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ABSTRACT

Valves are widely used in industrial and domestic pipeline systems. However, during their operation,
they may suffer from the occurrence of the cavitation, which can cause loud noise, vibration and
damage to the internal components of the valve. Therefore, monitoring the flow status inside valves
is significantly beneficial to prevent the additional cost induced by cavitation. In this paper, a novel
acoustic signal cavitation detection framework–based on XGBoost with adaptive selection feature
engineering–is proposed. Firstly, a data augmentation method with non-overlapping sliding window
(NOSW) is developed to solve small-sample problem involved in this study. Then, the each segmented
piece of time-domain acoustic signal is transformed by fast Fourier transform (FFT) and its statistical
features are extracted to be the input to the adaptive selection feature engineering (ASFE) procedure,
where the adaptive feature aggregation and feature crosses are performed. Finally, with the selected
features the XGBoost algorithm is trained for cavitation detection and tested on valve acoustic signal
data provided by Samson AG (Frankfurt). Our method has achieved state-of-the-art results. The
prediction performance on the binary classification (cavitation and no-cavitation) and the four-class
classification (cavitation choked flow, constant cavitation, incipient cavitation and no-cavitation) are
satisfactory and outperform the traditional XGBoost by 4.67% and 11.11% increase of the accuracy.

Keywords Cavitation detection · Acoustics signal · XGBoost · Adaptive selection feature engineering

1 Introduction

Cavitation is a phenomenon of the dynamic process during which bubbles, also called cavities, form (later collapse)
on the solid surface when the pressure at the contact point of a liquid and the solid surface is lower than the liquid’s
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vapor pressure [1, 2]. When the bubble flows to the place where the liquid pressure exceeds the vapor pressure, the
bubble collapses and the implosion instantaneously produces a great impact (shock waves) and high temperature [3, 4].
Furthermore, severe pitting and wear can be induced on the solid surface [5].

Generally, cavitation can bring potential dangers to process plants, especially for valves, pumps, pipes or propellers.
These potential dangers might quickly cause damage to components of the plants and loss of efficiency [6]. On the one
hand, corrosion and destruction to valves, pumps or pipes can be caused by the cavitation occurrence [7], vibration
of the internal structure and noise loudness levels might also increase [8] due to the bubble collapse and rupture [9].
On the other hand, the flow rate and fluid bulk properties inside the plants can be changed by the cavitation [10, 11]
which further can lead to standstill of the process. Consequently, valves, pipes, pumps and related components are at
the largest risk confronting cavitation. Many industries are fighting against cavitation, such as SAMSON AG for valves
and other manufacturing plants [12]. In the worst case, cavitation can lead to the closure of the factory, e.g. for test rack
system with control valve. Therefore, it is vital to detect the cavitation of process plants (e.g. valves, pumps or pipes) at
its early stages so as to ensure security and reduce any possible economic loss.

Cavitation is usually detected by comparing the fault and healthy conditions of specific devices under the monitored
signals. According to the type of monitoring sensors, it can be divided into vibration signals based cavitation detection
and acoustic signals based detection. Recently, some researchers have explored machine learning application for
cavitation detection, based on features handcrafted from the vibration or acoustic signals.

Sakthivel et al. [13] extracted 11 statistical features from the vibration time domain signals. These features are then fed
into the C4.5 decision tree [14] to classify the bearing fault, seal fault, impeller fault, bearing and impeller fault together
with cavitation. Muralidharan et al.[15] used the Continuous Wavelet Transform (CWT) [16] to replace the statistical
feature extraction from vibration signals. Then the CWT achieved features are taken as input into the decision tree
algorithm to for similar classification task as in [13]. In addition, Muralidharan et al. [17] also studied the influence of
different families and different levels of CWT for fault diagnosis of single-piece centrifugal oils using Support Vector
Machine (SVM). Samanta et al. [18] extracted features from the original and pre-processed signals as the input of two
different classifiers of the SVM and the artificial neural network (ANN) to identify normal and defective bearings. The
parameters of the SVM and ANN are optimized by genetic algorithms [19], and the results explained the importance
of feature selection to the classifier. Yang et al. [20] extracted 4 statistical features from the vibration time domain
signals as the input of SVM to detect cavitation and no cavitation of the butterfly valve. Bordoloi et al. [21] proposed a
SVM method using directly the vibration signal data of bearing block and pump casing to diagnose blockage level and
cavitation intensity. Panda et al. [22] extracted statistical features from the time domain vibration signal of the pump as
the input of SVM to distinguish cavitation and flow block. Rapur et al. [23] proposed an intelligent detection method
based on SVM to classify mechanical fault and flow rate using combination of motor line current and pump vibration
signal as input. Shervani-abar. [24] proposed a multi-class cavitation detection method based on the vibration signal of
the axial flow pump using SVM.

Zouari et al. [25] proposed a vibration signal fault detection method for centrifugal pumps using neural network and
neuro-fuzzy technology. Rajakarunakaran et al. [26] proposed a centrifugal pump fault detection using a feedforward
network and a binary adaptive resonance network (ART1). Siano et al. [27] proposed a method combining ANN
and nonlinear regression to diagnose cavitation of time domain vibration signals. Nasiri et al. [28] extracted features
from the vibration signal of the centrifugal pump as the input of the neural network to detect cavitation. Jia et al. [29]
proposed a deep neural network (DNN) to directly extract features from the original rolling element bearings and
planetary gearboxes data set for fault diagnosis. Zhao et al. [30] proposed a deep learning method to extract features
from non-stationary vibration signals and diagnose centrifugal pump faults. Tiwari et al. [31] extracted 6 statistical
features from the time domain pressure data, and then these features are input to the neural work to detect blockage and
cavitation. Potocnik et al. [32] extracted spectral and psychoacoustic features from the valve acoustic data and then
these features are input to a variety of machine learning algorithms to classify the cavitation, flow noise, whistling and
rattling.

It can be found from the literature review that, many traditional machine learning methods (like, decision tree, SVM or
ANN) have been explored for cavitation or fault detection. However, they mostly take vibration signal and also they
may not be able to capture sensitive features of the signal. On the other hand, although deep learning can do end-to-end
cavitation detection to solve the problem of capturing underlying sensitive features, it is usually limited by lack of
interpretability and stability in practice. In addition, cavitation detection based on acoustic signals is a more challenging
task compared to the detection with vibration signals due to the sensor quality and position requirment. Accordingly,
in this paper we propose an acoustic signal cavitation detection framework using XGBoost together with adaptive
selection feature engineering. The main contributions of this paper are as follows:

• The XGBoost, as an ensemble learning algorithm with good stability, is applied to the cavitation detection on
acoustic signals for the first time.
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• In order to tackle the small-sample problem, the non - overlapping sliding window data augmentation method
is introduced in the study.

• Three types of statistical features (central trend, dispersion degree and distribution shape) are extracted for the
task, which shows good sensitivity for cavitation identification.

• The adaptive selection feature engineering, including feature aggregation and feature crosses, is proposed to
increase the expression ability of the features, and we demonstrated that this can further increase the sensitivity
of the features for the task.

The remainder of this paper is organized as follows. Section 2 introduces the data acquisition process for control valve
cavitation detection. Section 3 firstly describes the data augmentation method based on non - overlapping sliding
window. Then, statistical feature extraction and the adaptive selection feature engineering are introduced. Finally,
the XGBoost based cavitation detection framework on acoustic signals with adaptive selection feature engineering is
introduced. Section 4 presents the classification performance of our method. Conclusion are presented in Section 5.

2 Experimental setup and data acquisition

SAMSON AG devised a test rack of control valve (SAMSON AG type 3241, DN 80, PN40, Kvs 25 with positioner
type 3730-6) with running water as the flowing medium inside to generate different flow status by gauging operation
conditions accordingly: upstream pressure, downstream pressure and the valve stroke (see Figure 1). The test bench is
equipped with a set of sensors to measure the temperature of the test medium T , the upstream pressure p1, downstream
pressure p2 and vapor pressure of fluid pv and the volumetric flow rate Q. Additionally, the test valve mounted inside
the bench measures the absolute valve stroke h and the sound intensity Lp with a special sensor directly mounted on the
valve body. Furthermore, the test bench includes two additional control valves upstream and downstream of the test
valve. A control system controls the pumps as well as these two valves to modify the total volumetric flow through
the test bench. The two additional valves are used to influence the upstream and downstream pressure around the test
valve. All sensors and the test valve are mounted between these two external control valves (more details see Table
1). The pipes between the external valves and the test valve are long enough to ensure an undisturbed flow for proper
measurements. Water, which can also be heated, was used as the test medium for all tests. The water temperature
was maintained at 25 – 40 ◦C in order to hold the vapor pressure nearly constant and to eliminate the influence of
temperature on the cavitation.

Two piezo elements were introduced to record directly the structure-borne noise of the valve: one placed on the body
of the control valve and the other one to the NAMUR at the bonnet. Furthermore two microphones were placed in
a distance of 1m to the control valve to record the airborne noise in a frequency range between 40 Hz up to 20 kHz:
one high-end microphone as well as a low cost microphone which typically is used in smartphones. Figure 1 shows a
schematic view of the experimental setup, where the data is generated.

The test section in figure 1 of is in a separate room and all other noise sources from the plant like the pump and the
upstream and downstream throttling valves are in another room (below the best section room, in the cellar). Therefore,
there is a spatial separation of the test section to all possible noise sources. Also bellow expansion joints are integrated in
the pipe system in order to the transport of vibrations into the test section. All these measures ensure that a surrounding
noise of maximum 55 dB were present during the tests. The preparation of the different states is very simple. The
principle procedure is described in the standard IEC 60534-8-2. The considered states depend on the differential
pressure ratio ((p1 − p2)/(p1 − pv)) of the valve. Therefore, the valve opening will be held constant during the test.
The temperature of the medium is during the test constant, which means the vapor pressure will be held constant.
Furthermore, the upstream pressure of the valve will also be held constant (e.g. 10 bar (a)) with the process control
system of the plant. Therefore, in the consequence the different states will be adjusted by varying the downstream
pressure in steps of 0.1,. . . ,0.4 bar starting at 1bar (a). For each step the downstream pressure will be adjusted with the
process control system of the plant and based on the steady state of the flow the noise measurement concerning the
adjusted step will be started. As a result, there is for a constant valve opening and a constant valve upstream pressure
a noise emission characteristic (noise emission versus differential pressure ratio). And based on the noise emission
characteristic the different states will be determined. This extensive procedure for determination of cavitation states
cannot be realized in customers plants.

By varying the differential pressure at various constant upstream pressures of the control valve different operation
conditions were adjusted, five flow status are induced in the acoustic signal data: cavitation choked flow, constant
cavitation, incipient cavitation, turbulent flow and background no-flow. The status turbulent flow is a flow through the
control valve without any cavitation noise. Starting at a certain differential pressure ratio within a certain range only a
few vapor bubbles will be generated and the implosion of these bubbles is causing an increase of the noise emission,
which is defined as incipient cavitation. By increasing the concentration of vapor bubbles also the noise emission is
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Figure 1: view of the test rack at SAMSON AG (Figure provided by SAMSON AG) for the data acquisition process.

Table 1: The detailed information of various measurement sensors

Physical parameters Sensor types Measuring ranges Tolerances

Upstream pressure SAMSON Type 6054 0-16 bar ± 0.09 bar
Downstream pressure SAMSON Type 6054 0-16 bar ± 0.09 bar
Flow rate Krohne Type M950 0-180 m³/h ± 0.9 m³/h
Valve stroke Sylvac Type s229 0-50 mm ± 0.001 mm
Medium temperature SAMSON Type 5204 -20-150 ◦C ± 0.45 ◦C
Structure-borne noise
(at valve body) Vallen Type VS45-H 20-450 kHz Sensitivity -63 dB re 1V/µbar

(Accuracy according to individual calibration)
Structure-borne noise
(at valve body) PCB Type M353 B17 0-30000 Hz Sensitivity 10 mV/g, Accuracy ± 3 dB

Structure-borne noise
(at NAMUR at bonnet) PCB Type M353 B17 0-30000 Hz Sensitivity 10 mV/g, Accuracy ± 3 dB

increasing up to a noise maximum which is defined as constant cavitation. Achieving the noise maximum also the
concentration of the vapor bubbles is maximum which leads to a choked flow condition with cavitation and a decreasing
noise behavior. To obtain the data in this study, the noise is measured based on the IEC 60534-8-2.

The recorded acoustic signals are time series with sampling rate 1562.5 kHz and time duration of 3 s, so the number of
entries of each signal sample is 4687500. In total, 356 samples are analyzed in this paper with partition into different
flow status listed in Table 2. For each flow state, we control seven different valve opening rates (100%, 90%, 75%, 25%,
10% and 5%) to obtain acoustic signals at each upstream pressure (10, 9, 6 and 4), respectively. And the parameters of
the valve opening rate and the upstream pressure are set by SAMSON AG’s professional engineers based on practical
experience.

Table 2: Different upstream pressure and valve opening in five flow status

Flow status Upstream pressure
(bar(a))

Valve opening
(%)

Number of
samples

Cavitation
Cavitation choked flow [10,9,6,4] [100,90,75,50,25,10,5] 72

Constant cavitation [10,9,6,4] [100,90,75,50,25,10,5] 93
Incipient cavitation [10,9,6,4] [100,90,75,50,25,10,5] 40

No cavitation Turbulent flow [10,9,6,4] [100,90,75,50,25,10,5] 118
No flow [10,9,6,4] [100,90,75,50,25,10,5] 33

3 Methods

This section presents our XGBoost based cavitation detection framework on acoustic signals. Firstly, a data augmentation
method with the aid of non-overlapping sliding window is proposed for tackling the small-sample issue. Secondly, the
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statistical features are calculated from the frequency domain signal. Thirdly, adaptive selection feature engineering
(ASFE) is proposed. Finally, the cavitation detection framework using XGBoost on acoustic signals with adaptive
selection feature engineering is explained.

3.1 Data Augmentation

In general, machine learning is driven by big data [33]. However, our data set has only 356 measured acoustic signals,
so data augmentation is essential for handling this kind of small-sample problem. Data augmentation can improve the
accuracy of the model and prevent over-fitting, and it can also teach the model the desired invariance and robustness
properties [34, 35].

Considering the purposed maintaining for steady flow status (i.e. for each measurement it is the same fluid status class
within the 3-second record duration) in each recorded data sample and the fine resolution for the sensor, one can actually
split every sample into several pieces with each still holding enough essential information to decipher the flow status,
but also with independent characteristics per piece due to the intrinsic randomness of the noise emission - given the
piece is not so short. Therefore, we propose here a data augmentation method based on Non - Overlapping Sliding
Window (NOSW), see Figure 2. The method is divided into two steps:

Raw Acoustic Signal

⋯

Signal Piece Sequence

Time-domain Signal

Fast Fourier 

Transform

Frequency-domain Signal

Figure 2: Data augmentation based on non-overlapping sliding window.

Step 1: The raw acoustic signal is split into pieces by a non-overlapping sliding window.
Step 2: The time-domain signal data is then transformed into frequency-domain data by Fast Fourier Transform (FFT).

Table 3 shows the number of samples in training and testing sets under different sized sliding windows.

Table 3: The number of training and testing set under different window sizes
Window

Size
Number

Training Set Testing set

2334720 568 144
1556480 852 216
1167360 1136 288
933888 1420 360
778240 1704 432
667062 1988 504
583680 2272 576
518825 2556 648
466944 2840 720

3.2 Feature Extraction

Although the frequency-domain signal contains abundant information, it also contains non-essential information e.g.
the background noise. A statistical feature extraction thus can further bring in effectiveness for cavitation detection
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under statistical learning paradigm. In general, the statistical features are the average attribute of the data those can
be captured. Many of these statistical features are based on moments and therefore the method of estimating these
statistical features are reflecting their relationship with the distribution of the random variable. Normally, the probability
density function can be decomposed into the components of moments.

In this paper, three types of statistical features are extracted: central trend statistics, dispersion degree statistics and
distribution shape statistics, given a frequency-domain signal xi(i = 1, . . . , n) with n the number of data points.

Central Trend Statistics The central trend statistics represent the central tendency of the overall distribution and is thus
a crucial feature. In this paper, the central trend statistics include mean value µ, median M , low quartile Q1 and upper
quartile Q3, which are defined as follows respectively:

µ =
1

n

n∑
i=1

xi,

M =

{
x(n+1)/2, n ∈ 2n+ 1,
x(n/2)+x((n/2)+1)

2 , n ∈ 2n,

Qp =

{
x([np]+1), np /∈ Z,
1
2 [x(np)x(np+q)], np ∈ Z.

(1)

where, xi, i = 1, . . . , n is a frequency domain signal data, n is the number of the data points, p = 1, 3 and Z represents
an integer.

Dispersion Degree Statistics The dispersion degree statistics is the distribution of all observations off-center. In this
paper, the dispersion degree statistics include minimum Min, maximum Max, inter quartile range IQR, standard
deviation σ, root mean square RMS and square root amplitude SRA, which are defined as follows respectively:

IQR = Q3 −Q1,

σ =

√√√√ 1

n

n∑
i=1

(xi − µ)
2
,

RMS =

√∑n
i=1 x

2
i

n
,

SRA = (
1

n

n∑
i=1

√
|xi|)2.

(2)

where, µ is mean, Q1 is low quartile, Q3 is upper quartile, xi, i = 1, . . . , n is a frequency-domain signal data and n is
the number of the data points.

All data is in [Min,Max], the number of data in [Min,Q1], [Q1,M ], [M,Q3], [Q3,Max] accounts for about a
quarter. When the interval is short, it means that the points in the interval are concentrated, and vice versa.

If the M is located in the middle of Q1 and Q2, the data distribution is more symmetrical. If the distance between Min
and M is greater than the distance between Max and M , the data distribution is inclined to the left, otherwise the data
distribution is inclined to the right. And we can see the length of the tail of the distribution.

Distribution Shape Statistics The distribution shape statistics is a crucial feature to measure the distribution shape
of observation data. In this paper, the distribution shape statistics include kurtosis κ, skewness χ, shape factor sf ,
clearance factor clf and crest factor cf , which are defined as follows:

κ =
1
n

∑n
i=1 (xi − µ)

4

σ4
,

χ =
1
n

∑n
i=1 (xi − µ)

3

σ3
,

sf =
RMS

1
n

n∑
i=1

|xi|
,

clf =
max{|xi|}
SRA

,

cf =
max{|xi|}
RMS

.

(3)
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Figure 3: The diagram of the adaptive feature aggregation. The adaptive feature aggregation include the adaptive
selection module and the feature aggregation module.

where, µ is mean, σ is standard deviation, SRA is square root amplitude, RMS is root mean square, xi, i = 1, . . . , n
is a frequency-domain signal data, n is the number of the data points.

The kurtosis κ [36] is a statistic that describes the steepness of the distribution of all observations in the overall sample.
And it is defined as the standardized 4rd central moment of the sample. If κ = 0, it means that the overall data
distribution is the same as the normal distribution. If κ > 0, it means that the overall data distribution is steeper
compared with the normal distribution. If κ < 0, it means that the overall data distribution is flatter compared with the
normal distribution.

The skewness χ [36] is similar to the kurtosis κ. The skewness χ is a statistic that describes the symmetry of the
distribution of all observations in the overall sample. And it is defined as the standardized 3rd central moment. If χ = 0,
it means that the overall data distribution is the same as the normal distribution. If χ ≥ 0, it means that the overall
data distribution is positively skewed compared with the normal distribution. If χ ≤ 0, it means that the overall data
distribution is negatively skewed compared with the normal distribution.

Shape factor sf is the ratio of RMS to average rectified value. Clearance factor clf is the ratio of signal peak to SRA.
Crest factor cf is the ratio of signal peak to RMS. These features have similar physical meanings and are often used
for fault detection.

3.3 Adaptive Selection Feature Engineering (ASFE)

Feature engineering is an important part of data mining. In general, the upper limit of machine learning is determined
by data and features. And the upper limit is approached by algorithms and models [37, 38]. In addition, deep learning
has achieved good results in many fields. The main reason is that it has a good ability of feature extraction and feature
processing. How to increase the nonlinear relationship between features is very necessary. Therefore, the ASFE is
proposed to enhance the expression ability of original features, i.e., to enhance the quality of the features. The method
includes two parts: Adaptive Feature Aggregation and Adaptive Feature Crosses.

3.3.1 Adaptive Feature Aggregation

The adaptive feature aggregation is to aggregate numerical features according to classification features. The adaptive
feature aggregation includes two modules: Adaptive Selection Module and Feature Aggregation Module, see Figure 3.

Adaptive Selection Module Firstly, the numerical features are input to XGBoost. Where, the numerical features
include the central trend statistics, the dispersion degree statistics and the distribution shape statistics. Then, the score
of each feature is obtained. Finally, the top − k(k = 5, · · · , 10) features F k

i (i = 1, · · · , k) are selected for feature
aggregation according to the feature scores.

Feature Aggregation Module The module includes three operations: Group, Apply and Combine.

-Group The upstream pressure and valve opening are classification features. Therefore, the numerical features are
grouped according to the upstream pressure and valve opening. Then, the group of upstream pressure Group− 1 and
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the group of valve opening Group− 2 are obtained. Where, the statistical features of Group− 1 and Group− 2 are
respectively denoted as F k

i (p), F k
i (o). And F k

i (p) ∪ F k
i (o) = F k

i .

-Apply The four operations are respectively applied to Group − 1 and Group − 2: Median, Mean, Maximum, and
Minimum.

-Combine The Group− 1 and the Group− 2 are combined according to the same type of application.

The aggregation features F (A) are generated through the adaptive feature aggregation. The number of aggregation
features F (A) areNum(F (A)) = Num(apply)×k. Table 4 shows the number of aggregation features under different
k through adaptive feature aggregation.

Table 4: The number of aggregation features under different top k by adaptive feature aggregation.
k The number of aggregation features

5 4× 5 = 20
6 4× 6 = 24
7 4× 7 = 28
8 4× 8 = 32
9 4× 9 = 36

10 4× 10 = 40

3.3.2 Adaptive Feature Crosses

The adaptive feature crosses is a cross feature formed by crossing two or more features. Similar to the adaptive feature
aggregation, the adaptive feature crosses is also composed of two modules: Adaptive Selection Module (see 3.3.1) and
Feature Crosses Module, see Figure 4.

Since the aggregation features F (A) are used in the adaptive feature crosses, the adaptive feature crosses is after the
adaptive feature aggregation. Firstly, the top− k features F k

i and the aggregation features F (A) are obtained through
the Adaptive Selection Module and the Adaptive Feature Aggregation, respectively. Then, the top− k features F k

i and
the aggregation features F (A) are merged and denoted as Fi(i = 1, · · · , Num(F (A)) + k). Thirdly, Fi are copied
and denoted as Fj(j = 1, · · · , Num(F (A)) + k). Finally, Fi/Fj and Fi −Fj , where i 6= j.

Top-k Features

Aggregation Features 𝐹(𝐴)

𝐹𝑖
𝑘 Top-k Features

Aggregation Features 𝐹(𝐴)

𝐹𝑖
𝑘

Adaptive Selection Module

Adaptive Feature Aggregation

i j

( )i j i j ( )i j i j− 

Figure 4: The diagram of the adaptive feature crosses.

The number of cross features F (C) are Num(F (C)) = 2× (k +Num(F (A)))× (k +Num(F (A))− 1). Table 5
shows the number of cross features under different k through adaptive feature crosses.

3.4 eXtreme Gradient Boosting with adaptive selection feature engineering

eXtreme Gradient Boosting (XGBoost) [39] is a supervised ensemble learning algorithm. It uses the second order
Taylor [40] expansion loss function with further a regularization term added based on the Gradient Boosting Decision
Tree (GBDT) [41] algorithm. It has been widely applied in different kinds of data mining fields.
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Table 5: The number of cross features under different top k by adaptive feature cross.
k The number of cross features

5 1200
6 1300
7 1404
8 1512
9 1624
10 1740

For a given data set with n samples and m features, D = {(xi, yi)}(|D| = n, xi ∈ Rm, yi ∈ R), a tree ensemble model
uses K additive functions is used to predict the output,

ŷi =

K∑
k=1

fk(xi), fk ∈ F , (4)

where F = {f(x) = wq(x)}(q : Rm → T,w ∈ RT ) is the space of Classification and Regression Trees (CART)[42]. q
is an independent tree structure. T is the number of leaves in each tree. w is the weight of the leaf node. Therefore, the
regularized objective function of XGBoost is defined as follows:

Obj =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk), (5)

Ω(fk) = γT +
1

2
λ

T∑
j=1

w2
j , (6)

where
∑
i

l(ŷi, yi) is the normal loss function with yi the actual value and ŷi the predicted value.
∑
k

Ω(fk) is the

regularization term that is composed of the sum of the complexity of all classification and regression trees. T is the
number of leaves in each tree. γ is the penalty coefficient, which is used to control the number of leaf nodes. wj is the
weight of the leaf node. The regularization term (6) helps to smooth the final learned weights and to avoid over-fitting.

When a new CART are generated, XGBoost needs to fit the error of the previous prediction. When t CART are
generated, that is, after t-th iterations, the objective function becomes

Ob
(t)
j =

n∑
i=1

l[yi, ŷ
(t−1)
i + ft(xi)]+Ω(ft), (7)

where l[yi, ŷ
(t−1)
i + ft(xi)] represents the error function and Ω(ft) represents the regularization term.

In order to optimize the objective function quickly, we approximate the objective function using the second-order Taylor
expansion,

Ob
(t)
j
∼=

n∑
i=1

l[yi, ŷ
(t−1) + gift(xi) +

1

2
hif

2
t (xi)]+Ω(ft), (8)

where gi = ∂ŷ(t−1) l(yi, ŷ
(t−1)) is the first order gradient statistics on the objective function, hi = ∂2

ŷ(t−1) l(yi, ŷ
(t−1))

is the second order gradient statistics on the objective function. ŷ(t−1) represents the prediction result of the previous
t− 1 tree, and ft(xi) represents the model of the i-th tree.

Since the objective function only depends on the first and second order stochastic gradients of the loss function over
each data point, the constant term in the objective function can be removed, thus the following simplified objective
function is used at each training step t,

Ob
(t)
j
∼=

n∑
i=1

[gift(xi) +
1

2
hif

2
t (xi)] + Ω(ft). (9)

We substitute Equation (6) into Equation (9), and arrived at the final objective function as follows :

Ob
(t)
j =

T∑
j=1

[Gjwj +
1

2
(Hj + λ)w2

j ] + γT, (10)
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where Gj =
∑
i∈Ij

gi and Hj =
∑
i∈Ij

hi. Ij = {i|q(xi) = j} is defined as the instance set of leaf j.

Based on the above XGBoost together with the adaptive selection feature engineering, we developed the cavitation
detection framework on the valve acoustic signal, see Figure 5 for the flow chart. Our method mainly includes five
modules: data acquisition, data augmentation, feature extraction, adaptive selection feature engineering and XGBoost
classification. And our source code is released at https://github.com/CavitationDetection/XGBoost_ASFE.

First, in the data acquisition module we collected the acoustic data of the valve (see 2) at different flow status. A total of
356 measurements are performed.

Second, we use a NOSW method to augment the obtained data. Before data augmentation, the total data is split into
training set and testing set (with a ratio of 80% : 20%). Perform the train/test splitting in advance can ensure that a
piece of signal data after any data augmentation would only exit in the training set or the testing set.

Third, the statistical features are extracted, which include the central trend statistics, the dispersion degree statistics and
the distribution shape statistics (see 3.2). Thus the training feature set and the testing feature set are obtained separately.

Fourth, the adaptive selection feature engineering is applied on both the training feature set and the testing feature set to
obtain the optimal feature set. The adaptive selection feature engineering in our methods includes feature aggregation
(see 3.3.1) and feature crosses (see 3.3.2), both of them contain the adaptive selection modules. The adaptive selection
module uses the method of solving the Gini index [43] in the XGBoost algorithm to calculate the importance of the
features in the feature data. We can also adaptively select top− k features to form the optimal feature subset according
to different data.

Finally, the optimal training feature set and testing feature set are used for the training and prediction of the XGBoost
algorithm, respectively. Since the amount of no-flow status is very small and cavitation phenomenon is more relevant
for practice, we regard both turbulent-flow and no-flow as “no cavitation”. Therefore, we study binary classification
(“cavitation” / “no-cavitation”) and four class cavitation-staging detection.

4 Results and Discussions

In this section, we evaluate the performance of the proposed cavitation detection framework on the unseen test data.
The results of binary classification and four-class classification will be shown. Finally, dependencies on the top k and
window-size parameters of our framework will be analyzed.

4.1 Evaluation Metric

In order to evaluate the model after training, we selected three metrics to comprehensively assess the model performance:
the Receiver Operating Characteristic (ROC) curve, the Area Under Curve (AUC) value, and the Accuracy (Other
metrics, see Appendix A).

We first calculate the confusion matrix [44] to more conveniently define the evaluation metrics and visualize model
performance. In the confusion matrix, see Figure 6, each column represents the predicted class, and each row represents
the actual class. TP (True Positive) is the fraction of positive samples those got correctly predicted by the model, and
TN (True Negative) is for the correctly predicted negative samples. FP (Fasle Positive) means the incorrectly classified
positive samples those should be negative actually, and FN (False Negative) is for the incorrectly predicted negative
samples.

Accuracy is a common evaluation metric for classification problems, defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

The ROC [45] curve is a line connecting each point with the False Positive Rate (FPR) as the horizontal axis and the
True Positive Rate (TPR) as the vertical axis. The definition of FPR and TPR is as follows:

FPR =
FP

FP + TN
(12)

TPR =
TP

FP + FN
(13)

The AUC [45] is defined as the area under the ROC curve. In general, the ROC curve is above the straight line y = x
and thus AUC ∈ [0.5, 1]. Usually the ROC curve and the AUC value are introduced for the binary classification task. In
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Figure 5: Flow chart of our cavitation detection framework on acoustic signal, based on XGBoost with the adaptive
feature engineering.
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Figure 6: The Confusion Matrix

this work, however, by transforming the label we calculate the AUC value and ROC curve in the four-class classification.
The specific method is as follows:

• Assuming the number of test samples is j, the number of classes is k.
• After training, the probability of each test sample in each class is calculated, and a probability matrix Pjk is

obtained.
• The label of each test sample is converted by One-Hot encoding (0→ 1000, 1→ 0100, 2→ 0010, 3→ 0001).

Each position is used to mark whether it belongs to the corresponding class. The label matrix Ljk is obtained.

The label matrix Ljk and probability matrix Pjk are expanded by rows. Then two columns are obtained after
transposition. Finally, the results of binary classification are obtained. Therefore, the final ROC curve and AUC value
can be directly obtained by this method. The model results are more intuitively shown through the ROC curve. The
larger the AUC value, the better the model performance.

4.2 Results

4.2.1 Results and comparisons with XGBoost

This subsection focuses on the recognition performance of cavitation detection using our method. In Tabel 6 we show
the comparison of the cavitation detection performance between the traditional XGBoost method (without NOSW and
ASFE) and XGBoost with NOSW plus ASFE.

Table 6: Comparison of testing accuracy of our method and traditional XGBoost

Method
Two Classification

(top k = 9, window size = 2334720)
Four Classification

(top k = 8, window size = 1556480)

Accuracy AUC Accuracy AUC

XGBoost 0.8889 0.9218 0.8056 0.8990
XGBoost + ASFE + NOSW (our) 0.9356 0.9809 0.9167 0.9529

For binary classification, the accuracy and AUC value of our method of XGBoost+NOSW+ASFE are increased by
4.67% and 5.91%, compared to the traditional XGBoost, and for four-class classification the accuracy and AUC value are
increased by 11.11% and 5.39%, compared to the traditional XGBoost method, respectively. These clearly demonstrated
the effectiveness of the combination of ASFE and NOSW into XGBoost algorithm to identify the cavitation of flow in
valve.

To show the classification results of cavitation detection in detail, we calculate the confusion matrices of our method
and show in Figure 7. For binary classification, it can be seen that cavitation and no cavitation are easy within our
method to be distinguished with a high accuracy. For four-class classification, we see that the constant cavitation is
more easily to be recognized with higher accuracy than other cavitation-stages intensity (Cavitation choked flow and
incipient cavitation). Comparatively, cavitation choked flow can be recognized with higher accuracy compared to
incipient cavitation. Therefore, both choked flow cavitation and constant cavitation are cast as states in the phenomenon
of cavitation hysteresis. They have more obvious cavitation characteristics. Being differently, the incipient cavitation is
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Figure 7: The confusion matrix of our method for binary classification of cavitation/ non-cavitation (a), and four-class
classification of choked-flow-cavitation/ contant-cavitation/ incipient-cavitation/ non-cavitation (b).
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Figure 8: The ROC curve of our method for binary classification of cavitation/ non-cavitation (a), and four-class
classification of choked-flow-cavitation/ contant-cavitation/ incipient-cavitation/ non-cavitation (b).

challenging to be identified, because in physics it is the critical state between cavitation and no cavitation. Technically
another reason is that the amount of incipient cavitation data is very small. In the study of Lehmann and Young[46] it also
shows that the end stages of cavitation can be more easily detected than incipient cavitation. From a practical perspective,
it’s acceptable that the incipient cavitation is recognized as the constant cavitation to give rise to process/plant alarm.
With this consideration, the accuracy of the incipient cavitation in our method can reach 80%.

The Receiver Operator Characteristic (ROC) curve of our method on the testing set is shown in Figure 8. For binary
classification, the ROC area of our method is 0.981. For four-class classification, the average ROC area of our method
for cavitation detection is 0.954. We see that cavitation choked flow, constant cavitation and no-cavitation can be easily
identified with higher ROC curve area.

4.2.2 Parameters analysis

From a detailed evaluation, the optimal top k value and sliding-window size for the binary classification and four-class
classification separately pinned down. The value of top k is chosen to be integers from 5 to 10. The sliding-window
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(a) Binary Classification (b) Four-class Classification

Figure 9: Effect of window size on the best accuracy under traditional XGBoost + NOSW and our method.

size is set to be 2334720, 1556480, 1167360, 933888, 778240, 667062, 583680, 518825 and 466944, respectively. The
corresponding results are shown in Table 7.

Table 7: Results of Accuracy with different values for k and window size of our method

Window
Size

Two Classification (Accuracy (%))

5 6 7 8 9 10

2334720 92.36 92.36 92.36 92.36 93.56 93.06
1556480 92.59 92.13 92.13 92.59 92.59 92.13
1167360 92.01 92.36 90.97 92.01 91.32 92.36
933888 91.11 91.67 91.11 90.83 90.56 90.83
778240 91.90 91.90 92.13 92.36 92.13 92.36
667062 91.07 91.27 91.27 91.07 90.87 90.67
583680 90.97 91.32 91.32 91.32 91.15 91.32
518825 91.51 91.82 91.20 91.36 91.51 91.36
466944 90.56 90.83 91.25 90.83 90.56 90.69

Window
Size

Four Classification (Accuracy (%))

5 6 7 8 9 10

2334720 88.89 88.89 88.89 89.58 89.58 88.19
1556480 88.89 88.89 91.20 91.67 91.67 91.20
1167360 80.21 83.33 80.56 80.21 80.21 80.56
933888 87.50 86.67 87.50 87.78 87.78 87.50
778240 83.10 84.72 83.10 84.26 84.95 85.19
667062 85.12 85.91 87.50 86.90 85.91 86.51
583680 85.59 85.24 85.59 84.45 85.07 83.72
518825 86.42 85.19 86.88 87.19 86.27 85.80
466944 86.11 87.22 86.67 85.69 85.56 85.56

From Table 7, the performance of our method achieves the best for binary classification when k is 9 and window size is
2334720. The value of mean accuracy of our method is 92.68%, 92.36%, 91.84%, 91.02%, 92.13%, 91.04%, 91.23%,
91.46% and 90.79% with different window size values. Therefore, our method is more stable, when the window size
is 2334720. For four-class classification, the performance of our method achieves the best when k is 8 or 9 and the
window size is 1556480. The value of mean accuracy of our method is 89.00%, 90.59%, 80.85%, 87.46%, 84.22%,
86.31%, 84.94%, 86.29% and 86.14% with different window size values. Therefore, our method is more stable, when
the window size is 1556480.

And we show the best accuracy of traditional XGBoost + NOSW and our method (XGBoost + NOSW + ASFE) under
different window sizes. The results are shown in Figure 9. As shown in Figure 9 (a), in almost all window sizes, our
method achieves better performances than XGBoost + NOSW. The best result of our method is 93.56% at the window
size is 2334720. The best result of XGBoost + NOSW is 92.59% at the window size is 778240. The accuracy value of
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Figure 10: The correlation of different sub-sequences of the same sample for different cavitation states.

our method are increased by 0.97%, compared with the XGBoost + NOSW. As shown in Figure 9 (b), in all window
sizes, our method achieves better performances than XGBoost + NOSW. The best result of our method is 91.67% at the
window size is 1556480. The best result of XGBoost + NOSW is 86.11% at the window size is 778240. The accuracy
value of our method are increased by 5.56%, compared with XGBoost + NOSW.

4.2.3 Correlation analysis

In order to quantitatively analyze correlation between features, we analyze the correlation of different sub-sequences of
the same sample. If the correlation of different subsequences is weak, the correlation of statistical features extracted
from different sub-sequences is also weak. Conversely, the correction is strong.

Figure 10 shows the results of Pearson correlation coefficients between different sub-sequences of the same sample
for different cavitation states. From Figure 10, it can be seen that the correlations between different sub-sequences
are distributed between 0.40 and 0.57. This indicates that the correlation between different sub-sequences presents
a moderate degree of correlation for any of the cavitation states. Furthermore, the features extracted from different
sub-sequences of the same sample will not be highly correlated, i.e., the features will not be redundant. Since these
different sub-sequences represent the same cavitation state, there is no weak or extremely weak correlation between
different sub-sequences of the same sample for any cavitation state.

4.2.4 Comparison results between XGBoost and XGBoost+NOSW

Figure 11 shows the accuracy difference between XGBoost on the augmented data and the original data in binary
classification (cavitation detection) and four-class classification (cavitation intensity recognition). From figure 11, it
can be seen that the accuracy difference is above zero at each particular window size, which indicates that the results
of XGBoost in the augmented data are better compared to the original data. And the larger the accuracy difference
indicates the more significant effect from data augmentation. Furthermore, this implicates that data augmentation using
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Figure 11: The results of XGBoost and XGBoost+NOSW accuracy difference in binary classification (cavitation
detection) and four-class classification (cavitation intensity recognition).

sliding windows is effective. And it also means that the extraction of statistical features after data augmentation does
not lead to feature redundancy.

4.2.5 Comparison results with other methods

To demonstrate the feasibility of our method, Our approach is compared to traditional machine learning with SVM [20]
and decision trees (DT) [13] and 1D convolutional neural networks (1D CNN) [24] for deep learning (see Table 8).

For four-class classification (cavitation intensity recognition), XGBoost + NOSW+ASFE gets the best cavitation
intensity recognition accuracy of 91.67% when window size is 1556480. The best cavitation intensity recognition
results from SVM, Decision Tree and 1D CNN are 68.71%, 53.86% and 87.14%, respectively, which are surpassed
by 22.96%, 37.81% and 4.53% compared to our method. This shows that our method achieves better performance in
cavitation intensity recognition than deep learning and traditional machine learning. For binary classification (cavitation
detection), XGBoost + NOSW+ASFE achieves the best accuracy 93.56% when Wsize is 2334720. And the accuracy of
the XGBoost + NOSW+ASFE is above 91% at each value of window size. The best cavitation detection results from
SVM and Decision Tree are 83.29% and 77.00%, respectively, which are surpassed by 10.27% and 16.56% compared
to our method. Although the results of our method do not outperform the 1D CNN, we only decrease by 0.9%. In
addition, the time complexity of our method is much smaller than that of 1D CNN, and our method does not require
higher computational hardware.

Table 8: The results of different window sizes of binary classification and four-class classification
Window Size

(W)
Method

SVM DT 1D CNN Our method

Binary
Classification

2334720 81.43 73.57 94.29 93.56
1556480 81.98 75.69 94.36 92.59
1167360 82.86 76.07 94.29 92.36
778240 80.24 74.29 94.05 92.36
583680 79.82 76.96 94.46 91.32
466944 83.29 77.00 94.14 91.25

Four-class
Classification

2334720 65.71 47.86 75.71 89.58
1556480 65.42 46.58 77.48 91.67
1167360 65.00 42.86 79.64 83.33
778240 64.52 50.71 80.71 85.19
583680 64.11 53.57 81.61 85.59
466944 68.71 53.86 87.14 87.22

5 Conclusion and Future Research

In this paper, the framework of XGBoost combined with adaptive slection feature engineering (ASFE) is proposed to
detect cavitation directly using acoustic signal for control valve. Besides to be the first application of XGBoost for
cavitation identification, other main contributions of this paper are summarized as the following two points. Firstly, a
non-overlapping sliding window data augmentation method is introduced to solve the small-sample learning problem.
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Secondly, the adaptive selection feature engineering (ASFE) method based on feature scores is proposed to increase the
expression ability of original statistical features, Where both the adaptive feature aggregation and feature crosses are
used. The proposed ASFE clearly improves the final prediction accuracy for cavitation detection task using XGBoost.
Our method is tested on the cavitation data collected within Samson AG and has achieved significant results being
superior to the traditional XGBoost method without ASFE. Moreover, the influence of different window size and top k
values in our method is detailedly studied. The best combination of window size and top k values suitable for binary
classification and four-class classification cavitation detection is pinned down respectively.

The limitations of the proposed method compared to the references may include the following aspects. First, the features
for the algorithm are extracted manually. Second, the adaptive selection feature engineering uses physical variables
measurements, e.g. the valve opening rate and the upstream pressure. Thirdly, the low recognition of the incipient
cavitation. Therefore, in future work, we will explore the end-to-end cavitation detection with solely acoustic signal
data using 1D residual network or other convolutional neural networks. In addition, we will also explore Few-shot
learning to solve data scarcity and small sample problems.
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Appendix A

Precision, Recall and F1-score are common evaluation metric for classification problems, defined as:

Precision =
TP

TP + FP
(A.1)

Recall =
TP

TP + FN
(A.2)

F1− score =
2× Pr ecision× Recall

Pr ecision+ Recall
(A.3)

where, TP (True Positive) is the positive sample correctly classified by the model. TN (True Negative) is the negative
sample correctly classified by the model. FP (Fasle Positive) is the positive sample incorrectly classified by the model.
FN (False Negative) is the negative sample incorrectly classified by the model.

And Precision and Recall are two contradictory and unified metrics. F-score is a weighted summation average of
precision and recall.

Binary classification

The precision, recall and F1-score of XGBoost + NOSW are shown in Table A1.

The precision, recall and F1-score of our method (XGBoost + NOSW + ASFE) are shown in Tables A2, A3 and A4.

Four-class classification

The precision, recall and F1-score of XGBoost + NOSW are shown in Table A5.

The precision, recall and F1-score of our method (XGBoost + NOSW + ASFE) are shown in Tables A6, A7 and A8.
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Table A1: Results of Precision, Recall and F1-score with different window size of XGBoost + NOSW

Window size
Evaluation metric (%)

Precision Recall F1-score

4669440 89.17 88.89 88.96
2334720 91.92 92.59 91.72
1556480 91.53 91.20 91.27
1167360 90.65 90.28 90.35
933888 90.77 90.28 90.37
778240 93.24 92.59 92.67
667062 92.18 91.67 91.75
583680 91.32 90.62 90.73
518825 90.77 90.27 90.37
466944 90.89 90.40 90.50

Table A2: Results of precision with different values for k and window size of our method (XGBoost + NOSW + ASFE)

Window
Size

Precision (%)

5 6 7 8 9 10

4669440 91.41 90.38 91.92 93.12 93.14 93.14
2334720 92.52 92.52 92.52 92.52 93.14 93.14
1556480 92.84 92.44 92.44 92.84 92.84 92.44
1167360 92.14 92.61 91.14 92.22 91.45 92.45
933888 91.37 92.19 91.65 91.14 90.90 91.06
778240 92.12 92.01 92.27 92.48 92.27 92.47
667062 91.31 91.43 91.43 91.25 90.95 90.74
583680 91.19 91.58 91.63 91.53 91.34 91.49
518825 91.88 92.19 91.49 91.62 91.84 91.71
466944 90.82 91.10 91.57 91.18 91.00 91.06

Table A3: Results of recall with different values for k and window size of our method (XGBoost + NOSW + ASFE)

Window
Size

Recall (%)

5 6 7 8 9 10

4669440 90.28 90.28 91.67 93.06 93.56 93.06
2334720 92.36 92.36 92.36 92.36 93.56 93.06
1556480 92.59 92.13 92.13 92.59 92.59 92.13
1167360 92.01 92.36 90.97 92.01 91.32 92.36
933888 91.11 91.67 91.11 90.83 90.56 90.83
778240 91.90 91.90 92.13 92.36 92.13 92.36
667062 91.07 91.27 91.27 91.07 90.87 90.67
583680 90.97 91.32 91.32 91.32 91.15 91.32
518825 91.51 91.82 91.20 91.36 91.51 91.36
466944 90.56 90.83 91.25 90.83 90.56 90.69

Table A4: Results of F1-score with different values for k and window size of our method (XGBoost + NOSW + ASFE)

Window
Size

F1-score (%)

5 6 7 8 9 10

4669440 90.40 90.31 91.72 93.08 93.08 93.08
2334720 92.36 92.40 92.40 92.40 93.08 93.08
1556480 92.64 92.19 92.19 92.64 92.64 92.19
1167360 92.05 92.41 91.02 92.06 91.36 92.39
933888 91.17 91.75 91.20 90.90 90.63 90.89
778240 91.94 91.93 92.17 92.39 92.17 92.39
667062 91.13 91.31 91.31 91.12 90.90 90.70
583680 91.02 91.38 91.38 91.37 91.20 91.36
518825 91.58 91.89 91.26 91.41 91.58 91.42
466944 90.62 90.89 91.31 90.90 90.64 90.77
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Table A5: Results of Precision, Recall and F1-score with different window size of our method (XGBoost + NOSW +
ASFE)

Window size
Evaluation metric (%)

Precision Recall F1-score

4669440 80.01 80.56 79.68
2334720 83.22 82.63 81.45
1556480 81.94 81.72 81.36
1167360 82.21 82.12 82.17
933888 84.90 86.11 84.81
778240 85.43 84.72 82.89
667062 77.42 82.54 79.75
583680 81.25 82.64 81.67
518825 80.82 83.33 81.60
466944 79.73 82.22 80.76

Table A6: Results of precision with different values for k and window size of our method (XGBoost + NOSW + ASFE)

Window
Size

Precision (%)

5 6 7 8 9 10

4669440 87.01 88.29 86.18 87.07 86.29 84.73
2334720 87.25 88.08 87.90 89.21 89.05 86.99
1556480 88.51 88.56 91.04 91.47 91.47 90.86
1167360 80.03 83.28 80.24 81.24 80.43 80.86
933888 86.64 85.47 87.15 87.53 87.48 87.31
778240 80.68 81.50 82.10 83.38 84.73 85.07
667062 84.88 84.44 86.55 85.73 84.91 85.32
583680 84.87 84.60 85.27 83.74 84.73 84.54
518825 85.60 83.13 86.15 86.50 85.16 85.00
466944 85.40 86.99 86.02 85.15 85.17 85.21

Table A7: Results of recall with different values for k and window size of our method (XGBoost + NOSW + ASFE)

Window
Size

Recall (%)

5 6 7 8 9 10

4669440 87.50 88.89 86.11 87.50 86.11 86.11
2334720 88.89 88.89 88.89 89.58 89.58 88.19
1556480 88.89 88.89 91.20 91.67 91.67 91.20
1167360 80.21 83.33 80.56 80.21 80.21 80.56
933888 87.50 86.67 87.50 87.78 87.78 87.50
778240 83.10 84.72 83.10 84.26 84.95 85.19
667062 85.12 85.91 87.50 86.90 85.91 86.51
583680 85.59 85.24 85.59 84.45 85.07 83.72
518825 86.42 85.19 86.88 87.19 86.27 85.80
466944 86.11 87.22 86.67 85.69 85.56 85.56
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Table A8: Results of F1-score with different values for k and window size of our method (XGBoost + NOSW + ASFE)

Window
Size

F1-score (%)

5 6 7 8 9 10

4669440 87.05 88.14 86.02 87.23 86.18 85.12
2334720 87.58 88.06 88.01 89.09 89.46 87.02
1556480 88.26 88.60 90.66 91.31 91.31 90.87
1167360 79.42 82.57 79.78 80.43 80.05 80.44
933888 86.55 85.89 87.22 87.53 87.52 87.27
778240 81.78 82.96 82.53 83.72 84.76 85.06
667062 84.91 85.00 86.70 86.05 85.21 85.71
583680 85.14 84.83 85.39 84.08 84.87 84.59
518825 85.93 83.81 86.41 86.37 85.29 85.27
466944 85.52 87.09 86.26 85.32 85.33 85.35
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