Trace (·).|X|F
stands for Frobenius norm.
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RESULTS

Cross Validation
Cross validation can effectively avoid overfitting and improve
the generalization ability of the model. Main idea is to divide
the dataset into N subsets, randomly select N-1 subsets as the
training set, the rest as the prediction set, to get the performance
evaluation index of the classifier. This process continues until all
subsets are predicted and only once. The final model evaluation
results are obtained by combining N evaluation results. In our
experiment, we mainly use the twofold cross validation to train
and evaluate our model.

Evaluation Metrics
We evaluate the classifier based on sensitivity (SN), specificity
(SP), accuracy (ACC), Mathew’s correlation coefficient (MCC) as
Eqs 10a–d.

SN = TP

TP + TN
(10a)

SP = TN

TN + FP
(10b)

ACC = TP + TN

TP + TN + FP + FN
(10c)

MCC =

TP × TN−FP × FN√
(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

(10d)

where TP, FP denote true positive, false positive; TN, FN denote
true negative, false negative.

In addition, we draw the receiver operating characteristic
(ROC) curves to better describe the data. We also get
the area under curve (AUC) values by calculating the area
of the ROC curve.

Analysis of Feature Dimension Reduction
Three feature sets, such as gene expression profile (gene),
isoform expression (isoform), DNA methylation data (meth),
construct kernel functions by cosine similarity (cosine), pearson
correlation-based similarity (pearson), tanimoto similarity
coefficient (tanimoto), and then cross-validation in SVM. It is
necessary to reduce the dimension of the feature on the premise
of slightly losing accuracy.

Tsne Feature Visualization

Tsne is a non-linear dimensionality reduction method, which can
map the high-dimensional feature data to the low-dimensional

FIGURE 3 | Feature visualizations on RCC. (A): feature set of gene expression profile; (B): feature set of isoform expression; (C): feature set of DNA methylation.

FIGURE 4 | Feature visualizations on NSCLC. (A): feature set of gene expression profile; (B): feature set of isoform expression; (C): feature set of DNA methylation.
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space, so that it can be visualized in the graph. Feature
visualizations on RCC and NSCLC are shown in Figures 3, 4.

Performance of Various Classifiers

Three dimensionally reduced features are put into random forest
to get the results of Table 1. The best result of the kidney is gene
feature with ACC of 0.951 and MCC of 0.917, and the best result
of lung is meth feature with ACC of 0.973 and MCC of 0.946. All
reduction features are feed into four classifiers, such as SVM, RF,

TABLE 1 | Results of different characteristics in random forest after

dimensionality reduction.

RF SN SP ACC MCC AUC

Kidney Gene 0.951 0.975 0.951 0.917 0.986

Isoform 0.927 0.963 0.927 0.875 0.979

Meth 0.946 0.973 0.946 0.909 0.992

Lung Gene 0.971 0.883 0.932 0.864 0.976

Isoform 0.951 0.862 0.911 0.821 0.964

Meth 0.977 0.967 0.973 0.946 0.996

KNN, LR, as shown inTable 2. Moreover, we also plot ROC curve
to better describe the data, as shown in Figures 5A,B.

TABLE 2 | Results of different classifiers after feature dimension reduction.

SVM SN SP ACC MCC AUC

Kidney 0.940 0.970 0.940 0.899 0.975

Lung 0.980 0.9 0.944 0.888 0.981

RF SN SP ACC MCC AUC

Kidney 0.924 0.962 0.924 0.871 0.984

Lung 0.982 0.929 0.958 0.917 0.990

KNN SN SP ACC MCC AUC

Kidney 0.936 0.968 0.936 0.893 0.968

Lung 0.951 0.867 0.913 0.826 0.971

LR SN SP ACC MCC AUC

Kidney 0.898 0.949 0.898 0.831 0.956

Lung 0.929 0.918 0.924 0.849 0.970

FIGURE 5 | ROC curve of different classifiers and difference methods of kernel fusion on RCC and NSCLC. (A) The ROCs of different classifiers on Kidney cancer

dataset; (B) The ROCs of different classifiers on Lung cancer dataset; (C) The ROCs of different MKL algorithms on Kidney cancer dataset; (D) The ROCs of different

MKL algorithms on Lung cancer dataset.
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TABLE 3 | Results of different kernel functions with different features in SVM.

Kidney SN SP ACC MCC AUC

Gene Cosine 0.955 0.978 0.955 0.925 0.984

Pearson 0.955 0.978 0.955 0.925 0.984

Tanimoto 0.957 0.978 0.957 0.927 0.988

Isoform Cosine 0.948 0.974 0.948 0.913 0.979

Pearson 0.948 0.974 0.948 0.913 0.981

Tanimoto 0.936 0.968 0.936 0.892 0.973

Meth Cosine 0.980 0.990 0.980 0.966 0.997

Pearson 0.978 0.989 0.978 0.964 0.998

Tanimoto 0.975 0.987 0.975 0.958 0.997

Lung SN SP ACC MCC AUC

Gene Cosine 0.986 0.908 0.951 0.903 0.983

Pearson 0.982 0.905 0.947 0.895 0.984

Tanimoto 0.971 0.924 0.950 0.900 0.982

Isoform Cosine 0.975 0.913 0.947 0.895 0.983

Pearson 0.971 0.918 0.947 0.895 0.983

Tanimoto 0.969 0.916 0.945 0.890 0.983

Meth Cosine 0.989 0.994 0.991 0.982 0.998

Pearson 0.988 0.986 0.987 0.975 0.999

Tanimoto 0.993 0.994 0.993 0.987 0.999

TABLE 4 | Results of different kernel fusion methods in SVM.

Kidney SN SP ACC MCC AUC

HSIC 0.978 0.989 0.978 0.964 0.998

FKL 0.957 0.978 0.957 0.927 0.990

KTA 0.963 0.981 0.963 0.938 0.994

Mean 0.966 0.983 0.966 0.943 0.995

Lung SN SP ACC MCC AUC

HSIC 0.978 0.972 0.975 0.951 0.997

FKL 0.988 0.991 0.990 0.980 0.999

KTA 0.988 0.989 0.989 0.978 0.999

Mean 0.988 0.986 0.987 0.975 0.999

Evaluation of Kernel Construction
After dimensionality reduction, three feature sets
are constructed by different kernel construction
methods as cosine, pearson and tanimoto, and put
into SVM classifier for cross- validation. Results are
shown in Table 3. It is not difficult to find that the
dimensionality reduction features can be used to classify
cancer subtypes.

Evaluation of Multiple Kernel Fusion
The characteristic gene + tanimoto, isoform + pearson, meth
+ cosine kernels of Kidney with the best results are fused by
HSIC, KTA, FKL, and Mean weighted methods, and it is found
that HSIC fusion method has better effect. The characteristic
gene + cosine, isoform + cosine and meth + tanimoto of Lung
with the best results are fused by HSIC, KTA, FKL, and Mean
weighted methods, and it is found that FKL fusion method is
the best. All results are shown in Table 4. Also, we plot ROC

curves for four different methods of kernel fusion shown in
Figures 5C,D.

CONCLUSION

In this paper, we obtained the data of two cancer subtypes
(lung cancer and renal cancer) from Broad GDAC Firehouse,
which collections and analyses the standardized data extracted
from TCGA. We use Principal Component Analysis (PCA)
method to reduce the dimension of features. The features are
constructed into kernel functions by using cosine, pearson,
tanimoto and other similarity measurement methods. Then
the multiple kernel learning (MKL) method (KTA, FKL,
HSIC, mean to calculate the weight of kernel fusion) is
used to combine multiple kernel functions into a combined
kernel function. Finally, the calculated kernel function
is put into SVM to predict cancer subtypes. In addition,
compared our model with some commonly used machine
learning algorithms, such as random forest, linear regression,
LR, and so on, our model has achieved good results. Our
method also has some limitations. For example, we also
calculated the feature data before dimension reduction by
the above method. The results show that the characteristic
dimension of the data after dimension reduction is reduced
by several thousand times compared with that before
dimension reduction. Still, the accuracy is also reduced
by 3–4 percentage points. How to reduce the feature
dimension while minimizing the gap with the classification
result before dimension reduction is a problem we will
consider in the future.
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