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1 INTRODUCTION

In computational mechanics, the numerical modeling of contact and impact phenomena has been a major field of
interest in industry, including numerous applications such as vehicle crash testing,1 prototype testing, or manufac-
ture processes.2,3 These very complex problems are typically characterized by highly nonlinear deformation behavior
with accompanying non-smooth response (or shocks) caused by transitions between various contact modes such as
separation-to-contact, stick-to-slip, slip/stick-to-separation. Such problems must be solved by ensuring the satisfaction of
linear momentum conservation equation (complemented by appropriate initial and boundary conditions) for each body
individually, whilst at the same time enforcing the additional set of (kinematic and kinetic) contact interface conditions,
that govern the interaction of these bodies.

When considering a model with frictionless contact, these interface conditions act to prevent interpenetration
of the bodies (kinematic condition) and to insure compressive interaction normal to the interface (kinetic condi-
tion). One challenging aspect, is that impenetrability cannot be expressed as an evolution (or algebraic) equation
and so requires special numerical treatment. The most common techniques addressing this issue include penalty
method, Lagrange multiplier method, or a combination of both. In the penalty method,4 the impenetrability con-
straint is enforced as a penalty normal traction along the contact surface. The disadvantage of the penalty approach
is that the enforcement of the impenetrability condition is only approximate and its effectiveness depends on the
selection of the user-defined penalty parameters. If the value of the penalty parameter is too small, unpredictable
amount of interpenetration would be observed. However, the penalty parameter cannot be arbitrarily large, as this
can generate ill-conditioned systems that may require extremely small time steps for stability.5,6 The correct choice
for this parameter is key to success of the algorithm. For the Lagrange multiplier method,7,8 the multipliers must be
approximated and solved at the contact interface with the constraint such that the normal component of the traction
must be compressive. The disadvantage of the method is that it requires the construction of a separate indepen-
dent mesh and also requires the introduction of additional regularization techniques necessary in obtaining robust
solutions. Such regularization procedures are usually ad-hoc and are not motivated by physical arguments. A pop-
ular example of regularization is the addition of von Neumann•s artificial viscosity9,10 to the Euler fluid equations
to smear shocks over several computational cells. In absence of this artificial viscosity, central difference solutions
to the Euler equation in the vicinity of shocks are oscillatory, eventually leading to the breakdown of a numerical
scheme.

One of the earliest attempts at enforcing contact interface conditions via the physically-motivated jump conditions that
derive from the linear momentum conservation equation and kinematic compatibility can be traced back to the work of
Abedi and Haber.11 In particular, a space-time discontinuous Galerkin finite element method for elasto-dynamic contact
was presented. The presented examples were restricted to the case of small strain linear elasticity in two dimensions.
Moreover, it is not yet clear if the overall finite element algorithm would satisfy the classical Coleman…Noll procedure
in order to guarantee the production of non-negative entropy. On another front, some interesting works have also been
explored using the computational fluid dynamics (CFD) platform •OpenFOAMŽ via the use of displacement-based finite
volume discretization,12,13with special attention paid to the quasi-static simulation based on the use of penalty method14,15

and lubricated contact models.16

Aiming to resolve the shortcomings described above, the main goal of this article is to explore the solution of contact
dynamics utilizing a set of first order conservation equations,17-20 combined with the associated jump conditions across
moving shocks*.21-33 Building upon previous work developed by the authors,34,35 a mixed methodology is presented in
the form of a system of hyperbolic conservation laws, where the linear momentum and the minors of deformation (the
deformation gradient tensor, its co-factor and its Jacobian) are regarded as the main conservation variables of this mixed
approach. Taking advantage of this formalism, appropriate kinetic and kinematic contact interface conditions can be
suitably enforced at the boundary fluxes of the underlying hyperbolic system by means of the Rankine…Hugoniot jump
conditions. For instance, in the case of frictionless contact, the normal traction is enforced in the standard manner, that
is, in the boundary fluxes of linear momentum conservation equation. One crucial advantage of solving the geometric
conservation equations in this context is such that we now have the luxury of explicitly enforcing the normal compo-
nent of the contact velocity in the associated boundary fluxes. On the other hand, upon the use of Rankine…Hugoniot
jump conditions,36 we can then naturally derive a series of dynamic contact models typically required in the simulation
of contact problems. The objective of this article is to present a complete set of continuum Riemann-based type solutions
for contact and separation (derived based on a system of first order conservation laws) assuming a priori knowledge of
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the potential contact loci. Physically, Riemann solutions describe correct fluxes in the form of traction and velocity at the
contact interface. In linear elasticity, we can show that by enforcing appropriate boundary fluxes at the point of contact
through the use of jump conditions would lead to exact energy transfer, provided the shock wave travels at the speed of
sound.

From a spatial discretization point of view, a vertex based finite volume algorithm34 in conjunction with (piecewise)
linear reconstruction is employed. Additionally, a shock capturing technique37 can also be incorporated in order to dra-
matically improve the resolution of the field variables at the vicinity of shocks. No ad-hoc algorithmic regularization
procedures are needed. Insofar as contact-impact introduces discontinuities in the solution, the use of explicit time inte-
grators is preferred (see Chapter 10 in Reference5) as neither linearization nor a Newton•s method is required. With this
in mind, from a temporal discretization standpoint, we use the explicit type of two-stage Runge…Kutta time integrator.
A crucial aspect that requires special attention is that of the stability of the overall algorithm.38 This can be demon-
strated by monitoring over time the Hamiltonian energy of the system, ensuring the production of entropy throughout
the entire simulation. The overall methodology is shown to be capable of handling contact-impact problems without
excessive spurious modes, even in the case of nearly incompressible elasticity and elasto-plasticity. Examples presented
in the article are specifically chosen in order to illustrate the capability of the proposed framework addressing spurious
oscillations in problems with shocks (or spatial jumps) without resorting toad-hocdissipative correction. Another contri-
bution of the current work is to carry out its implementation into the OpenFOAM platform, widely accepted these days by
industry.

The article is broken-down into the following sections. Section2 starts by summarizing the total Lagrangian
formulation of the conservation laws to be solved, comprising the linear momentum and the three geometric con-
servation laws. Section3 provides the exact solution of the simple one dimensional two-bar impact derived from
the associated jump conditions in linear elasticity. This leads to exact energy transfer from one bar to the other
after contact without energy loss. Motivated by this, the section continues deriving a set of interface contact con-
ditions (velocity and stress) applicable to multi-dimensional contact problems. Section4 presents the second law of
thermodynamics written in terms of the so-called Hamiltonian free energy. Section5 describes the computational
methodology of the vertex centered finite volume method. A proof of entropy production is included as a necessary
condition for stability at the semi-discrete level. Section6 includes the algorithmic flowchart of the resulting numer-
ical scheme where special attention is paid to the procedure in addressing non-matching mesh interface. Section7
presents a set of numerical examples to assess the accuracy and stability of the computational framework, with
detailed comparison with other verified finite element code such as Abaqus. Section8 presents some concluding
remarks.

2 FIRST ORDER HYPERBOLIC SYSTEM FOR SOLID DYNAMICS

Consider the three dimensional deformation of an isothermal body of material density𝜌R moving from its initial
undeformed configuration ΩV, with boundary 𝜕ΩV defined by an outward unit normal N, to a current deformed
configuration Ωv(t) at time t, with boundary 𝜕Ωv(t) defined by an outward unit normal n. The time dependent
motion 𝝓(X, t) of the body can be described by the following system of total Lagrangian global conservation
laws35,39-52

d
dt ∫ΩV

 dΩV + ∫
𝜕ΩV

N dA = ∫ΩV

 dΩV in ΩV , (1)

with the surface flux vector being defined asN =
∑3

I=1 I NI . Here, is the vector of conservation variables, I is the
flux vector at I th material direction and  is the source term. Their components are

 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

p
F
H
J

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,  I = −

⎡
⎢
⎢
⎢
⎢
⎢
⎣

PEI

v ⊗ EI

F × (v ⊗ EI )
H ∶ (v ⊗ EI )

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,  =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

fR

0

0

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (2)
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with the Cartesian material coordinate basis being defined

E1 =
⎡
⎢
⎢
⎢
⎣

1

0

0

⎤
⎥
⎥
⎥
⎦

; E2 =
⎡
⎢
⎢
⎢
⎣

0

1

0

⎤
⎥
⎥
⎥
⎦

; E3 =
⎡
⎢
⎢
⎢
⎣

0

0

1

⎤
⎥
⎥
⎥
⎦

. (3)

In terms of notations,p = 𝜌Rv is the linear momentum per unit material volume, v represents the velocity field,fR is the
body force per unit material volume,{F,H, J} are the triplet deformation measures representing deformation gradient
tensor, its co-factor and its Jacobian,P represents the first Piola…Kirchhoff stress tensor. The symbol× represents the
tensor cross product between vectors and/or second order tensors, see References41,53, and54.

Given the fact that the above system (1) has more equations than needed, suitable compatibility conditions (also
known as involutions45,46,55) are necessary, namely

CURLF = 0; DIVH = 0. (4)

CURL and DIV represent the material curl and divergence operators carried out with respect to the material configuration.
For smooth functions, expression (1) is equivalent to the set of first order local differential equations described as

𝜕

𝜕t
+

3∑

I=1

𝜕 I

𝜕XI
=  in ΩV . (5)

The above local form implies that the variables describing the state of the solid in motion (such as, velocityv and stresses
P) are continuous functions throughout the solid. In other words, it is always possible to find their spatial derivatives
as required by the divergence operators that appear in Equation (5). This is indeed usually the case but situations may
arise when these variables experience sudden jumps in value, that is, they become discontinuous across surfaces which
move across the body. These jumps are known as shocks and are the result of sudden physical phenomena such as
contact-impact problems.

To account for shock phenomena, the integral Equation (1) also leads to the following jump conditions across a
discontinuity surface with normal N propagating with speedU, that is

U⟦ ⟧ = ⟦N⟧. (6)

These jump conditions are sometimes referred to as Rankine…Hugoniot equations56,57describing the behavior of a mate-
rial across a shock. These conditions can then be particularized for the set of conservation variables considered in this
article, namely the linear momentum and the triplet of deformation measures

U⟦p⟧ = −⟦P⟧N; (7a)

U⟦F⟧ = −⟦v⟧⊗ N; (7b)

U⟦H⟧ = −F × (⟦v⟧⊗ N) ; (7c)

U⟦J⟧ = −H ∶ (⟦v⟧⊗ N) . (7d)

Here,⟦•⟧ = [•]+ − [•]− denotes the jump operator between the right and left states of a discontinuous surface.
For the particular case of a reversible process, the closure of system (1) requires the introduction of a suitable con-

stitutive law relating the stress tensorP with the triplet of geometric strain measures {F, H, J}, obeying the principle
of objectivity5,58,59and thermodynamic consistency (via the Coleman…Noll procedure60). In this work, a Mooney…Rivlin
model is employed and is summarized in Remark2 for completeness. Finally, for a complete definition of the initial
boundary value problem, initial and boundary (essential and natural) conditions must be specified as appropriate.

Remark1. For the conservation of mass, the material density at the reference configuration cannot be a function of time,
that is 𝜕𝜌R

𝜕t
= 0.61 This implies that 𝜌R is given by the initial conditions of the solids and it remains constant throughout

the motion, and does not need to be considered as part of the unknowns in system (1) to be solved in time. Since there
is no possible flow of mass across the physical interface (meaning, the associated normal flux vector vanishes), the jump
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RUNCIE �� ��. 5

condition associated with the mass conservation becomesU⟦𝜌R⟧ = 0. This intrinsically implies that the material density
at the reference configuration must be continuous across a shock. Equation (7a) thus reduces to

U𝜌R⟦v⟧ = −⟦P⟧N. (8)

Remark2. In this work, and without loss of generality, we consider a Mooney…Rivlin model such that the strain energy
density is defined as a convex multi-variable functionW of the deformation measures{F,H, J}42,62as

W(F,H, J) = 𝜁J−2∕3 (F ∶ F) + 𝜉J−2(H ∶ H)3∕2 − 3
(
𝜁 +

√
3𝜉

)
+ 𝜅

2
(J− 1)2, (9)

where𝜁 , 𝜉, and𝜅 (bulk modulus) are positive material parameters. Appropriate values for the material parameters𝜁 and
𝜉 can be defined in terms of the shear modulus𝜇, that is, 2𝜁 + 3

√
3𝜉 = 𝜇. It is now possible to express the first Piola

Kirchhoff stress tensor as41

P = 𝚺F + 𝚺H × F + ΣJH, (10)

where the conjugate stresses{𝚺F,𝚺H,ΣJ} are defined by

𝚺F =
𝜕W
𝜕F

= 2𝜁J−2∕3F; 𝚺H =
𝜕W
𝜕H

= 3𝜉J−2(H ∶ H)1∕2H, (11)

and

ΣJ =
𝜕W
𝜕J

= −2
3
𝜁J−5∕3(F ∶ F) − 2𝜉J−3(H ∶ H)3∕2 + 𝜅(J− 1). (12)

For 𝜉 = 0, the Mooney…Rivlin model described above (9) degenerates into the so-called nearly incompressible
neo-Hookean model. In order to model irrecoverable plastic behavior, the standard rate-independent von-Mises plasticity
model58 with isotropic hardening is used and the basic structure was already summarized in Algorithm 1 in Reference45.

Remark3. It is often necessary to obtain expressions for the symmetric Kirchhoff (or Cauchy) stress tensor since it is
needed either to express plasticity models or to display the solution results. Such expressions can be easily obtained from
the following standard relationship between these tensors58

J𝝈 = 𝝉 = PFT
. (13)

To achieve this, substitution of (10) into (13) for P, and following the procedure described in Reference41, gives the
resulting expression for the Kirchhoff (or Cauchy) stress

J𝝈 = 𝝉 = 𝝉F + 𝝉H × I + 𝜏JI, (14)

where

𝝉F = 𝜮FFT ; 𝝉H = 𝜮HHT; 𝜏J = JΣJ. (15)

3 CONTACT-IMPACT CONDITIONS

3.1 Motivation: The local one-dimensional contact solution

In order to motivate the more complex contact-impact solutions (e.g., stick-slip-separation transition) developed in this
section, consider first a simple one-dimensional case comprising two bars, as illustrated in Figure1A, where the left bar
is travelling with a given velocity v0 impacts the right bar which is at rest. When the contact between two bars takes
place, the resulting contact-impact motion is governed by a reduced set of (one-dimensional) jump conditions described
in system (7) as
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6 RUNCIE �� ��.

(A)

(B)

(C)

(D)

(E)

(F)

F I G U R E 1 Wave solution for one-dimensional two-bar impact at different time: (A)t0 = 0, (B) t1 = 𝛿∕v0, (C) t2 = t1 + L∕(2cp),
(D) t3 = t1 + L∕cp, (E) t4 = t1 + 3L∕(2cp), and (F) t5 = t1 + 2L∕cp. 𝛿 is the gap separation between two bar att0. Left column represents the
velocity profile vx and right column represents the stress profilePxX (not the traction).

cp𝜌R⟦vx⟧ = −⟦PxX⟧NX ; (16a)

cp⟦FxX⟧ = −⟦vx⟧NX . (16b)

For ease of understanding, both bars are assumed to be made of the same linear elastic material defined asPxX =
(𝜆 + 2𝜇) (FxX − 1).58 With this linear model, and noting that ⟦PxX⟧ = (𝜆 + 2𝜇) ⟦FxX⟧, we can then obtain the shock wave
speedcp by substituting expression (16b) into (16a). Expression (16a) after some algebra becomes

cp𝜌R⟦vx⟧ = − (𝜆 + 2𝜇) ⟦FxX⟧NX =
(𝜆 + 2𝜇)

cp
⟦vx⟧, (17)

and which after rearranging gives†

cp =

√
𝜆 + 2𝜇
𝜌R

. (18)

This corresponds to the speed of the sound wave in the bar which can be obtained considering the classical wave
propagation theory.61

Once the shock wave speed is determined, attention is now focused on the evaluation of the velocity (kinematic) and
traction (kinetic) at the contact-impact scenario. The same evaluation procedure would also be repeated when considering
the separation process. When contact is made between two points of the bar, shock waves are generated and travel in
opposite directions along each bar (from the contact point to the free end of the bar) as shown in Figure1A…C. When
such a compressive stress wave reaches the end of a bar, wave reflection occurs (see Figure1D). The reflective wave
varies depending on the actual physical boundary of the problem under consideration. In the case of a free end (i.e.,
traction is zero and particle velocity is doubled), the reflected wave becomes a tensile stress wave which is an inverted
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RUNCIE �� ��. 7

image of the compressive stress wave. The frequency and amplitude of the velocity wave however in this case remains
unchanged in reflection. Finally, as soon as the tensile stress wave arrives at the contact point, both bars would undergo
the separation process. The above procedure describing the wave evolution for a two-bar impact in one dimension is
graphically represented in Figure1 for clarity.

Let us now focus on the mathematical solutions of contact-impact state between two bars. Upon contact, both instan-
taneous velocityvC

x and traction tC
x are obtained by applying the jump condition (16a) between the values of variables

before and after the impact through appropriate initial conditions, to give

cp𝜌R
(
v0 − vC

x
)
= 0− tC

x ; (19a)

cp𝜌R
(
0− vC

x
)
= −(0− tC

x ). (19b)

The first equation (19a) corresponds to the jump relation between the left bar (travelling with a given speedv−x = v0) and
the contact point, whereas the second equation (19b) refers to the jump between the right bar (at restv+x = 0) and the
contact point. Additionally, both ends of the bars are traction-free right before contact, which implies thatt−x = t+x = 0.
Solving the above system (19) analytically gives the common (or continuous) velocity and traction at the contact point
for both bars

vC
x =

1
2

v0; tC
x = −

(cp𝜌R

2

)
v0. (20)

This is generally known as contact-stick mode in one dimension.
Following the same procedure described above, it is also possible to determine the release velocity for each of the bars

right after separation. In this separation mode, the release traction must be zero ensuring the traction-free compatibility
condition. Focusing first on the left bar, the release velocity can be achieved by introducing the jump condition (16a)
between the values of variables before and after separation to give

cp𝜌R

(
v−x − vC,−

x

)
= t−x − 0. (21)

Suitable conditions for velocity and traction right before separation must be enforced. In this specific demonstration, and
referring to Figure 1E, we use the values ofv−x = t−x = 0 at the contact point prior to separation. With these at hand, the
associated release velocity in expression (21) becomes null, shown as below

vC,−
x = v−x −

t−x
cp𝜌R

= 0. (22)

Analogously, we can now repeat the same demonstration for the right bar. The corresponding jump condition in relation
to the right bar follows

cp𝜌R

(
v+x − vC,+

x

)
= −

(
t+x − 0

)
. (23)

Using the exact same value of the contact traction as for the left bar (i.e.,t+x = 0) and the velocity to bev+x = v0, the above
expression yields

vC,+
x = v+x +

t+x
cp𝜌R

= v0 + 0 = v0. (24)

Observing the fact that the release velocity for the left bar is null (22) and for the right bar is v0 (24), this represents a
complete transfer of kinetic energy (and also total energy) from the left bar to the right bar at the point of contact without
energy loss. This is illustrated in Figure1A,F.

From the point of view of hyperbolic differential equations, the sudden impact between two bars results in a Rie-
mann problem in each bar with a simple analytical solution. The boundary fluxes at the point of impact, namely the
velocity and traction, must be compatible with the jump conditions. In linear elasticity, this compatibility leads to exact
energy balance‡ since the shocks wave travels at the speed of sound. From a mathematical standpoint, the elastodynamic
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8 RUNCIE �� ��.

contact problem is well posed without the need to introduce artificial ad-hoc dissipative effects, provided that the first
order conservation equations (1) together with the associated jump conditions (7) are used. The sections that follow
will conceptually extend the above simple local contact solution to three dimensional local solution with a possibility to
consider bi-material between contact.

3.2 Extension to general contact procedure

It is worthwhile recalling the general solution process for the contact algorithm (for instance, stick-slip-separation tran-
sition) that would ensure the satisfaction of Karush…Kuhn…Tucker condition.5,11 To begin with, it is instructive to first
determine the trial solution assuming contact-stick mode. Such trial solution is used as a criteria in the subsequent
development, to check if two bodies are in contact or separate.

The contact between two bodies will only take place if the following two conditions hold

tC,trial
n < 0; 𝛿 = 0. (25)

The first (kinetic) condition ensures that the normal component of the trial contact tractiontC,trial
n must be in compression,

whereas the second (kinematic) condition ensures two bodies are in contact, that is the normal separation𝛿 between
points of contact is zero. We next need to examine the nature of the contact motion, whether they are in stick mode or
slip mode, depending on the tangential friction introduced in the model. To achieve this, it is possible to introduce a slip
criterion Φ accounting for the difference between the value of a trial tangential traction vectortC,trial

t and a tangential
friction arising from isotropic Coulomb friction, 5 that is

Φ = ||tC,trial
t || − k⟨−tC

n ⟩, (26)

with the magnitude (or norm) of a vector being defined as||[•]|| =
√
([•] ⋅ [•]). Here,k is the Coulomb friction coefficient

and the symbol⟨•⟩ = 1
2
([•] + | [•] |) in the above equation represents the positive part of the scalar value. The value of the

slip criterion determines the transition between contact-stick and contact-slip modes. IfΦ ≤ 0, contact-stick conditions
hold given the fact that the computed tangential force does not exceed the Coulomb limit. Otherwise, when the value of
Φ > 0, we then accept the solution to be in contact-slip mode.

Finally, the transition from either contact-slip or contact-stick to separation would happen whentC,trial
n ≥ 0 (that is, the

violation of the kinetic condition), even with the value of 𝛿 = 0. The overall procedure described above is summarized in
Algorithm 1. This however would require the evaluation of contact traction and velocity associated with various dynamic
contact models involved, and which will be presented in the following sections.

3.2.1 Contact-stick condition

Motivated by the one-dimensional problem illustrated in Section3.1, we now extend the concept to multi-dimensions
by postulating that impact between two bodies travelling at different speeds leads to a common velocity and traction at
the point of contact as shown in Figure2. The normal components of the velocity and traction at the point of contact are
defined as

vn = v ⋅ n; tn = t ⋅ n = (PN) ⋅ n. (27)

Both of these values are likely to be different for the left and right bodies right before contact and are therefore denoted
asv−n and t−n for the left body andv+n and t+n for the right body. The common values after contact are denoted byvC

n and tC
n .

Note first that the impact will generate two types of shock waves travelling from the contact point into each of the two
bodies.

In the case of frictionless contact, the generated shock waves will travel with volumetric speedUp. The evaluation of
the common contact velocity and traction vectors is governed by the jump conditions across the two shocks, obtained by
applying Equation (8) on each body as follows

U−
𝜌
−
R⟦v⟧− = −⟦P⟧−(−N−); U+

𝜌
+
R⟦v⟧+ = −⟦P⟧+(−N+). (28)
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RUNCIE �� ��. 9

Algorithm 1. General procedure for stick-to-slip-to-separation transition

if 𝛿 = 0 then
Obtain trial contact-stick traction: tC,trial = tC (34a) (see Section 3.2.1)
Determine the normal contact traction:tC,trial

n = n ⋅ tC,trial

if tC,trial
n < 0 then
Check slip criterion:Φ = ‖tC,trial

t ‖ − k⟨−tC
n ⟩

if Φ ≤ 0 then
Contact-stick mode:tC (34a) andvC (34b) (see Section 3.2.1)

else
Contact-slip mode:tC (41) andvC (40) (see Section 3.2.2)

end
else

Separation mode:vC (49) andtC = 0 (see Section 3.2.3)
end

else
Not in contact: vC (49) andtC = 0 (see Section 3.2.3)

end

F I G U R E 2 Contact-impact generated shock waves in multi-dimensions.

Note that the negative sign in front ofN− andN+ are necessary as the shocks propagate into the body in directions opposite
to N− and N+. Multiplying the above expressions by a unique normal vector gives

U−
p 𝜌

−
R

(
v−n − vC

n
)
= t−n − tC

n ; (29a)

U+
p 𝜌

+
R

(
v+n − vC

n
)
= −

(
t+n − tC

n
)
. (29b)

The difference in sign between expressions (29a) and (29b) is becausen is normal to the surface of the left body
and hencet+n = −n ⋅ (P+N+) and tC

n = −n ⋅ PCN+, whereast−n = n ⋅ (P−N−) and tC
n = n ⋅ (PCN−). Expressions (29) rep-

resent a system of two equations for four unknowns, namelytC
n and vC

n (expressed in terms of the left and right
normal tractions and velocity before the impact) and also{U−

p ,U
+
p } the speeds of the shocks after impact. Unfortu-

nately, the shock speeds in Equation (29) are in general also a function of the unknownstC
n and vC

n rendering the
system of equations highly nonlinear. A much simpler case emerges when the speed of the shock after contact is
assumed to be equal to the speed of soundcp (18) (derived on the basis of the linear elastic model), which only depends
on the material properties under consideration. This is usually referred to as an acoustic Riemann solver56,57 widely
known in the field of CFD. Doing this will give closed-form expressions for the normal components of velocityvC

n and
traction tC

n as
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10 RUNCIE �� ��.

vC
n =

c−p𝜌
−
Rv−n + c+p𝜌

+
Rv+n

c−p𝜌
−
R + c+p𝜌

+
R

+
t+n − t−n

c−p𝜌
−
R + c+p𝜌

+
R

;

tC
n =

c−p𝜌
−
Rc+p𝜌

+
R

c−p𝜌
−
R + c+p𝜌

+
R

(
t−n

c−p𝜌
−
R

+
t+n

c+p𝜌
+
R

)

+
c−p𝜌

−
Rc+p𝜌

+
R

c−p𝜌
−
R + c+p𝜌

+
R

(
v+n − v−n

)
. (30)

In the situation where friction is present to a sufficient degree to prevent relative sliding, similar common tangential
components of the velocity and traction can be derived. Consequently shear shocks are also generated and are, again,
assumed to be identical to the simple shear wave speed obtained via linear elasticity45

cs =
√

𝜇

𝜌R
. (31)

If vt and tt are defined as

vt = v − vnn; tt = t − tnn, (32)

a similar derivation for the common tangential traction and velocity vectors gives

vC
t =

c−s 𝜌
−
Rv−t + c+s 𝜌

+
Rv+t

c−s 𝜌
−
R + c+s 𝜌

+
R

+
t+t − t−t

c−s 𝜌
−
R + c+s 𝜌

+
R

;

tC
t =

c−s c+s 𝜌
−
R𝜌

+
R

c−s 𝜌
−
R + c+s 𝜌

+
R

( t−t
c−s 𝜌

−
R

+
t+t

c+s 𝜌
+
R

)

+
c−s c+s 𝜌

−
R𝜌

+
R

c−s 𝜌
−
R + c+s 𝜌

+
R

(
v+t − v−t

)
, (33)

where c−s and c+s are the left and right body shear shock speeds.
Finally, the complete common velocity and traction vectors at the contact point can be combined

tC = tC
n n + tC

t ; vC = vC
n n + vC

t . (34)

This is typically known as contact-stick mode. Numerically, expressions (34) can be viewed as the summation of the
average states (unstable) and the associated upwinding stabilization terms depending on the jumps. This has been exten-
sively exploited by the authors in developing stabilized methods with the objective to improve the numerical solutions by
alleviating unwanted spurious hour-glassing and pressure instabilities.34,43,45,47-49

Provided the interface conditions (25) and also the slip functionΦ ≤ 0 (26) hold, we accept the contact-stick solu-
tion (34) as the actual local solution for contact. Otherwise, we must investigate other possible contact models such as
contact-slip or separation. This will be presented in the next section.

Remark4. It is also useful to consider the case where the jump in traction (or the first Piola Kirchhoff stressP (10)) is
dominated by the jump in the pressure component of the stress (which in this case is related toΣJ), whilst the rest of the
components of the stress{𝚺F,𝚺H} can be neglected. This is indeed the case when attempting to model problems with
predominant nearly incompressible behavior. Use of (10) in conjunction with the Nanson•s rule HAveN = ΛHn (where
ΛH is the ratio between the current area and the undeformed area), enables the jump in the traction vector to be

t+ − t− = ⟦t⟧ = ⟦P⟧N = ⟦𝚺F + 𝚺H × F + ΣJH⟧N, (35a)

≈ ⟦ΣJ⟧
(

HAveN
)
, (35b)

= ⟦ΣJ⟧ΛHn. (35c)

Neglecting the stress components𝚺F and 𝚺H implies that ⟦𝚺F + 𝚺H × F⟧N = 0. The jump in the traction vector in the
normal direction can now be derived by multiplying (35c) with a normal vector n to yield

t+n − t−n = n ⋅ ⟦t⟧ = ⟦ΣJ⟧ΛH. (36)

It is also interesting to notice that the jump in the tangential component of the traction vanishes. This is easily shown as
below
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RUNCIE �� ��. 11

t+t − t−t = ⟦tt⟧ = ⟦t⟧ − ⟦tn⟧n, (37a)

= ⟦ΣJ⟧ΛHn − ⟦ΣJ⟧ΛHn = 0, (37b)

by making use of expressions (32b), (36), and (35c).

Remark5. When considering the exact same material properties on the left and right sides at a point of contact, the
density and the shock wave speeds are identical and constant for both sides, namely𝜌

−
R = 𝜌

+
R = 𝜌R and c−p = c+p = cp and

c−s = c+s = cs. Enforcing these conditions in (30) and (33) especially in the case of nearly incompressible materials (see
Remark 4) yields

vC
n =

1
2

(
v−n + v+n

)
+ 1

2𝜌Rcp
⟦ΣJ⟧ΛH; tC

n =
1
2

(
t−n + t+n

)
+
𝜌Rcp

2

(
v+n − v−n

)
, (38a)

vC
t =

1
2

(
v−t + v+t

)
; tC

t =
1
2

(
t−t + t+t

)
+ 𝜌Rcs

2

(
v+t − v−t

)
. (38b)

Remark6. Consider a contact system where the material on the right side is much stiffer than the material on the left
side. Under this circumstance, both pressure and shear shock wave speeds on the stiffer material are approximated to be
c+p ≈ ∞ and c+s ≈ ∞, which, upon substitution into Equations (30) and (33), gives

vC
n = v+n ; vC

t = v+t ; tC
n = t−n + c−p𝜌

−
R(v

+
n − v−n ); tC

t = t−t + c−s 𝜌
−
R(v

+
t − v−t ). (39)

Observe the fact that only the velocity of the stiffer side, that isv+, enters the solutions. These solutions indeed coincide
with the Dirichlet boundary conditions already discussed in Reference45, where the velocityv+ is prescribed on the
boundary of the domain. For instance, when considering no-slip wall boundary condition, the values ofv+t and v+n are set
to zero.

3.2.2 Contact-slip conditions

When the magnitude of the tangential traction described in (33) exceeds the Coulomb friction limit, that isΦ > 0 (26),
relative sliding between two surfaces is then allowed. This phenomenon is known as contact-slip mode. In this mode,
only normal component of the velocity is continuous across the contact surface between the left and right bodies. The
tangential components of the velocity however may suffer jumps. Mathematically, the complete velocity field associated
with slip mode for both the left and right surfaces are postulated as

vC,− = vC
n n + vC,−

t ; vC,+ = vC
n n + vC,+

t , (40)

with vC
n being defined in (30a). The remaining variables to be determined are the respective tangential velocity components

{vC,−
t , vC,+

t }.
In order to achieve this, it is instructive to consider the slip traction vector to be

tC = tC
n n + tB

t ; tB
t = k⟨−tC

n ⟩n⊥; n⊥ = −
tC
t

||tC
t ||
. (41)

With regard to the first term on the right hand side of the above equation, the normal component of the contact traction
tC
n must be in compression (i.e., its value must be strictly negative) and its expression remains exactly the same as the one

described in contact-stick mode (30b). The second termtB
t represents the tangential frictional traction arising from the

Coulomb model of friction and is in the direction n⊥ opposing the motion predicted using the tangential traction (33) in
stick mode. Use of (41) in conjunction with ( 28), enables the tangential components of slip velocity vectors to become

c−s 𝜌
−
R

(
v−t − vC,−

t

)
= t−t − tB

t ; c+s 𝜌
+
R

(
v+t − vC,+

t

)
= −

(
t+t − tB

t

)
. (42)

Re-arranging the above expressions render

vC,−
t = v−t +

(
tB
t − t−t

)

c−s 𝜌
−
R

; vC,+
t = v+t −

(
tB
t − t+t

)

c+s 𝜌
+
R

. (43)
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12 RUNCIE �� ��.

It is useful to notice that frictionless contact condition (also known as symmetric condition) can be easily recovered by
enforcing the value of frictional coefficientk = 0 in (41), which in turn implies that tB

t = 0.

3.2.3 Separation conditions

In the current work, we assume homogeneous prescribed traction (that is, traction-free conditions) in separation mode,
but non-vanishing prescribed tractions due to viscous fluid loading are also possible. This reveals the fact that the traction
after separation must ensure traction-free compatibility conditions, namely

tC,− = tC,+ = 0. (44)

With this, we are now in a position to proceed with the evaluation of release (or post-separation) velocity on respective
surfaces by re-applying Equation (8) between the values of variables before and after separation, repeated below again for
convenience

U−
𝜌
−
R⟦v⟧− = −⟦P⟧− (−N−) ; U+

𝜌
+
R⟦v⟧+ = −⟦P⟧+

(
−N+)

. (45)

The normal components of the release velocities are obtained by multiplying expressions above with the normal vectorn

c−p𝜌
−
R

(
v−n − vC,−

n

)
= t−n − 0; c+p𝜌

+
R

(
v+n − vC,+

n

)
= −

(
t+n − 0

)
, (46)

and which, after rearranging, becomes

vC,−
n = v−n −

t−n
c−p𝜌

−
R

; vC,+
n = v+n +

t+n
c+p𝜌

+
R

. (47)

In line with linear elasticity theory, above expressions coincide with the expressions shown in (22) and (24). A similar
derivation for the tangential velocity vectors can now follow

vC,−
t = v−t −

t−t
c−s 𝜌

−
R

; vC,+
t = v+t +

t+t
c+s 𝜌

+
R

. (48)

Combining (47) and (48) enables the release velocities to be expressed as

vC,− = vC,−
n n + vC,−

t ; vC,+ = vC,+
n n + vC,+

t . (49)

It is worth noticing that all the velocity components described in (49) are generally distinct and independent on opposing
sides of the contact surface.

4 SECOND LAW OF THERMODYNAMICS

In order to pave the way for the proof of entropy production presented in a subsequent section, it is useful to introduce
the notion of Hamiltonian (X, t).61,63 For the isothermal case, this indeed can be understood as a generalized convex
entropy function of the system of conservation equations (1), coinciding with the definition of total energy per unit of
undeformed volume. Specifically, the Hamiltonian is defined by

(X, t) = ̂(p,F,H, J,𝜶) = 1
2𝜌R

p ⋅ p + (F,H, J,𝜶), (50)

which represents the summation of the kinetic energy per unit of undeformed volume (i.e., the first term on the right
hand side of (50)) and the internal energy expressed in terms of the triplet deformation measures{F,H, J} and a set of
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RUNCIE �� ��. 13

state variables64-66(such as plastic deformation or similar) collected in the form of a tensor𝜶. Note here that(X, t) and
̂(p,F,H, J,𝜶) represent alternative functional representations of the same quantity.

It is instructive to revisit the second law of thermodynamics when written in terms of the Hamiltonian. Taking the
derivatives of̂ (50) with respect to its arguments, the time rate of the Hamiltonian for one of the bodies involving contact
is obtained via the chain rule as follows

d
dt ∫ΩV

 dΩV = ∫ΩV

𝜕̂(p,F,H, J,𝜶)
𝜕t

dΩV

= ∫ΩV

(
𝜕̂
𝜕p

⋅
𝜕p
𝜕t
+ 𝜕̂
𝜕F

∶ 𝜕F
𝜕t
+ 𝜕̂
𝜕H

∶ 𝜕H
𝜕t

+ 𝜕̂
𝜕J

𝜕J
𝜕t
+ 𝜕̂
𝜕𝜶

∶ 𝜕𝜶
𝜕t

)

dΩV

= ∫ΩV

(

v ⋅
𝜕p
𝜕t
+𝜮F ∶

𝜕F
𝜕t
+𝜮H ∶

𝜕H
𝜕t

+ ΣJ
𝜕J
𝜕t
+ 𝜕
𝜕𝜶

∶ 𝜕𝜶
𝜕t

)

dΩV

= ∫ΩV

(

v ⋅
𝜕p
𝜕t
+ (𝜮F + 𝚺H × F + ΣJH) ∶ 𝜵0v + 𝜕

𝜕𝜶
∶ 𝜕𝜶
𝜕t

)

dΩV

= ∫ΩV

(

v ⋅
𝜕p
𝜕t
+ P ∶ 𝜵0v + 𝜕

𝜕𝜶
∶ 𝜕𝜶
𝜕t

)

dΩV , (51)

where, Equations (5) and (10) have been substituted in the third and fifth lines of (51), respectively. Subsequently, we can
substitute the linear momentum conservation Equation (1) into (51) to give

d
dt ∫ΩV

 dΩV = ∫ΩV

[
v ⋅ fR+ v ⋅ DIVP + P ∶ 𝜵0v + 𝜕

𝜕𝜶
∶ 𝜕𝜶
𝜕t

]
dΩV . (52)

Recalling thatv ⋅ DIVP + P ∶ 𝜵0v = DIV
(

PTv
)
, above equation reduces to

d
dt ∫ΩV

 dΩV = ∫ΩV

[
v ⋅ fR+ DIV(PTv) + 𝜕

𝜕𝜶
∶ 𝜕𝜶
𝜕t

]
dΩV . (53)

By performing integration by parts of the DIV term in expression (53), and after some re-arrangement, it renders

d
dt ∫ΩV

 dΩV − Π̇ext = −Ḋ, (54)

where Π̇ext denotes the power introduced by external forces, defined as

Π̇ext = ∫ΩV

v ⋅ fR dΩV + ∫
𝜕ΩV⧵Γ

vB ⋅ tB dA + ∫Γ vC ⋅ tC dA. (55)

Here, Γ represents the boundary faces on contact region and𝜕ΩV ⧵ Γ represents the remaining boundary faces that
are not in contact. In the above expression, the first term on the right hand side represents external force acting on a
body, the second term represents the non-contact boundary forces obtained via the enforcement of standard Neumann
or Dirichlet boundary conditions, and the third term represents the contact boundary forces describing appropriately
the contact-impact phenomenon. Such contact boundary contributions are suitably enforced by solving a Riemann-like
problem as already presented in Section3.

Consider the case of elasto-plasticity47,52,58where the elastic energy is expressed in terms of elastic left Cauchy-Green
tensor be = FC−1

p FT, thus in this case the internal state variable is indeed the inverse of the plastic right Cauchy Green
tensor, that is𝜶 = C−1

p . With this, the rate of plastic dissipationḊ described in (54) becomes

Ḋ = −∫ΩV

𝜕
𝜕C−1

p

∶
𝜕C−1

p

𝜕t
dΩV . (56)

In view of the fact that the rate of plastic strain ̇𝜀p has been defined as the work conjugate to the von Mises equivalent
stress𝜏,58 equation above can be alternatively expressed as58
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14 RUNCIE �� ��.

Ḋ = ∫ΩV

̇
𝜀p𝜏 dΩV ; 𝜏 =

√
3
2
(𝝉 ′ ∶ 𝝉 ′), (57)

where 𝝉 ′ represents the deviatoric component of the Kirchhoff stress. Noticing that in the above expression the rate of
dissipation is always non-negative, that iṡD ≥ 0, Equation (54) can be transformed into the following inequality

d
dt ∫ΩV

 dΩV − Π̇ext ≤ 0, (58)

which represents a valid expression for the second law of thermodynamics.59 Satisfaction of inequality (58) is a necessary
ab initio condition to ensure stability, otherwise referred to as the Coleman…Noll procedure.34 This key concept will be
further exploited in Section5.2at a semi-discrete level.

5 VERTEX CENTERED FINITE VOLUME METHOD

5.1 Semi-discrete formulation for dynamic contact

The vertex centered finite volume spatial discretization presented in this work requires the generation of a median dual
mesh34,35,50for the definition of control volumes (see Figure3). With this in mind, expression (1) can now be spatially
discretized over an undeformed control volumeΩa

V, to give

Ωa
V

d a

dt
= −∫

𝜕Ωa
V

N dA + Ωa
Va. (59)

Here, a and a are the average values of both the conservation variables and source term vector within the control
volume, respectively.

Moreover, the surface integral of (59) is approximated by means of appropriate numerical fluxes, resulting in§

Ωa
V

d a

dt
= −

⎛
⎜
⎜
⎝

∑

b∈Λa


I
Nab

||Cab|| +
∑

𝛾∈ΛB
a


B
aC𝛾 +

∑

𝛽∈ΛC
a


C
a C𝛽

⎞
⎟
⎟
⎠

+ Ωa
Va, (61)

whereb ∈ Λa represents the set of neighboring control volumesbassociated with the control volumea andC𝛾,𝛽 =
A
𝛾,𝛽

3
N𝛾,𝛽

represents the (tributary) boundary area vector. For a given edge connecting nodesa and b, the mean undeformed area

F I G U R E 3 Dual mesh of (A) an interior node and (B) a boundary node using the medial dual approach in two dimensional triangular
mesh.
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RUNCIE �� ��. 15

vector Cab satisfies the reciprocal relation, that isCab = −Cba. The terms within the parenthesis in (61) correspond to
the evaluation of the control volume internal interface flux I

Nab
, non-contact boundary fluxesB

a and contact bound-

ary fluxesC
a . This evaluation is comprised of a summation over edges (first term in the parenthesis), a summation

over non-contact boundary faces (second term in the parenthesis) and a summation over contact boundary faces (third
term in the parenthesis). The internal interface flux I

Nab
=  I

Nab
( −

ab,
+
ab,Nab) must be evaluated on the basis of the

contact-stick condition (see Section3.2.1), which depends on the reconstructed states at both sides of the mid-edge of
ab, namely −

ab and +
ab. The non-contact boundary fluxB

a is enforced through either Neumann or Dirichlet bound-
aries and the contact fluxC

a is determined following strictly the contact procedure presented in Algorithm1 (obeying
appropriate contact-impact physics). Notice that in (61), C𝛽 = 0 when the boundary face𝛽 is not in contact.

It is worth noticing that Equation ( 61) would only lead to a first order solution in space45 provided that  −
ab and


+
ab are modeled following a piecewise constant representation. For instance, −

ab =  a and +
ab =  b, thus leading to

excessive numerical dissipation in the solution. The physics of the problem can no longer be captured accurately unless
excessively fine meshes are used, which is clearly undesirable especially for large scale problems in practice. To over-
come this drawback, and to guarantee second order accuracy in space, a suitable linear reconstruction procedure is used.
A detailed discussion of this reconstruction procedure has already been presented in References45,48, and47.

Expression (61) is now particularized for each individual component of , yielding

Ωa
V

dpa

dt
=

∑

b∈Λa

tI ||Cab|| +
∑

𝛾∈ΛB
a

tB
a||C𝛾 || +

∑

𝛽∈ΛC
a

tC
a ||C𝛽|| + Ωa

Vf a
R ; (62a)

Ωa
V

dFa

dt
=

∑

b∈Λa

vI
⊗ Cab +

∑

𝛾∈ΛB
a

vB
a ⊗ C𝛾 +

∑

𝛽∈ΛC
a

vC
a ⊗ C𝛽 ; (62b)

Ωa
V

dHa

dt
=

∑

b∈Λa

FAve ×
(

vI
⊗ Cab

)
+

∑

𝛾∈ΛB
a

Fa ×
(

vB
a ⊗ C𝛾

)
+

∑

𝛽∈ΛC
a

Fa ×
(

vC
a ⊗ C𝛽

)
; (62c)

Ωa
V

dJa

dt
=

∑

b∈Λa

vI ⋅
(

HAveCab
)
+

∑

𝛾∈ΛB
a

vB
a ⋅

(
HaC𝛾

)
+

∑

𝛽∈ΛC
a

vC
a ⋅

(
HaC𝛽

)
. (62d)

Here, [•]Ave = 1
2
([•]a + [•]b). It is worth re-emphasizing that the determination of internal fluxes{tI

, vI} is based on
contact-stick mode (refer to Equations (30), (33), and (34)) and the non-contact boundary fluxes{tB

a , vB
a} are evaluated

respecting the physical boundaries (i.e., Neumann or Dirichlet). On the other hand, the evaluation of contact boundary
fluxes{vC

a , tC
a}must satisfy the Karush…Kuhn…Tucker condition for stick-slip-separation transition. The reader can refer

to Equations {(34), (30), (33)} for contact-stick mode, Equations {(40), (41), (43)} for contact-slip mode, and Equations
{(44), (49), (47), (48)} for separation mode.

In ensuring discrete satisfaction of the involutions (4), and following the work of Reference34, one viable option is to
approximate the updates ofF (62b) andH (62c) using central difference approximations by neglecting the jump in traction
in (30) and (33) (or jump in ΣJ (38a)) for vI in (62b) and (62c). Additionally, in order to ensure the triplet deformation
measures to be solved in a consistent manner, the average strain variablesFAve and HAve appearing in expressions (62c)
and (62d) will be replaced byFa and Ha. With this, and assuming the jump in traction is dominated by jump in pressure
(see Remark 4), the geometric conservation Equations (62b)…(62d) reduce to

Ωa
V

dFa

dt
=

∑

b∈Λa

vWAvg
⊗ Cab +

∑

𝛾∈ΛB
a

vB
a ⊗ C𝛾 +

∑

𝛽∈ΛC
a

vC
a ⊗ C𝛽 ; (63a)

Ωa
V

dHa

dt
= Fa ×

⎛
⎜
⎜
⎝

∑

b∈Λa

vWAvg
⊗ Cab +

∑

𝛾∈ΛB
a

vB
a ⊗ C𝛾 +

∑

𝛽∈ΛC
a

vC
a ⊗ C𝛽

⎞
⎟
⎟
⎠

; (63b)

Ωa
V

dJa

dt
= Ha ∶

⎛
⎜
⎜
⎝

∑

b∈Λa

vWAvg
⊗ Cab +

∑

𝛾∈ΛB
a

vB
a ⊗ C𝛾 +

∑

𝛽∈ΛC
a

vC
a ⊗ C𝛽

⎞
⎟
⎟
⎠

+
∑

b∈Λa

SΣJ

ab

(
Σ+J − Σ

−
J

)
. (63c)

Here, the strictly positive parameterSΣJ

ab
and the weighted average velocity field are defined as

SΣJ

ab
= 1

2𝜌Rcp

cab ⋅ cab

||Cab||
; vWAvg = vWAvg

n n + vWAvg
t , (64)
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16 RUNCIE �� ��.

with their components being described as

vWAvg
n =

c−p𝜌
−
Rv−n + c+p𝜌

+
Rv+n

c−p𝜌
−
R + c+p𝜌

+
R

; vWAvg
t =

c−s 𝜌
−
Rv−t + c+s 𝜌

+
Rv+t

c−s 𝜌
−
R + c+s 𝜌

+
R

; cab = HAveCab. (65)

It is important to emphasize that strong compatibility between the different kinematic fields{F,H, J} is lost at the
semi-discrete level. However, weak compatibility is maintained due to the coupled nature of the semi-discrete system of
conservation equations.

For visualization purposes, the current deformed geometry is recovered by integrating in time the discrete nodal
velocity field obtained using (62a)

dxa

dt
= va. (66)

With respect to the time integration of the above system (62a), (63a)…(63c) along with the geometry x (66),
and keeping in mind a fast and efficient algorithm, we advocate for an explicit one-step two-stage total variation
diminishing Runge…Kutta (TVD-RK) method, thoroughly reported by the authors in Reference48 and references
therein.

5.2 Entropy production

In this section, inequality (58) is assessed for the above set of semi-discrete equations (62a), (63a), (63b), (63c). For illus-
trative purposes, the body under consideration is said to be homogeneous. Additionally, and in line with the Godunov•s
theorem,56,57we assume piecewise constant approximation (first order in space) for variables across each control volume.
Making use of expression (57), the semi-discrete counterpart of (51) is

∑

a

Ωa
V

da

dt
=

∑

a

Ωa
V

[

va ⋅
dpa

dt
+ 𝚺a

F ∶
dFa

dt
+ 𝚺a

H ∶
dHa

dt
+ Σa

J
dJa

dt
− Ḋa

]

, (67a)

=
∑

a

Ωa
V

[

va ⋅
dpa

dt
+

(
𝚺a

F + 𝚺
a
H × Fa + Σa

JHa
)
∶ dFa

dt
− Ḋa

]

+
∑

a

∑

b∈Λa

Σa
JSΣJ

ab
(Σb

J − Σ
a
J), (67b)

=
∑

a

Ωa
V

[

va ⋅
dpa

dt
+ Pa ∶

dFa

dt

]

+
∑

a

∑

b∈Λa

Σa
JSΣJ

ab
(Σb

J − Σ
a
J) −

∑

a

Ωa
VḊa, (67c)

where, Equations (63a)…(63c) and (10) have been substituted in the second and third lines of (67), respectively. Subse-
quently, we can substitute the linear momentum conservation Equation (62a), the deformation gradient conservation
Equation (63a) and, after some algebra, gives

∑

a

Ωa
V

da

dt
=

∑

a

∑

b∈Λa

1
2
[ta ⋅ vb − tb ⋅ va] ||Cab||, (68a)

+
∑

a

∑

b∈Λa

va ⋅ Sv
ab (vb − va) +

∑

a

∑

b∈Λa

Σa
JSΣJ

ab
(Σb

J − Σ
a
J) −

∑

a

Ωa
VḊa + Π̇ext. (68b)

Here, Π̇ext denotes the semi-discrete power contribution, expressed as

Π̇ext =
∑

a

Ωa
Vva ⋅ f a

R +
∑

𝛾

A𝛾

RtB
a ⋅ vB

a +
∑

𝛽

A𝛽

RtC
a ⋅ vC

a , (69)

and the positive definite matrices are

Sv
ab =

𝜌Rcp

2
(n ⊗ n) + 𝜌Rcs

2
(I − n ⊗ n) . (70)
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RUNCIE �� ��. 17

Noticing that the nested summation is carried out over control volumes in (68) and the anti-symmetric nature of the first
line of the right hand side, we can conclude that these terms cancel and thus (68) reduces to

∑

a

Ωa
V

da

dt
− Π̇ext =

∑

a

∑

b∈Λa

va ⋅
(

Sv
ab (vb − va)

)
+

∑

a

∑

b∈Λa

Σa
JSΣJ

ab
(Σb

J − Σ
a
J) −

∑

a

Ωa
VḊa, (71a)

=
∑

a

∑

b∈Λa

vb ⋅
(

Sv
ba (va − vb)

)
+

∑

a

∑

b∈Λa

Σb
JSΣJ

ba
(Σa

J − Σ
b
J) −

∑

a

Ωa
VḊa. (71b)

It is worth pointing out that the first two terms on the right hand side can be equivalently written by swapping indicesa
andb. Simple averaging the first line and the second line of the equation above, and noticing thatSv

ab = Sv
ba andSΣJ

ab
= SΣJ

ba
,

an alternative expression is

∑

a

Ωa
V

da

dt
− Π̇ext = −

[
1
2

∑

a

∑

b∈Λa

(
(vb − va) ⋅ Sv

ab (vb − va) + SΣJ

ab

(
Σb

J − Σ
a
J

)2
)
+

∑

a

Ωa
V
̇
𝜀

a
p𝜏a

]

. (72)

Indeed, the first two terms in the square bracket of (72) are always non-negative. Moreover, in the case of elasto-plasticity,
the third term representing the rate of plastic dissipation is also non-negative.

6 ALGORITHMIC DESCRIPTION

For ease of understanding, Algorithm2 summarizes the complete algorithmic description of the proposed finite volume
methodology for large strain contact dynamics. This algorithm¶ is implemented in modern CFD code •OpenFOAM,Ž
with an eye on large scale contact simulation in future works.

Algorithm 2. Vertex centered finite volume algorithm for contact dynamics

(1) Initialize median dual mesh and solid dynamic variables for allbodies, i
(2) Initialize contact pairs

- Identify contact pairs and initialize contact variables
- Compute face area projection weights (see Remark 7)

while t < tend do
(3) Calculate allowable time step: Δt
(4) Store all conserved variables:  old

a,i = 
n
a,i

for Runge…Kutta stage = 1to 2 do
(5) Update contact pairs through two-way mapping (see Algorithm 3)
forall bodiesdo

(6) Apply linear reconstruction for interior fluxes (refer to Section 3.3 in Reference 35)
(7) Compute numerical fluxes via Riemann solver:

- Interior fluxes as contact-stick (see Section 3.2.1): I
Nab
( −

ab,
+
ab,Nab)

- Boundary fluxes (see Section 4.2 in Reference 45):B
a

- Contact fluxes (see Algorithm 1): C
a

(8) Update conservation variables:  a =  a + Δt̇ a

(9) Compute first Piola…Kirchhoff stress (see Remark 2):Pa

end
end
(10) Update conservation variables:  n+1

a,i = 1
2

(
 a,i + old

a,i

)

(11) Compute first Piola…Kirchhoff stress (see Remark 2):Pa,i

end
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18 RUNCIE �� ��.

F I G U R E 4 Two-dimensional vertex based mapping algorithm to project{ta, va} from •−Ž surface to •+Ž surface.

Remark7. Numerical simulations of contact problems often involve modeling the interaction of multiple bodies across
a non-conforming (or non-matching) interface mesh. In order to address these scenarios, a pre-existing OpenFOAM
library was employed by the proposed method. This OpenFOAM library, known as Arbitrary Mesh Interface (AMI), is
based on the conservative local Galerkin projection procedure presented by Farrell and Maddison in Reference68. By
harnessing this library a projection weighting is calculated based on the overlapping face area of the two contact surfaces
in the reference configuration. Since this AMI procedure is based on a surface to surface projection, additional piece-
wise surface-to-vertex reconstruction algorithm is then required. For illustrative purposes, Algorithm3 summarizes the
non-conforming mapping procedure in two dimensions, projecting variables from the •−Ž contact surface to the •+Ž
contact surface. Its graphical representation is also depicted in Figure4.

Algorithm 3. The non-conforming mapping procedure in two dimensions

(1) Obtain averaged variables at face centroidf : {t−
f
, v−

f
}← {t−a , v−a}

(2) Map face variables from •−Ž to •+Ž surface using AMI face area projection weighting{tMap
f

, vMap
f

}
(3) Reconstruct face nodal variables{tMap

af
, vMap

af
} via piecewise linear reconstruction

7 NUMERICAL EXAMPLES

In this section, a wide variety of numerical examples are presented in order to assess the robustness, applicability, and
performance of the proposed formulation presented above. In the following sections, it is important to demonstrate the
overall algorithm

€ ensures consistency and accuracy of the field variables at the contact interface for both conforming and
non-conforming interface meshes,

€ guarantees long term stability by satisfying the discrete version of the second law of thermodynamics (72), and

€ circumvents hour-glassing and pressure instabilities even in the case of nearly incompressible material and
elasto-plasticity.

In the following numerical computations, we consider only the frictionless contact where the value of friction
coefficient k in (41) is set to zero. We also assume that for simplicity the contact points between potential contact-
ing interfaces are known a priori. In terms of the temporal stability of the algorithm, the Courant…Friedrichs…Lewy
number of 𝛼CFL = 0.3 has been chosen. In addition, comparisons are also carried out against the results simu-
lated using the commercial software package Abaqus.69 From the spatial discretization standpoint, the standard lin-
ear finite element method (triangular element in two dimension and tetrahedral element in three dimension) and
mean dilatation approach (quadrilateral element in two dimension and hexahedral element in three dimension) are
employed, in conjunction with a set of built-in artificial viscosity parameters in order to dissipate high frequency
oscillations.
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RUNCIE �� ��. 19

F I G U R E 5 Two-bar impact: Geometry and problem setup. The bar on the left is named as bar 1 and the bar on the right is named as bar 2.

TA B L E 1 Two-bar impact: Material parameters used in the simulation for bars 1 and 2.

Young•s modulus E 100 N m−2

Material density 𝜌R 0.01 kg m−3

Poisson•s ratio 𝜈 0.0

Shock wave speed cp 100 m s−1

7.1 Objective 1: Consistency and accuracy

7.1.1 One-dimensional two-bar impact for similar bars

The first example corresponds to the impact of two bars having equal length with an initial gap of𝛿 = 0.01 m, as shown
in Figure 5. Bar 1 (on the left), is travelling with a given velocityv1

0 = 0.1 m∕s towards bar 2 (on the right) which is at
rest. Material properties for both bars are exactly the same and are summarized in Table1. The main objective of this
classical benchmarked problem is to examine the robustness and reliability of the proposed algorithm in capturing contact
mode transition. As reported in literature,6,70-75most of the methods still exhibit severe non-physical oscillations in the
velocity resolution throughout the duration of contact and also post separation. Specific ad-hoc regularization procedure
is generally required to limit these numerical artefacts.

In this example, a linear elastic model is considered and four different levels of mesh refinements are used.
For instance,{Mesh I ,Mesh II ,Mesh III ,Mesh IV } comprise{128,256,512,1024} number of elements, respectively.

Both bars make first contact at timetimpact = 𝛿∕v1
0 = 0.1 s. Such impact generates shock waves of speedcp =

√
E
𝜌R
=

100 m∕s, and they travel in opposite directions along each bar and reflect back to the contact point at time
t = timpact + 2L∕cp = 0.3 s.

First, we demonstrate the proposed algorithm is capable of satisfying the second law of thermodynamics, and hence
ensuring long-term stability. Figure6A shows the time history of global total energy of the two bars. Its resolution after
the contact at timet = 0.1 s is better represented by refining the mesh. Another interesting variable of interest is the accu-
mulated numerical entropy (dissipation) present in the algorithm. This is achieved by integrating the Hamiltonian energy
of the system described in (72) over time#, which decreases over time for the entire simulation. This is seen in Figure6B.
The total numerical dissipation is reduced when successively increasing the mesh density. In addition, Figure6C,D
illustrate the time histories of different forms of energy for bar 1 and bar 2, respectively. These include kinetic energy
Ktotal = ∫ΩV

1
2𝜌R

p ⋅ p dΩV, elastic strain energy𝜓 total = ∫ΩV
 dΩV, and the total energy being defined as the summation

of kinetic energy and elastic strain energy. At timet = 0, bar 1 (travelling at a given velocityv1
0) has the total energy fully

dominated by kinetic energy, whereas bar 2 has zero total energy (no movement and stress-free) since it is at rest. When
impact takes place at timet = 0.1 s, some of the total energy of bar 1 is transferred into kinetic energy of bar 2 (both
bars travel together whilst in contact) and some into elastic strain energy of bar 2 (as both bar elastically deform during
the period of contact). The elastic strain energy of the bars peak at timet = 0.2 s due to the fact that the compressive
stress wave arrives at the free end of the bars. The stress wave is then reflected back from the free end (now the stress
wave becomes tensile stress wave) into the contact point which result in separation at timet = 0.3 s. After separation, as
expected, nearly all total energy is transferred from bar 1 to bar 2, with only approximately 0.4% of the total energy (via
Mesh IV ) dissipated numerically due to the use of a Riemann-based algorithm (refer to the first two terms on the right
hand side of (72)).

Second, we highlight the importance of incorporating a slope limiter into the proposed algorithm in order to improve
the resolution of field variables in the vicinity of shocks. Figure7 shows the time histories of velocity and stress for bar 1.
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20 RUNCIE �� ��.

(A) (B)

(C) (D)

F I G U R E 6 Two-bar impact: Time evolution of (A) global total energy, (B) global numerical dissipation, (C) different energy measures
for bar 1 (viaMesh IV ), and (D) different energy measures for bar 2 (viaMesh IV ). A neo-Hookean constitutive model as described in (9) is
used. Their corresponding material parameters are summarized in Table1.

The exact (analytical) solution is also provided for verification purposes. As it can be observed, using piecewise constant
representation (first order accurate in space) for field interpolation, the solutions are fairly dissipative over time for both
velocity vx and axial stress𝜎xx unless excessively fine mesh is used. To enhance the accuracy, we introduce a piecewise
linear reconstruction. Such enhancement, as seen in Figure7B, gives much better resolution in stress but fails prior to
separation, where non-physical oscillations are generated. In order to control these spurious modes, the classical Barth
and Jespersen limiter57 is implemented. A great improvement is observed in Figure7B. As compared to the classical finite
element method, no post-separation velocity oscillations are observed in the proposed algorithm.

Finally, for qualitative comparison purposes, we monitor the velocityvx, displacementux and stress𝜎xx evolutions at
two locations, namely point A in bar 1 and point B in bar 2. Our results are in very good agreement with the given exact
solutions (see Figure8), without showing undershoots/overshoots near a discontinuity.

7.1.2 One-dimensional two-bar impact for dissimilar bars

We next analyze the same impact problem but now considering a softer material (bar 1) impacts against a stiffer material
(bar 2). This is achieved by reducing the value of Young•s modulusE of bar 1 from 100 to 49 N∕m2. The remaining
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RUNCIE �� ��. 21

(A) (B)

F I G U R E 7 Two-bar impact: Time evolution of (A) velocityvx and (B) stress𝜎xx monitored at point A in bar 1. Point A refers
to position X = 10 m. A neo-Hookean constitutive model as described in (9) is used. Their corresponding material parameters are
summarized in Table1.

material properties for bars 1 and 2 are exactly the same as those reported in Section7.1.1, and are summarized again
in Table 2 for completeness. The purpose of this test case is to examine the applicability of the algorithm in addressing
impact between two different materials. Figure9 illustrates the time evolutions of velocityvx, displacementux and stress
𝜎xx monitored at points A and B. The proposed algorithm can accurately capture the solutions during impact process and
release process, displaying extremely good agreement with the closed-form solutions. No specific ad-hoc regularization
procedure is required.

7.2 Objective 2: Spurious mechanism

7.2.1 Two dimensional compressible ring collision

As previously explored in References76 and 77, the main aim of this classical benchmark problem is to examine the
capability of the proposed algorithm in alleviating unwanted spurious modes that may potentially arise in the contact
(or shock) interface. The problem consists of simulating the collision of two rubber rings, with an initial gap of 8 mm,
coming together at a relative speed of 1.18 m∕s. The geometry of the problem is displayed in Figure10. In this example, a
neo-Hookean model presented in (9) is considered. The values of all the relevant material parameters used can be found
in Table 3.

Aiming to show mesh convergence||, four successively refined meshes (see Figure11) are used. These include (Mesh
I ) 2480, (Mesh II ) 10,080, (Mesh III ) 81,280, and (Mesh IV ) 163,200 number of linear triangular elements for each
ring. In order to ensure the algorithm correctly reproduces the second law of thermodynamics, the global entropy and
total energy are monitored (see Figure12A,B). Indeed, for all four meshes, both the global entropy and total energy
of the system decrease over time, whereby the irreversibility is caused by numerical stabilizations introduced into the
algorithm (which is precisely the square bracket term of (72)). Before contact takes place, the total energy of the sys-
tem is completely dominated by kinetic energy. When timet > 6.8 ms, that is after collision takes place, the kinetic
energy of the system decreases and transforms into elastic strain energy. Additionally, a very small amount of the
kinetic energy also converts to monotonic decreasing numerical dissipation during a deformation process. This is seen in
Figure 12C,D.

For comparison purposes, we also simulate the same problem discretized using the standard linear finite element
method (using 163,840 number of linear triangular meshes with 82,944 nodes) and the mean dilatation approach (using
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(A) (B)

(C) (D)

(E) (F)

F I G U R E 8 Two-bar impact: Time evolution of (first row) velocityvx, (second row) stress𝜎xx, and (third row) displacementux. Results
in the first column are monitored at point A in bar 1 and results in the second column are monitored at point B in bar 2. Point A refers to
position X = 10 m and point B refers toX = 10.01 m. Comparison is carried out between the proposed algorithm (viaMesh IV ) and the exact
solutions for similar bars. A neo-Hookean constitutive model as described in (9) is used. Their corresponding material parameters are
summarized in Table1.

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7085 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [28/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense
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TA B L E 2 Two-bar impact: Material parameters used in the simulation.

Bar 1 Bar 2

Young•s modulus E 49 100 N m−2

Material density 𝜌R 0.01 0.01 kg m−3

Poisson•s ratio 𝜈 0.0 0.0

Shock wave speed cp 70 100 m s−1

81,920 number of bilinear quadrilateral meshes with 82,944 nodes). Figure13 illustrates the deformation process of the
two rings at time t = {10,20,30,40}ms, displaying how the two rings collide, bounce off and then oscillate. No spurious
modes are observed. In comparison to the mean dilatation technique, very similar results in terms of deformed shape and
pressure field are observed. For completeness, the time evolutions of the components of velocityvx, displacementux and
stress𝜎xx are also monitored. As shown in Figure14, the obtained solutions converge to the results of mean dilatation
technique by refining the mesh. In comparison to the standard linear finite element method, the proposed algorithm
clearly outperforms it by accurately capturing stress discontinuities (in this case,𝜎xx) without any spurious oscillations.
This is seen in Figure15C,D.

7.2.2 Two dimensional nearly incompressible bar impact

Similar to the objectives described in Section7.2.1, another standard benchmark problem previously adopted in Reference
47 is considered. As shown in Figure16, the example presents the impact of two nearly incompressible rectangular bars
travelling at each other with a relative velocity ofv0 = [100,0]Tm∕s. For each bar, its width is ofw = 6.4 mm and its length
is of L = 32.4 mm. The normal separation between two bars is 8 mm. A neo-Hookean model is used. The values of all
the simulation parameters are summarized in Table4. For completeness, we discretize the problem using four different
levels of mesh refinement, including(Mesh I ) 640,(Mesh II ) 2560,(Mesh III ) 10,240, and(Mesh IV ) 40,960 number
of linear triangular elements per bar.

First, a mesh refinement study for the proposed algorithm is carried out. In Figure17, the deformation pat-
tern of the structure predicted using a small number of elements (Mesh I ) agrees well with the results obtained
using finer discretizations (Mesh II …Mesh IV ). As for the latter, improved pressure resolution is observed. For
qualitative comparison purposes, time evolution of velocityvx and displacement ux are monitored and com-
pared in Figure 18. Interestingly, double contact occurs between 80 and 100μs. It is well-known that pressure
checker-boarding is commonly encountered in standard linear finite elements when attempting to model materi-
als with predominant nearly incompressible behavior. This numerical artefact can be completely resolved by the
algorithm proposed in the current paper, without resorting to any ad-hoc regularization procedure. Comparing
with mean dilatation technique (see Figure19), smoother version in pressure profile is observed. Figure20 shows
the time evolution of the deformation behavior of two bars come into contact. Again, very smooth pressure pro-
file is seen throughout the entire contact-impact process. Neither hour-glassing nor pressure checker-boarding are
observed.

7.3 Objective 3: Non-matching contact interface

We now extend the above two dimensional bar impact problem to three dimension as displayed in Figure21. This example
serves the purpose to examine the accuracy and reliability of the proposed algorithm when considering non-matching
meshes at the contact interface. A neo-Hookean model is chosen and the corresponding material properties remain exactly
the same as the one listed in Table4.

Aiming to show mesh independent convergence for this problem, we begin this example by performing a series
of non-conforming mesh refinement analysis. The (bulk) mesh information for the two bodies are presented in
Table 5 and their respective non-matching interface meshes are depicted in Figure22. As shown in Figures23 and
24, it is remarkable that the deformation pattern together with pressure profile converge even with the use of a
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(A) (B)

(C) (D)

(E) (F)

F I G U R E 9 Two-bar impact: Time evolution of (first row) velocityvx, (second row) stress𝜎xx, and (third row) displacementux. Results in
the first column are monitored at point A in bar 1 and results in the second column are monitored at point B in bar 2. Point A refers to position
X = 10 m and point B refers toX = 10.01 m. Comparison is carried out between the proposed algorithm (viaMesh IV ) and the exact solutions
for dissimilar bars. A neo-Hookean model as described in (9) is used. Their corresponding material parameters are summarized in Table1.
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F I G U R E 10 Collision of rubber ring: Geometry and problem setup. The rubber ring on the left is named as ring 1 and the rubber ring
on the right is named as ring 2.

TA B L E 3 Collision of rubber ring: Material parameters used in the simulation for rings 1 and 2.

Young•s modulus E 1× 106 N m−2

Material density 𝜌R 1000 kg m−3

Poisson•s ratio 𝜈 0.4

Lamé parameters 𝜇 0.35714 MN m−2

𝜆 1.42857 MN m−2

(A) (B) (C) (D)

F I G U R E 11 Each ring domain is discretized with (A)Mesh I (2480 linear triangle with 1364 nodes), (B)Mesh II (10,080 linear
triangle with 5292 nodes), (C)Mesh III (81,280 linear triangle with 20,828 nodes), and (D)Mesh IV (163,200 linear triangle with 82,620
nodes). To avoid repetition of image, only one rubber ring per discretization is shown above.

relatively coarse mesh (Mesh I ). Additionally, in Figure 25, we also monitor the time history of velocity compo-
nent vx, displacement componentux, stress component𝜎xx and pressure at the contact pointX = [32.8,3.2,3.2]T
mm. Their corresponding spatial distributions at timet = 260 μs between positionsX = [32.8,1.6,1.6]T mm and X =
[65.2,1.6,1.6]T mm are illustrated in Figure 26. The solutions indeed converge with a progressive level of mesh refine-
ment. In order for the overall algorithm to ensure long term stability, the global entropy is monitored (see Figure27).
As expected, the global total entropy of the system decreases over time throughout the entire simulation duration.
Observe that our solution is slightly more dissipative than that of the mean dilatation technique via tri-linear hex-
ahedral elements (see Figure28). No spurious modes are seen comparing with the linear tetrahedral finite element
method.
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(A) (B)

(C) (D)

F I G U R E 12 Collision of rubber ring: Time evolution of (A) global total energy, (B) global numerical dissipation, (C) different energy
measures for ring 1 (viaMesh IV ), and (D) different energy measures for ring 2 (viaMesh IV ). A neo-Hookean constitutive model as
described in (9) is used. Their corresponding material parameters are summarized in Table3.

7.4 Objective 4: Highly nonlinear impact

In the last example, we consider the rebound of a torus of outer radiusRo = 40 mm, inner radius ri = 30 mm
and diameter d0 = 1 mm. The torus impacts against a rigid frictionless wall with an initial velocity of v0 =
[1.18,0,0]T m∕s where the separation distance between the torus and the wall is of𝛿 = 4 mm. This is illustrated in
Figure 29. A neo-Hookean model is first chosen with the material properties summarized in the third column of
Table6.

Aiming to demonstrate the consistency of the algorithm, the domain is discretized using four different levels of
refinement, namely (Mesh I ) 4643, (Mesh II ) 12,439, (Mesh III ) 29,748, and (Mesh IV ) 56,955 number of unstruc-
tured linear tetrahedral meshes. Figure30B shows the reduction of total numerical dissipation when successively
increasing the mesh density. More crucially, the global (numerical) entropy is non-positive and reduces over time
for the entire simulation. In Figure 30D, the evolution in time of the kinetic energy, elastic strain energy, and total
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(A) (B)

F I G U R E 13 Collision of rubber ring: Comparison of deformed shapes at timet = {10,20,30,40}ms (from top to bottom) using
(A) proposed algorithm (linear triangular mesh) with Mesh IV and (B) mean dilatation technique (bilinear quadrilateral mesh). The color
contour plot indicates pressure field. A neo-Hookean model as described in (9) is used. Their corresponding material parameters are
summarized in Table3.

(A) (B)

F I G U R E 14 Collision of rubber ring: Time evolution of (A) component of velocityvx and (B) component of stress𝜎xx at point A in ring 1.
Point A refers to positionX = [40,0]T mm. A comparison is carried out between the proposed algorithm with four different meshes and the
mean dilatation approach. A neo-Hookean model as described in (9) is used. Their corresponding material parameters are summarized in
Table3.
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(A) (B)

(C) (D)

(E) (F)

F I G U R E 15 Collision of rubber ring: Time evolution of (first row) velocity vx, (second row) stress𝜎xx, and (third row) displacementux.
Results in the first column are monitored at point A in ring 1 and results in the second column are monitored at point B in ring 2. Point A
refers to positionX = [40,0]T mm and point B refers toX = [48,0]T mm. Comparison is carried out between the proposed algorithm (via
Mesh IV ), the linear triangular finite element method and the mean dilatation approach. A neo-Hookean model described in (9) is used.
Their corresponding material parameters are summarized in Table3.

F I G U R E 16 Nearly incompressible bar impact: Geometry and problem setup. The bar on the left is named as bar 1 and the bar on the
right is named as bar 2.
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TA B L E 4 Nearly incompressible bar impact: Material parameters used in the simulation for bars 1 and 2.

Young•s modulus E 5.85× 108 N m−2

Material density 𝜌R 8930 kg m−3

Poisson•s ratio 𝜈 0.495

Lamé parameters 𝜇 0.19565 GN m−2

𝜆 19.3696 GN m−2

F I G U R E 17 Nearly incompressible bar impact: Comparison of bar impact at timet = 90μs using various mesh refinements. In each
subfigure, the first row depicts the current deformed state discretized with linear triangular mesh and the second row illustrates pressure
contour. A neo-Hookean model described in (9) is used. Their corresponding material parameters are summarized in Table4. (A) Mesh I :
640 number of linear triangles with 369 number of nodes per bar; (B)Mesh II : 2560 number of linear triangles with 1377 number of nodes
per bar; (C)Mesh III : 10,240 number of linear triangles with 5313 number of nodes per bar; (D)Mesh IV : 40,960 number of linear triangles
with 20,865 number of nodes per bar.
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(A) (B)

(C) (D)

F I G U R E 18 Nearly incompressible bar impact: Time evolution of (first row) velocityvx and (second row) displacementux. Results in
the first column are monitored at positionX = [32.4,0]T mm in bar 1 and results in the second column are monitored at positionX = [40.4,0]T

mm in bar 2. Comparison is carried out between the proposed algorithm withMesh IV , the linear triangular finite element method (40,960
number of linear triangles with 20,865 number of nodes per bar) and the mean dilatation technique (20,480 number of bilinear quadrilaterals
with 20,865 number of nodes per bar). A neo-Hookean model described in (9) is used and the material parameters are summarized in Table4.
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(A)

(B)

(C)

F I G U R E 19 Nearly incompressible bar impact: Comparison of deformed shapes at timet = 100μs using (A) proposed algorithm with
Mesh IV (40,960 number of linear triangles with 20,865 number of nodes per bar), (B) linear triangle finite element method (40,960 number
of linear triangles with 20,865 number of nodes per bar), and (C) mean dilatation technique (20,480 number of bilinear quadrilaterals with
20,865 number of nodes per bar). The color contour plot indicates pressure field. A neo-Hookean model described in (9) is used. Their
corresponding material parameters are summarized in Table4.

F I G U R E 20 Nearly incompressible bar impact: A sequence of deformed structures with pressure resolution at times
t = {50,75,100,125,150,200,250,300,325} μs (from top to bottom). Results obtained viaMesh IV . A neo-Hookean model is used
and the corresponding material parameters are summarized in Table4.
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F I G U R E 21 Impact with non-matching interface mesh: Geometry and problem setup. The bar on the left is named as bar 1 and the bar
on the right is named as bar 2. Both bars have widthW and height H of 3.2 mm with a length L of 32.4 mm. The initial gap𝛿 between two
bars is 0.4 mm.

TA B L E 5 Impact with non-matching interface mesh: The number of linear tetrahedra for bars 1 and 2.

Bar 1 (elements; nodes) Bar 2 (elements; nodes)

Mesh I 30,000; 6171 1920; 525

Mesh II 30,000; 6171 6480; 1519

Mesh III 30,000; 6171 15,360; 3321

Mesh IV 30,000; 6171 51,840; 10,309

energy (being the summation of both kinetic and elastic strain energy) are monitored. At the start of the simula-
tion, the total energy of the system is completely dominated by kinetic energy as the torus is moving with the initial
velocity until approximately 3.4 ms where impact occurs. In the elastic case, the kinetic energy is mostly transferred
into elastic strain energy. When time is approximately 30 ms, that is when the separation begins to occur, the elas-
tic strain energy is then converted back to kinetic energy as the torus bounces off the rigid surface. Comparing with
the standard linear finite element method (101,045 number of linear tetrahedra and 20,427 number of nodes), the pro-
posed algorithm can be used without experiencing any spurious mechanism (see Figure31). By making use of the
proposed method, a series of deformed states are shown in Figure32, where the color contour plot indicates the pressure
distribution.

Moreover, the same problem is further analyzed by employing a Hencky-based von Mises plasticity (with isotropic
hardening) model. Its associated materials properties are summarized in the fourth column of Table6. When the torus
impacts against a frictionless wall, the total kinetic energy is partially converted into elastic strain energy whilst most of
the kinetic energy in this case is transferred into irrecoverable plastic energy dissipation. Indeed, the amount of physical
plastic dissipation introduced into this model can then be monitored by integrating in time the term related to the internal
dissipation Ḋ appearing in the Hamiltonian energy of the system described in (72). Again, as seen in Figures33 and
34, the proposed algorithm can effectively alleviate non-physical pressure instabilities. Our solutions match well with
the results obtained via mean dilatation technique (which is discretized with 29,441 number of tri-linear hexahedra and
33,793 number of nodes). For visualization purposes, Figure35shows the time evolution of the plastic deformation of a
torus with very smooth pressure field.
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(A)

(B)

F I G U R E 22 Impact with non-matching interface mesh: For ease of explication, we choose to display a series of non-conforming mesh
refinements on X-Y plane view. In (A), the first four rows represent the non-conforming mesh discretizations for both bars (Mesh I to Mesh
IV ). Their respective close-up view of the interface between two bodies can be seen in the first four columns of (B). For completeness, we also
discretize the problem using conforming mesh. This is illustrated in the last row of (A) and its associated close-up view is displayed in the last
column of (B).
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F I G U R E 23 Impact with non-matching interface mesh: Comparison of three-dimensional bar impact at timet = 120μs using (A)
non-conforming mesh discretizations (Mesh I …Mesh IV , from first row to fourth row) and (B) conforming mesh discretization (fifth row).
Color contour plot indicates the pressure profile. A neo-Hookean model (9) is used. Their corresponding material parameters are
summarized in Table4.
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F I G U R E 24 Impact with non-matching interface mesh: Comparison of three-dimensional bar impact at timet = 260μs using (A)
non-conforming mesh discretizations (Mesh I …Mesh IV , from first row to fourth row) and (B) conforming mesh discretization (fifth row).
Color contour plot indicates the pressure profile. A neo-Hookean model (9) is used. Their corresponding material parameters are
summarized in Table4.
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(A) (B)

(C) (D)

F I G U R E 25 Impact with non-matching interface mesh: Time evolution of (A) velocity componentvx, (B) displacement componentux,
(C) stress component𝜎xx, and (D) pressure. Results are monitored at positionX = [32.8,3.2,3.2]T mm in bar 2. A neo-Hookean model (9) is
used. Their corresponding material parameters are summarized in Table4.
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(A) (B)

(C) (D)

F I G U R E 26 Impact with non-matching interface mesh: Spatial distribution at timet = 260μs of (A) velocity componentvx,
(B) displacement componentux, (C) stress component𝜎xx, and (D) pressure along the line in bar 2 fromX = [32.8,1.6,1.6]T mm to
X = [65.2,1.6,1.6]T mm. A neo-Hookean model (9) is used. Their corresponding material parameters are summarized in Table4.
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(A) (B)

(C) (D)

F I G U R E 27 Impact with non-matching interface mesh: Time evolution of (A) global total energy, (B) global numerical dissipation,
(C) different energy measures for bar 1 (viaMesh IV ), and (D) different energy measures for bar 2 (viaMesh IV ). A neo-Hookean
constitutive model as described in (9) is used. Their corresponding material parameters are summarized in Table4.
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F I G U R E 28 Impact with non-matching interface mesh: Time evolution of global total energy using the proposed method (Mesh IV ),
mean dilatation and linear finite element method. Comparison of deformed shapes at timet = 205μs is shown, where the color plot indicates
pressure distribution. A neo-Hookean constitutive model as described in (9) is used. Their corresponding material parameters are summarized
in Table 4. The results of mean dilatation is obtained using 5000 number of trilinear hexahedra with 6171 number of nodes for bar 1 and 8640
number of trilinear hexahedra with 10,309 number of nodes for bar 2. The results of linear finite element method is obtained using 30,778
number of linear tetrahedra with 6267 number of nodes for bar 1 and 50,261 number of linear tetrahedra with 9976 number of nodes for bar 2.

F I G U R E 29 Torus impact: Geometry and problem setup.

TA B L E 6 Torus impact: Material parameters used in the simulation.

neo-Hookean von-Mises plasticity

Young•s modulus E 1× 106 1× 106 N m−2

Material density 𝜌R 8930 8930 kg m−3

Poisson•s ratio 𝜈 0.45 0.45

Lamé parameters 𝜇 0.34483 0.34483 MN m−2

𝜆 3.10345 3.10345 MN m−2

Initial yield stress 𝜏
0
y - 1× 104 N m−2

Hardening parameter H - 10 N m−2
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(A) (B)

(C) (D)

(E) (F)

F I G U R E 30 Torus impact: Time evolution of (first row) global total energy, (second row) global numerical dissipation, and (third row)
different energy measures (viaMesh IV ). The solution in the first column are obtained via neo-Hookean model and the solution of the
second column are obtained via a Hencky-based von Mises plasticity model. Their corresponding material parameters are summarized in the
third and fourth column of Table 6, respectively.
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F I G U R E 31 Elastic torus impact: Comparison of deformed shapes at timet = {0.5,1,1.5,2}ms (from top to bottom) using (left column)
proposed algorithm withMesh IV , (center column) linear tetrahedral finite element method (101,045 number of elements and 20,427 number
of nodes), and (right column) mean dilatation technique (29,441 number of hexahedra and 33,793 number of nodes). The color contour plot
indicates pressure field. A neo-Hookean model described in (9) is used and the material parameters are summarized in third column of Table6.
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F I G U R E 32 Elastic torus impact: A sequence of deformed structures with pressure resolution at timest = {2.5,5,7.5,… ,50}ms (from
left to right and top to bottom). Results obtained using the proposed algorithm discretized with linear tetrahedra (Mesh IV ). A neo-Hookean
model is used and the corresponding material parameters are summarized in third column of Table6.

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7085 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [28/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



RUNCIE �� ��. 43

F I G U R E 33 Elasto-plastic torus impact: Comparison of deformed shapes at timet = {0.5,1,1.5,2}ms (from top to bottom) using (left
column) proposed algorithm with Mesh IV , (center column) linear tetrahedral finite element method (101,045 number of elements with
20,427 nodes), and (right column) mean dilatation technique (29,441 number of hexahedra with 33,793 nodes). The color contour indicates
pressure field. A Hencky-based von Mises plasticity model is used and the material parameters are summarized in fourth column of Table6.
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(A) (B)

(C) (D)

F I G U R E 34 Elasto-plastic torus impact: Time evolution of (A) velocityvx, (B) displacementux, (C) stress𝜎xx, and (D) pressure. Results
are monitored at positionX = [40,0,0]T mm. Comparison is carried out between the proposed algorithm withMesh IV , the linear tetrahedral
finite element method (101,045 number of elements with 20,427 nodes) and the mean dilatation technique (29,441 number of hexahedra with
33,793 nodes). A Hencky-based von Mises plasticity model is used and the material parameters are summarized in fourth column of Table6.
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F I G U R E 35 Elasto-plastic torus impact: A sequence of deformed structures experiencing plasticity with pressure resolution at times
t = {2.5,5,7.5,… ,50}ms (from left to right and top to bottom). Results obtained using the proposed algorithm discretized with linear
tetrahedra (Mesh IV ). A Hencky-based von Mises plasticity model (with isotropic hardening) is used and the corresponding material
parameters are summarized in fourth column of Table6.
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8 CONCLUSIONS

The article presents an explicit vertex centered finite volume method for the dynamic solution of non-smooth contact
problems, where a mixed system of first order conservation equations together with the associated jump conditions is
used. Using the specific jump equation for the conservation of linear momentum, several dynamic contact models are
derived ensuring the preservation of hyperbolic characteristic structure across contact interface. The formulation has been
implemented within the modern CFD code •OpenFOAM,Ž aiming to bridge the gap between CFD and Computational
Solid Dynamics. Through the examples presented in this article, the proposed algorithm proves to perform extremely
well in dynamic contact-impact problems without resorting to ad-hoc algorithmic regularization correction. Specifically,
the proposed algorithm by construction overcomes a number of persistent numerical drawbacks commonly found in the
literature. No spurious hour-glassing is observed and correct (smooth) pressure pattern are obtained in contrast to alter-
native finite element approaches, such as the well known linear tetrahedral element technology. Crucially, the overall
algorithm ensures long-term stability by monitoring the global entropy production via the Hamiltonian energy of the sys-
tem. The consideration of nonlinear shock wave speeds in the contact-impact conditions within the current computational
framework is the next step of our work.

ACKNOWLEDGMENTS
Callum J. Runcie and Chun Hean Lee gratefully acknowledge the support provided by the EPSRC Strategic Support
Package: Engineering of Active Materials by Multiscale/Multiphysics Computational Mechanics - EP/R008531/1. Anto-
nio J. Gil and Chun Hean Lee would like to acknowledge the financial support received through the project Marie
Sk›odowska-Curie ITN-EJD ProTechTion, funded by the European Union Horizon 2020 research and innovation pro-
gram with Grant number 764636. Callum J. Runcie and Chun Hean Lee would also like to acknowledge the many useful
discussions with Dr. Peter Grassl from University of Glasgow.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

ENDNOTES
∗First order conservation equations with moving shocks are typically used in the solution of fluid dynamics problems where solution patterns
incorporating shock waves are frequently encountered.
†When transverse deformation is neglected in the model, the speed of sound reduces tocp =

√
E
𝜌R

. This can be achieved by simply setting the

value of Poisson•s ratio equal to zero.
‡Exact energy transfer at the contact interface holds when an exact Riemann solver is used.
§In the second and third terms in the parenthesis of (61), the weighted average stencil proposed by Löhner et al.67 is used by computing the
boundary flux over a boundary face𝛾 (and 𝛽) in three dimensions as


B
a =

6B
a + B

b + 
B
c

8
; 

C
a =

6C
a + C

b + 
C
c

8
, (60)

where b, c are the other two nodes that together with nodea define boundary face𝛾 (and 𝛽).
¶Moreover, we have also implemented the algorithm using an in-house software for the proof-of-concept one-dimensional and
two-dimensional examples presented in the article.
#Insofar as the linear elastic model is used in this case, we thus neglect the physical dissipation introduced by the model, that is the rate of
plastic dissipation.

||It is important to emphasize that the simulation of rubber ring collision could have been performed with only one rubber ring via appropriate
symmetry condition. However, in our case, we decided to consider the complete two-ring impact in order to check the resolution at shock
interface between two bodies.
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