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Abstract—This paper deals with the high accurate 

current set-points solution for Interior Permanent-Magnet 
Synchronous Motors (IPMSM) in wide-speed range 
applications. Considering voltage and current constraints, 
the operating regions can be divided into Maximum Torque 
Per Ampere (MTPA), Maximum Current (MC), Field 
Weakening (FW) and Maximum Torque Per Voltage (MTPV) 
regions, which requires to solve different non-linear 
functions in real time to obtain optimal current set-points. 
Traditional methods including curve-fitting methods and 
polynomial approximation (PA) methods are not easy to 
obtain these solutions, especially involving magnetic 
saturation problems. In this paper, Newton- Raphson (N-R) 
algorithm for improving the control accuracy of the current 
set-points is proposed. Meanwhile, parameters influence 
including magnetic saturation and resistive voltage drop is 
fully investigated. Compared with PA method, the proposed 
method is able to converge to accurate solutions in few 
numbers of iterations with reduced execution time, which 
can be easily implemented on an off-the-shelf Digital Signal 
Processor (DSP). Both simulation results and experimental 
results on an 8kW IPMSM rig are conducted showing good 
agreement with the expected results. 

 

Index Terms—Cross Saturation, flux-weakening control, 
interior permanent-magnet synchronous motors (IPMSM), 
magnetic Saturation, Newton-Raphson (N-R) method, 
resistive voltage drop 

I. INTRODUCTION 

nterior Permanent Magnet Synchronous Motors (IPMSM) 

are widely used in industrial applications such as in hybrid 

and electric vehicles, thanks to their high efficiency, wide speed 

range and power density capabilities. In some applications such 

 

as electric vehicles, where a wider speed range is required, the 

operating regions of an IPMSM needs to be extended from 

constant-torque region to constant-power region[1][2]. In general, 

the operating conditions can be summarized in four regions: 

Maximum Torque Per Ampere (MTPA), Maximum Current 

(MC), Field Weakening (FW), and Maximum Torque Per 

Voltage (MTPV). 

When the motor is operating under the base speed, the 

maximum torque per ampere (MTPA), which aims at 

minimising the copper loss, becomes more attractive. The 

works proposing MTPA control strategies can be mainly 

divided into three categories: 1) Mathematical-model-based 

MTPA calculations[3][4]; 2) Signal injection-based MTPA point 

tracking[5]-[8]; 3) Searching-method-based MTPA[9][10]. First 

methods including curve-fitting[3] and polynomial 

approximation[4], are proposed to solve nonlinear MTPA 

formula directly. However, inductance is regarded as linear 

variation with current and cross-saturation effect is ignored. 

Second methods utilized high frequency current injections [5][6] 

or voltage injections[8], MTPA points can be detected either 

from the torque or the speed response. However, the injected 

current signals may result in torque ripple problems. Third 

methods, aiming at minimising copper losses, present gradient 

method in [9][10]. However, most of the time, the variation of 

inductances with respect to the current is neglected for 

computation and implementation simplicity. 

When the speed of IPMSM goes up above base speed in MC 

region and FW region, the flux-weakening methods are needed, 

presented in [11]-[16]. Defined by the way to acquire more 

negative d-axis current, two approaches for implementing the 

flux-weakening control are presented as feedforward [11]-[14] and 

feedback [15]-[17] methods. In the feedforward approaches [11]-

[14], the intersections (solutions) involving current circle, 

voltage ellipse and torque hyperbola requires solving complex 

nonlinear equations online. To simplify the solving process, 

resistive voltage drop and magnetic saturation are often 

neglected[3][11], which loses the accuracy of the current set-

points. The resistive voltage drop, which causes the voltage 

ellipse shifting, can be compensated from control part in [11] or 

from calculation part using “Chord method” proposed in [12]-

[14]. In the feedback approaches [15]-[17], the negative d-axis 

current is automatically adjusted by tracking the voltage 
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constraint while the speed is increasing. These methods are 

considered robust because they do not need the prior knowledge 

of motor parameters, but this is at the expense of reduced 

performance during transients [17]. When the motor is operating 

in deep flux-weakening region, so-called MTPV region 

mentioned in [18]-[20], the MTPV is the intersection of the 

voltage ellipses with the highest torque hyperbola at saturated 

stator voltage. The common method proposed in [19] and [20] 

are mathematical model-based MTPV calculations. The same 

problems are parametric sensitive. 

All aforementioned open loop methods have an advantage on 

high dynamic response. However, in most of cases, the 

variation of inductances with respect to the current is neglected 

for computation simplicity. In fact, there are always some 

parameters uncertainties including inductance variations and 

permanent magnetic linkage variations [21]-[26]. Two common 

solutions including PA methods and parameter identification 

methods are investigated in related works. The former one 

applies PA methods for curve-fitting, such as first-order PA 

method in [21][22]. The inductance is considered linear 

variation with current. However, cross-saturation is ignored. 

The second-order PA methods, to achieve inductance 

approximation, are introduced to obtain MTPA and FW curves, 

which makes the curves a fourth order complicate nonlinear 

equations, discussed in [23]-[25]. The latter one such as PSO 

(Particle Swarm Optimization) are presented in [27]-[29], the 

identification results are compared with experimental results 

obtained by current decay test. The experimental accuracy is 

also key issue for practical use. 

Nevertheless, to the best knowledge of the authors, a 

complete theory, which (a) covers all operation regions (such 

as MTPA, MC, FW, MTPV) ,(b) allows for an analytical 

computation of optimal currents set-points, (c) considers stator 

resistance and variable inductance , is not yet available. 

In this paper, a novel and accurate feedforward Newton-

Raphson searching method in all operating regions is proposed, 

while taking into account both the resistive voltage drop and the 

magnetic saturation. The proposed method is characterized by 

the following:(a) Analysis of all the operating regions (MTPA, 

MC, FW, MTPV); (b) Implicit problem formulation (the 

nonlinear solutions involving current circle, voltage ellipse and 

torque hyperbola); (c) Real-time implementation on a digital 

microcontroller with few iterations and reduced computation 

burdens. Both simulation and experimental results under 

different conditions prove the effectiveness and rapidity of the 

proposed methods. 

The paper is organized as follows: in Section II, the different 

operation modes for IPMSM are described. In Section III, the 

proposed N-R searching method is elaborated. The influence of 

resistive voltage drop and magnetic saturation is explained in 

Section IV. Simulation and experimental results are presented 

in Section V and Section VI respectively. Conclusions are given 

in Section VII. 

II. ANALYSIS OF OPERATING MODES FOR IPMSM 

In this Section, the operating loci introduced in the 

introduction are extended and described by mean of analytical 

equations and figures. Within the rotating reference frame, the 

equations for an IPMSM can be written as follows: 

d
d s d e q

q

q s q e d

d
u R i

dt

d
u R i

dt

ψ ω ψ

ψ
ω ψ

 = + −

 = + +


  

(1) 

d d d f

q q q

L i

L i

ψ ψ

ψ

= +
 =

 (2) 

Where, ud and uq are the d-q-axis stator voltages; id and iq are 

dq-axis current; Ld and Lq are the dq-axis inductance, Rs, ψf , p 

are the stator resistance, the permanent-magnet flux linkage and 

the pole pairs, respectively. ωe is the electrical angular 

frequency. 

There are also two additional constraints to be taken into 

account. The first one is related to the current constraints of the 

motor or the inverter (3). The second one is related to the 

voltage constraints (4). 
2 2 2

max,pkd qi i I+ ≤  (3) 

2 2 2

maxd qu u U+ ≤  (4) 

where Umax (Udc/√3) is the maximum voltage for SVPWM. 

  
(a) Branch I:MTPA (n ≤ nb)  (b) Branch II: MC (nb < n ≤ no, T𝑒𝑒∗ ≥ TMC) 

  
(c) Branch II: FW (nb < n ≤ no, TD < T𝑒𝑒∗＜TMC) (d) Branch II MTPA:(nb <

n ≤ no, T𝑒𝑒∗ ≤ TD) 

  
(e) Branch III:MC(no < n ≤ nv, T𝑒𝑒∗ ≥ TMC ) (f) Branch III:FW (no < n ≤
nv, T𝑒𝑒∗＜TMC) 
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(g) Branch IV:MTPV(n ≥ nv, T𝑒𝑒∗ ≥ TI) (h) Branch IV:FW (n ≥ nv, T𝑒𝑒∗＜TI) 

Fig.1 The operating modes in the dq-axis current plane 

 

As can be seen in (3), the current constraints trajectory in the 

dq-axis forms a circle (curve AH in Fig.1), whose center is the 

origin and the radius is Imax,pk. Substituting (1) and (2) into (3), 

and neglecting the resistance drop, (4) can be rewritten as the 

following: 
2 2 2( ) ( ) ( / 3)e q q e d d dce fL i L i Uω ω ω ψ− + + ≤  (5) 

Equation (5) describes the iso-voltage constraints ellipse 

shrunk with the increasing speed in the dq-axis current plane, 

whose center Q is (-ψf/Ld, 0). The electromagnetic torque is 

given by the following equation: 

3
[ +( ) ]

2
e f q d q d q

T p i L L i iψ= −  (6) 

The effective operating regions are shown in Fig.1, which 

consists of MTPA region (curve OA), MC region (curve AH), 

FW region (area OAHQ) and MTPV region (curve HQ). 

Defining superscript * as any generic set-point, 𝑇𝑇𝑒𝑒∗ is the torque 

set-point, which at steady state is equal to the load torque 𝑇𝑇L. 𝑛𝑛∗ 
is the speed set-point, n is the measured speed, 𝑛𝑛b is the base 

speed, 𝑛𝑛max is the maximum speed defined by the mechanic 

components (i.e. shaft, bearings, etc.), and n𝑜𝑜 is the boundary 

speed defined by the iso-voltage constraint ellipse passing 

through the origin.  n𝑣𝑣  is the deep-flux-weakening speed 

defined by iso-voltage constraint ellipse passing through the 

intersection of MTPV locus and current circle (point H in Fig. 

2(g)). Defining also 𝑇𝑇L0 as the torque hyperbola at no load, 𝑇𝑇D 

as the cut-off torque identified by the intersection of the MTPA 

locus with the iso-voltage ellipse at speed set-points (point D in 

Fig.1(c) and Fig.1(d)), 𝑇𝑇I as the cut-off torque identified by the 

intersection of the MTPV locus with the iso-voltage ellipse at 

speed set-points (point I in Fig. 1(g) and Fig.1(h)), and 𝑇𝑇MC as 

the maximum torque for a measured speed in MC region.  

 
Fig.2 The flow chart of different operating modes 

The operating mode selector provides the right mode taken 

into account together with the proposed Newton-Raphson 

searching method explained in Section. III, which presents four 

main branches selecting one mode among the following ones: 

MTPA, MC, FW and MTPV. The relationship for speed and the 

torque is explained in the following paragraphs with aid of Fig. 

1 and Fig. 2. In the following paragraphs, the four branches are 

described as follows: 

Branch I (𝑛𝑛 ≤ 𝑛𝑛b) 

In this branch, the speed 𝑛𝑛 is lower than the base speed 𝑛𝑛b 

and the IPMSM is operating on the MTPA curve OA, shown in 

Fig.1(a).  The red star is the steady operating point C and it is 

defined by the intersection of the MTPA and the load torque 

curves. The MTPA solution is formulated as (7) aiming at 

copper loss minimization problem: 
*2 *2

* * * *

min ( )

. . 1.5p[ ( ) ]

s d q

e f q d q q d
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(7) 

The Lagrange multiplier is applied to obtain the solution: 
*2 *2 * * * *( , , ) ( ) [ 1.5p( ( ) )]

d q s d q e f q d q q dH i i R i i T i L L i iλ λ ψ= + + − + −  (8) 

The partial derivative of (8) is obtained as (9): 
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(9) 

Solving the first two equations in (9) by eliminating the 

parameter λ , the MTPA relationship for dq-axis currents can 

be expressed as (10): 
* * * *

*2 *2 *

1.5p[ ( ) ]

( ) ( ) 0

e f q d q q d

d q d d q q f d

T i L L i i
MTPA

L L i L L i i

ψ

ψ

 = + −


− − − + =
 (10) 

Branch II: (𝑛𝑛𝑏𝑏 < 𝑛𝑛 ≤ 𝑛𝑛𝑜𝑜) 

If the speed 𝑛𝑛 is higher than base speed 𝑛𝑛b and less than the 

boundary speed  𝑛𝑛o, voltage constraint ellipse shrinks to point 

A. More negative d-axis current is needed to make the dq-axis 

current set-points move along MC circle along curve AB shown 

in Fig.1(b), limited by both voltage constraint and current 

constraint, which can be expressed in (11). 𝑇𝑇𝑀𝑀𝑀𝑀  can be 

calculated at the same time in (11): 

*2 *2 2

max

* 2 * 2 2

* * *

( ) ( ) ( )
3

3
[ +( ) ]

2

d q

dc
e q q e d d e f

MC f q d q d q
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U
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T p i L L i i

ω ω ω ψ

ψ


 + =

 + + =



= −

 

(11) 

When the measured speed 𝑛𝑛 is approaching the speed set-

point 𝑛𝑛∗ and if the condition 𝑇𝑇𝐷𝐷 < 𝑇𝑇𝑒𝑒∗＜𝑇𝑇𝑀𝑀𝑀𝑀  is satisfied, the dq-

axis current set-point will move along the voltage ellipse curve 

BD towards point G in FW region shown in Fig.1(c). Point D is 

the voltage constraint ellipse at speed set-point 𝑛𝑛∗ intersected 

with MTPA curve marked in Fig.1(c) and Fig.1(d). 𝑇𝑇𝐷𝐷 can be 

calculated in (12) and the first equation in (12) comes from (10): 

MTPA
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(12) 

In this case, the dq-axis current set-points are limited by both 

torque hyperbola and voltage constraint expressed in (13): 
* * * *

* 2 * 2 2
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(13) 

If the condition  Te∗ < TD  is satisfied, the point F, the 

intersection between voltage constraints ellipse and the load 

torque curve, is located outside the top left quadrant, the final 

operating point can’t go across the boundary MTPA curve OA 

and finally it settles at point E, shown in Fig.1(d). Curve DE is 

part of MTPA curve can be expressed as (10) as well. 

Branch III: (𝑛𝑛𝑜𝑜 < 𝑛𝑛 ≤ 𝑛𝑛𝑣𝑣) 

When the measured speed is higher than 𝑛𝑛𝑜𝑜  and if the 

measured speed 𝑛𝑛 is approaching the set-point speed 𝑛𝑛∗, The 

dq-axis current set-point will move along the MC circle shown 

in Fig.1(e). In this case, the dq-axis current set-point is limited 

by both current constraint and voltage constraint can be 

expressed in (11). If the condition T𝑒𝑒∗ ≤ TMC is satisfied, the dq-

axis current set-point will move along the voltage ellipse at 

speed 𝑛𝑛∗  curve BD and balance at point G shown in Fig.1(f), 

as can be expressed as (13) as well. 

Branch IV: (𝑛𝑛𝑣𝑣 ≤ 𝑛𝑛＜𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚) 

When the measured speed is higher than 𝑛𝑛𝑣𝑣  (iso-voltage 

constraint ellipse passing through the intersection of MTPV 

locus and current circle), the motor is operating in MTPV 

region (deep flux-weakening region). If the measured speed 𝑛𝑛 

is lower than the set-point speed 𝑛𝑛∗, The dq-axis current set-

point will move along the MTPV curve shown in Fig.1(g). 

MTPV solution is formulated as (14) aiming at output power 

minimization: 
* *

* *

*

* 2 * 2 2
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3

d d q q
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(14) 

Solving (14), the MTPV relationship for dq-axis currents can 

be expressed as first equation in (15). In this MTPV mode, the 

dq-axis current set-point is limited by both MTPV curve and 

voltage constraint: 
* 2 * * 2

* 2 * 2 2

( ) ( ) ( ) ( )( ) 0

( ) ( ) ( )
3

q q d q f q d d f d q d d f

dc
e q q e d d e f
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MTPV U
L i L i

ψ ψ ψ

ω ω ω ψ

 − − + − − + =



+ + =
  

(15) 

If the condition T𝑒𝑒∗＜TI is satisfied, the dq-axis current set-

point will move along the voltage ellipse at speed 𝑛𝑛∗  (curve IK) 

and balance with the load torque (point K) shown in Fig.2(h), 

as can be expressed as (13) as well. 𝑇𝑇𝐼𝐼  is cut-off torque, identified by the intersection of the 

MTPV locus with the iso-voltage ellipse at speed set-points. 𝑇𝑇𝐼𝐼  
can be calculated in (16). The first equation of (16) comes from 

MTPV solution (15): 
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(16) 

The challenge in solving (10)-(16) is discussed below: 

1) The solutions of (10)-(16) are nonlinear with a square root 

operation, which is quite complex to solve by real-time 

controller directly. In addition, the equations (11)-(16) contain 

electrical angular velocity that requires real-time measurements, 

which increases the difficulty of solving equations. 

2) The parameters in the equations cannot remain constant. 

When the magnetic saturation and cross saturation is significant, 

the inductance Ld and Lq will decrease with the increase of the 

dq-axis currents. The voltage constraints ignore the effect of 

resistance, which also affects the control accuracy, which will 

be further discussed in Section IV. 

3) The solutions of these equations can be listed in advance 

in a pre-made table; however, considering inductance variation 

and resistance variation, these tables tend to be huge because it 

is necessary to create many separate tables.  

III. THE PROPOSED NEWTON-RAPHSON SEARCHING 

METHOD FOR DIFFERENT OPERATING MODES 

The second-order N-R method is a fast convergence 

procedure to solve nonlinear equations f(x,y) = 0 and g(x,y)=0, 

in our particular application, where x is 𝑖𝑖𝑑𝑑∗  and y is 𝑖𝑖𝑞𝑞∗ : 

1

2

( , ) 0

( , ) 0

z f x y

z g x y

= =
 = =

 (17) 

Equation (17) is our target function to find a value of x,y. 

Assuming that function (17) is continuous and there exists a 

continuous second-order partial derivative in the neighborhood 

at the point (x0, y0), (17) can be expanded into Taylor series in 

(18) and equation (19) is the Jacobian matrix of (17):
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∂ ∂ 
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 (19)

 

Substituting  ∆𝑥𝑥 = 𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘 ,  ∆𝑦𝑦 = 𝑦𝑦𝑘𝑘+1 − 𝑦𝑦𝑘𝑘 , 𝑥𝑥0 = 𝑥𝑥𝑘𝑘 

and 𝑦𝑦0 = 𝑦𝑦𝑘𝑘  into (18), which the solutions in (17) can be 

expressed as (20) in iterative form: 

1 1

,
1

( , )
[ ]

( , )k k

k k k k

x x y y
k kk k

x x f x y
J

g x yy y

+ −

= =
+

   
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(20)

 

If the condition (21) is satisfied 

( ) ( ) ( ),  ,  , , ) 0(  x k k y k k x k k y k kg x y f x y f x y g x y− ≠  
(21)
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When the inverse Jacobian matrix is substituted into (20), a 

second order N-R iterative form can be listed as (22): 

1

1

,  ,  ,  ,  

,  ,  ,  ,  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) (

,  ,  ,  ,  

,  ,  ) ( , ( ,  ) )

k k y k k k k y k k

k k

x k k y k k x k k y k k

k k x k k k k x k k
k k

x k k y k k x k k y k k

f x y g x y g x y f x y
x x

g x y f x y f x y g x y

g x y f x y f x y g x y
y y

g x y f x y f x y g x y

+

+

−
= + −


− = +

 −

 

(22) 

Where xk+1 and yk+1 (𝑖𝑖𝑑𝑑𝑘𝑘+1∗  and 𝑖𝑖𝑞𝑞𝑘𝑘+1∗ ) are the new estimate of 

x and y, xk and yk (𝑖𝑖𝑑𝑑𝑘𝑘∗  and 𝑖𝑖𝑞𝑞𝑘𝑘∗ )  are the previous estimate of x 

and y (𝑖𝑖𝑑𝑑∗  and 𝑖𝑖𝑞𝑞∗) respectively, f(xk, yk) and g(xk, yk) (𝑓𝑓(𝑖𝑖𝑑𝑑𝑘𝑘,
∗ 𝑖𝑖𝑞𝑞𝑘𝑘∗ ) 

and 𝑔𝑔(𝑖𝑖𝑑𝑑𝑘𝑘,
∗ 𝑖𝑖𝑞𝑞𝑘𝑘∗ )) are the target functions using xk and yk (𝑖𝑖𝑑𝑑𝑘𝑘∗  and 𝑖𝑖𝑞𝑞𝑘𝑘∗ ) ( in most cases,  f(xk, yk) ≠ 0 and g(xk, yk) ≠ 0 because xk is 

not the correct solution). k is an integer iteration index that starts 

with 1. The iterative procedure starts by substituting a first 

guess x(0) and y(0) into (22) to get a second estimate. This 

second estimate is then substituted into (22) to get a third 

estimate. This process is repeated until the geometric distance 

of the two iterations results are very small (E is defined as 

current setting precision discussed in Section V): 
2 2

1 1+k k k kx x y y E+ +− − <（ ） （ ）  (23) 

 
Fig.3 N-R method algorithm flow chart 

 

The N-R algorithm flow chart is shown in Fig.3. The initial 

value for the first guess is set at first. N represents the maximum 

number of iterations. The Jacobian matrix and the initial target 

function values f(id0 ,iq0) and g(id0 ,iq0) are used for the N-R 

iterative algorithm. Then id1 and iq1 are update using (22). The 

iterative process are repeated until the error reaches a small 

value (i.e. minor than 0.012 ), the current set-points rapidly 

converge to the optimal values. If the maximum number of 

iterations N is exceeded, equation (22) is not converging and 

the searching algorithm has to be re-initialized. 

According to four different branches shown in Fig.3, the N-

R searching method uses different target functions and Jacobian 

matrices in Table I to obtain the optimal current set-points. The 

proposed method is capable of considering the magnetic 

saturation and the resistive voltage drop as it will be later shown 

in the Section IV.  

IV. THE INFLUENCE OF THE RESISTIVE VOLTAGE DROP 

AND MAGNETIC SATURATION 

A. Magnetic Saturation and Cross Saturation 
In most torque control applications, accurate inductance 

information is required for torque estimation and for an optimal 

current set-points selection. However, due to the magnetic 

saturation, the inductances vary nonlinearly depending on the 

current. In Fig.4, five measured dq-axis inductance values 

acquired by static inductance experiments discussed in [30][31] 

are compared with FEA results. 

 
              (a)                                                (b) 

Fig.4 Experimental results compared with FEA results (a)d-axis 

inductance (b)q-axis inductance 
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TABLE I 
TARGET FUNCTIONS AND JACOBI MATRICES FOR DIFFERENT OPERATING MODES (DQ-AXIS INDUCTANCES ARE COMING FROM ID AND IQ LUTS) 

Target function for MTPA, MC, FW，MTPV Jacobi matrix 
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It is quite difficult and complicate to give an analytic 

relationship to describe both magnetic saturation and cross-

saturation directly, so in order to reduce measurement repetition, 

a small table with averaged values from experimental 

measurements and FEA results is used in practice. The size of 

original tables is 11×11 shown in Fig.6(a). 

 
Fig.5 sample points relationship for second-order bilinear interpolation 

method 

 
(a) 

 
(b) 

Fig.6 Expansion of the inductance data table (a)dq-axis inductance LUT 
without using SBIM (b)dq-axis inductance LUT using SBIM 

 

In order to reduce the execution time discussed in Section VI, 

the second-order bilinear interpolation method (SBIM) is 

utilized to expand a small inductance tables to a larger one. In 

Fig.5, the blue points are four known points listed as: Q11 = f 

(x1, y1). , Q12 = f (x1,y2), Q21 = f (x2, y1) and Q22 = f (x2, y2), and 

the blue points are one unknown point P. If the value is required 

from the unknown function f(x,y) at point P. The SBIM can be 

expressed in the following steps: 

Step 1. Using linear interpolation in the x direction 

2 1
1 11 21

2 1 2 1

2 1
2 12 22

2 1 2 1

(R ) ( ) ( )

(R ) ( ) ( )

x x x x
f f Q f Q

x x x x

x x x x
f f Q f Q

x x x x

− − ≈ + − −
 − − ≈ +
 − −  

(24) 

Step 2. Using linear interpolation in the y direction 

2 1
1 2

2 1 2 1

( ) ( ) ( )
y y y y

f P f R f R
y y y y

− −
≈ +

− −  
(25) 

Step 3. The final unknown point P is introduced as (26) 

11 21
2 2 1 2

2 1 2 1 2 1 2 1

12 22
2 1 1 1

2 1 2 1 2 1 2 1

(Q ) (Q )
( , ) ( )( ) ( )( )

( )( ) ( )( )

(Q ) (Q )
( )( ) ( )( )

( )( ) ( )( )

f f
f x y x x y y x x y y

x x y y x x y y

f f
x x y y x x y y

x x y y x x y y

≈ − − + − −
− − − −

+ − − + − −
− − − −

 

(26

) 

Expansion results of the inductance data table can be 

simulated, as shown in Fig.6(b).  

B. The Influence of the Resistive Voltage Drop 

If the stator resistive voltage drop is considered, the voltage 

equation (1) and (2) at steady state can be rewritten as: 

d s d e q q

q s q e d d e f

u R i L i

u R i L i

ω

ω ω ψ

= −
 = + +

 (27) 

Noting that the temperature variation was negligible during 

the experiments presented in Section VI, the resistance is 

assumed to be constant. Substituting (27) into (4), the equation 

can be rewritten as (28), which indicates the voltage constraints 

trajectory accounting for the stator resistive voltage drop. 

2 2 2( ) ( ) ( )
3

dc
s d e q q s q e d d e f

U
R i L i R i L iω ω ω ψ− + + + ≤  (28) 

The corrected curve for (28) forms a series of slant ellipses 

with speed, whose centers are moving with the increase of the 

motor speed. If the general equation of the ellipse is defined as 
2 2 0
d d q q d q

Ai Bi i Ci Di Ei F+ + + + + =  (29) 

Equation (29) corresponds to (28) with the coefficients A, B, 

C, D, E and F described as: 

2 2 2

2 2 2

2 2 2 2

2 ( )

2

2 ( )
3

s e d s e d q

s e q s e f

dc
e q f e f

A R L B R L L

C R L D R

U
E L F

ω ω

ω ω ψ

ω ψ ω ψ


 = + = −
 = + =

 = − = −


 (30) 

As shown in Fig.7, the non-standard ellipse trajectory is 

composed of four elements: Center coordinates (xc,yc), Semi-

major axis a, Semi-minor axis b, and the inclination angle θc, 

which can be solved with the coefficients (31) : 

2 2

2 2 2 2

2 2 1
, , arctan( )

4 4 2

2 2
2 , 2

( ) ( )

c c c

BE CD BD AE B
x y

AC B AC B A C

F F
a b

A C A C
A C B A C B

F F

θ− − = = = − − −
− − = = − − + − + + + +



 
(31) 

 In conclusion, if the resistive voltage drop is considered, the 

intersection of the current constraint circle and the voltage 

constraint ellipse, marked as stars in Fig.7, should be moved 

from point B1 to point B2. 

 
Fig.7 The locus of the voltage constraints ellipse (ignoring or 

considering the resistive voltage drop) 
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 Compared with the state-of-art, the N-R method combined 

with variable inductance LUT proposed in this paper has some 

advantages listed as follows: 

1) The proposed N-R method is based on iterative operations, 

the intersections of complex nonlinear equations (10)-(16) 

involving current circle, voltage ellipse and torque hyperbola 

can be solved in real-time digital controllers.  

2) According to different operating region, such as MTPA, 

MC, FW and MTPV region, the N-R searching method can 

switch different target functions and Jacobian matrices in Table 

I to obtain the optimal current set-points. 

 3) Thanks to the LUTs, the proposed N-R method can cope 

with the actual motor parameter variation, such as dq-axis 

inductance, resistance and permanent magnetic flux linkage. 

The controllability, accuracy improvement, and reduced 

computation burden achieved by using the LUTs will be 

demonstrated in Section VI.  

V. SIMULATION RESULTS 

 
Fig.8 Wide-speed range control method based on N-R method 

 

In order to better verify the proposed control strategy in 

different operation modes shown in Fig.2, the control loop is 

constructed like the block diagram shown in Fig.8 and 8kW 

IPMSM parameters are presented in Table II. Noting that the 

MTPV locus does not intersect the MC circle, it will not be 

discussed in this Section V and Section VI. 
TABLE II 

IPMSM PARAMETERS 

IPMSM VALUES UNITS 

Rated torque 32 N.m 

Base speed nb 2400 rpm 

Max speed nmax 6000 rpm 

Boundary speed n0 2953 rpm 

Stator resistance 0.1 Ω 

PM flux linkage 0.06722 Wb 

Pole pairs 4  

 

A. The Whole Convergence Process for MTPA Mode 

Taking initial value id0 iq0 (-30A, 20A) and (-4A, 12A) as the 

first guess, the iterative convergence process of the N-R 

algorithm in MTPA mode is shown in Table III. Comparing the 

operation condition I and II, due to the magnetic saturation 

effect of the inductance, the inductance is going down with a 

larger given torque. Comparing the operation condition I and 

III, symbol E is defined as current setting precision in the 

equation (23). When E is set to be 0.012, three steps of iteration 

are required to reach the MTPA set-points (-16.20A, 75.78A). 

When E is set to be 0.0012, it takes four steps of iteration to 

reach the MTPA set-points (-16.208A, 75.768A). In this case, 

the accuracy is increased as the cost of more resources occupied. 

In this particular work, according to current sensor 0.2A/mV, 

the current setting precision E is set to be 0.012. 

 

B. Simulation Results For Different Operation Regions 
Fig.9(a) corresponds to Fig.1(a) for the algorithm branch I, 

the speed set-points is set to be 500rpm less than the base speed 

2400rpm. The IPMSM is ramping from 0rpm to 500rpm at max 

torque 32N.m, which corresponds to point A in dq-axis current 

plane and then go to steady state at no load, which corresponds 

to point Lo. The speed command is then stepped to 1000rpm, 

the IPMSM is ramping to point A and again settles down at 

point Lo. If the load torque is added at 1s, the operating point is 

moving from point Lo to point C along MTPA curve and 

balance at 10N.m finally. 

Fig.9(b) corresponds to Fig.1(a)(b)(c)(d) for the algorithm 

branch II, the speed command 𝑛𝑛∗ is set to be 2800rpm (between 

base speed 𝑛𝑛𝑏𝑏 2400rpm and 𝑛𝑛𝑜𝑜 2953rpm). IPMSM is ramping 

with max torque 32N.m at point A. When the measured speed 𝑛𝑛 is higher than 2400rpm, the operating mode selector switch 

to the MC region and the flux is weakened by increasing the d-

axis current set-points in the negative directions. As the 

measured speed reaches 2800rpm, the dq-axis current starts to 

settle down to point Lo passing by point D along the voltage 

ellipses 𝑛𝑛∗. If the load torque is added at 1.15s, the operating 

point is moving from point Lo to point E along MTPA curve. 

Fig.9(c) corresponds to Fig.1(a)(e)(f) for the algorithm 

branch III, the speed set-points is firstly set to be 1000rpm 

below the base speed, the IPMSM is ramping with max torque 

32N.m at point A and balance to steady state. When the speed 

set-point 𝑛𝑛∗ steps to 3600rpm (higher than the boundary speed 
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TABLE III  
THE INFLUENCE BETWEEN THE INITIAL VALUES AND NUMBER 

OF ITERATIONS IN MTPA MODE 

OPERATING 

CONDITIONS 

CONVERGENT PROCESS FOR ID AND IQ SET-

POINTS 

I 

Te=32N.m 

E=0.012 

Ld=0.325mH 

Lq=0.521mH 

(-30,20)→(-8.85,74.11)→(-16.33,75.78)→(-
16.20,75.77) 

(-4,12)→(-5.00,78.40)→(-16.43, 75.64) →(-
16.19,75.78) 

II 

Te=5N.m 

E=0.012 

Ld=0.335mH 

Lq=0.544mH 

(-30,20)→(-2.60,12.90)→(-0.49,12.38)→(-
0.47,12.38) 

(-4,12)→(-0.51,12.37)→(-0.47,12.38) 

III 

Te=32N.m 

E=0.0012 

Ld=0.325mH 

Lq=0.521mH 

(-30,20)→(-8.854,74.103)→(-16,333.75.776) 

→(-16.208,75.768) 

(-4,12)→(-4.998,78.396)→(-16.433, 75.639)→(-
16.210, 75.777)→(-16.208,75.769) 

IV 

Te=5N.m 

E=0.0012 

Ld=0.335mH 

Lq=0.544mH 

(-30,20)→(-2.601,12.896)→(-0.487,12.382) 

→(-0.474, 12.379) 

(-4,12)→(-0.511,12.374)→(-0.474,12.379) 
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n0 2953rpm), the d-axis current will decrease towards point B 

along the MC circle. When the measured speed 𝑛𝑛  reaches 

steady state at 3600rpm, the operating will go along the voltage 

ellipse towards point Lo and, as soon as the load torque is added 

at 1.2s, it will balance at point G with the final torque. 

 
(a) 

 
(b) 

 
 (c) 

Fig.9 Simulation results with different operating modes (a) branch I (b) 

branch II (c) branch III 
 

VI. EXPERIMENTAL RESULTS 

Several experimental tests are carried out to verify the 

effectiveness of the proposed method. The test bench is made 

up of a rated 8kW target IPMSM (peak power 20kW) with 

resolver as position sensor, a 100Nm torque sensor, a 5:1 

reducer and a magnetic powder brake as load, as shown in 

Fig.10. A DSP (Type:TMS320F28335) is used as core device 

for the controller. The inverter is a three-phase IGBT power 

module (Type: Infineon FS400R07A1E3), two current sensors, 

DC-link voltage sensor and some protection circuits. The 

switching frequency is 10kHz (Ts=100us). 

 

 
Fig.10 8kW IPMSM rig and DSP-based controller 

 

A. Experimental Results For Different Operation 

Regions 

The experimental results for testing MTPA region (branch I, 

Fig.1(a)) dealing with magnetic saturation are shown in 

Fig.11(a)(d). The initial speed set-points n∗ in orange and the 

measured speed n in pink in Fig.11(a) are 500rpm. When the 

speed set-points step to 1000rpm (n ≤ nb), the dq-axis current 

set-points are -16A and 76.8A (at max torque 32N.m). The dq-

axis inductance goes saturation at 0.326mH (decline 2.7%) and 

0.522mH (decline 4.2%), respectively, due to the high starting 

current. After reaching 1000rpm, the dq-axis inductance will be 

0.334mH and 0.545mH, quite close to the rated inductance 

value (Ld=0.335mH and Lq=0.545mH).When the load torque is 

added to 15N.m, the dq-axis current set-points are -4.8A and 

38A, while the dq-axis inductance will be 0.332mH (decline 

0.9%) and 0.537mH (decline 1.5%). 

The experiment results for testing branch II (corresponding 

to Fig.1(a)(b)(c)(d)) are shown in Fig.11(b)(e). The initial speed 

is 1500rpm at steady state. After the speed set-points step to 

2700rpm (nb < n ≤ no), IPMSM began to accelerate and the 

given torque (max torque 32N.m) is assigned by N-R searching 

method to obtain dq-axis current set-points at -16A and 76.8A  

(point A). When the speed increases higher than the base speed 

2400rpm(switch to MC region), deeper flux-weakening d-axis 

current is required to shift the point from A to B along the 

current circle. Later on, when the speed reaches the speed set-

points, the reference torques finally balance with a load torque 

5N.m along the voltage ellipse in FW region and finally balance 

on MTPA curve (point E).  

The experiment results for testing branch III (corresponding 

to Fig.1(a)(e)(f)) are shown in in Fig.11(c)(f). The measured 

speed n is 2000rpm at steady state. After the speed set-points 

steps to 3600rpm (n > no), IPMSM began to enter the speed 

transition. The given torque (at max torque 32N.m) is assigned 

by N-R searching method to -16A and 76.8A at point A. When 

the speed increases higher than the base speed 2400rpm, deeper 

flux-weakening is required to limit voltage, shifting the point 
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from A to B along the current constraints circle. Later on, the 

speed is approaching the speed set-points 3600rpm, the 

reference torques finally balance with a load torque 5 N.m along 

the voltage constraints ellipse towards point G. 
 

 

 
(a) branch I                                                                              (d) branch I 

 
(b) branch II                                                                                (e) branch II 

          
(c) branch III                                                                                 (f) branch III 

Fig.11 The experimental results for different branches: waveform of torque , speed set-points , speed measurement and phase B current(a) branch 

I (b) branch II (c) branch III; waveform of dq-axis current set-points and measurement (d) branch I (e) branch II (f) branch III 
 

B. Experimental Results For Control Accuracy And 

Computation Burden 
 

Fig.12 shows the proposed method dealing with parameter 

mismatch in MC region as discussed in Section IV. At the initial 

steady state I, the IPMSM is spinning at the speed of 3000rpm. 

Fig. 12 shows the large q-axis current error when the fixed 

values of Ld = 0.335 mH, Lq = 0.545 mH and Rs=0Ω are used. 

The q-axis current measurement differs significantly from the 

current set-points, due to large mismatch of the motor 

parameters. Therefore, the performance of the IPMSM is 

degrading. When the variable parameters have been 

compensated by LUT later on in steady state II, the q-axis 

current set-points control errors reduce from about 20A to about 

0A. The main reason is that the corrected voltage ellipse 

considering the resistive voltage drop in the dq-axis current 

plane forms a series of slant ellipses. The resistive voltage drop 

forces the current set-points to move from point B1 to point B2 
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corresponding to Fig.7, discussed in section IV. This proves the 

necessity of updating Ld and Lq and considering the influence 

for resistive voltage drop. 

In order to test the execution time of different methods, the 

IO pin in the DSP is set to be high before the proposed method 

and reset it to low after the function has executed, as shown in 

Fig.13(a). The duration of the pulse can be measured in the 

oscilloscope, shown as histogram in Fig.13(b). In the method 1, 

the N-R method is applied with dq-axis inductance matrices 

(size:11×11) and expanded by SBIM took least computation 

time 45.85us. In method 2, the second-order PA method is used 

for the inductance curve-fitting mentioned in [23] and [24], the 

solution in Table I occupies 56.2us. In method 3, the N-R 

method needs 65.8us combined with 61 × 61 inductance 

matrices. In method 4, the square root operation is saved in 

advance using premade tables and 61×61 inductance matrices 

are applied for parameter compensation. Comparing method 3 

and method 4, the proposed N-R method occupied 18.1us less 

resource than square root operation, since the proposed N-R 

method is based only on iteration and selection operations. 

Comparing method 1 and method 3, the SBIM can reduce the 

size of LUTs and 20us execution time margin is saved. 

 
Fig.12 Experiment results with parameter mismatch at 3000rpm 

 
(a)                                                          (b) 

Fig.13 Experiment results for execution time (a) in PWM period (b) 
dealing with four different methods 

 

VII. CONCLUSION 

In this paper, the operating modes for IPMSM are divided 

into MTPA region, MC region, FW region and MTPV region. 

The target non-linear functions for optimal current set-points 

are presented. In order to get more accurate solution, N-R feed-

forward searching method is proposed to find the optimal 

current set-points in iterative forms. It has been highlighted that 

neglecting the resistive voltage drop and magnetic saturation 

leads the actual current trajectory to deviate from the optimal 

one, resulting in reduced accuracy. Therefore, LUT combined 

with second-order bilinear interpolation method is used for 

variable parameters compensation. 

The simulations and experimental results are demonstrating 

the validity and accuracy of the proposed searching method. 

This has been verified in various operation cases and also the 

case dealing with parameter mismatch. The applied method has 

been proved to improve the control accuracy of IPM machines 

in wide-speed range, while reducing the computation burden at 

the same time. 
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