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Abstract: It has recently been demonstrated that black hole dynamics at large D is

dual to the motion of a probe membrane propagating in the background of a spacetime

that solves Einstein’s equations. The equation of motion of this membrane is determined

by the membrane stress tensor. In this paper we ‘improve’ the membrane stress tensor

derived in earlier work to ensure that it defines consistent probe membrane dynamics even

at finite D while reducing to previous results at large D. Our improved stress tensor is

the sum of a Brown York term and a fluid energy momentum tensor. The fluid has an

unusual equation of state; its pressure is nontrivial but its energy density vanishes. We

demonstrate that all stationary solutions of our membrane equations are produced by the

extremization of an action functional of the membrane shape. Our action is an offshell

generalization of the membrane’s thermodynamical partition function. We demonstrate

that the thermodynamics of static spherical membranes in flat space and global AdS space

exactly reproduces the thermodynamics of the dual Schwarzschild black holes even at finite

D. We study the long wavelength dynamics of membranes in AdS space that are everywhere

approximately ‘parallel’ to the boundary, and demonstrate that the boundary ‘shadow’ of

this membrane dynamics is boundary hydrodynamics with a definite constitutive relation.

We determine the explicit form of shadow dual boundary stress tensor upto second order

in derivatives of the boundary temperature and velocity, and verify that this stress tensor

agrees exactly with the fluid gravity stress tensor to first order in derivatives, but deviates

from the later at second order and finite D.
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1 Introduction

It has recently been demonstrated that the dynamics of black holes in a large number

of dimensions is ‘dual’ to the motion of a probe membrane1 propagating without back

reaction on any background that solves Einstein’s equations.2 The degrees of freedom of

this probe membrane are its shape (one degree of freedom) and a velocity field (D − 2

degrees of freedom) that lives on its world volume. The membrane hosts a stress tensor

which is given in terms of the shape and velocity field. The equations of motion for the

membrane variables are generated by the requirement that the membrane stress tensor is

conserved. This requirement yields as many equations as variables — and so presumably

defines well posed probe dynamics — as we now explain in more detail.

The membrane stress tensor TMN — viewed as a tensor field in the background space

time on which the membrane propagates — is delta function localized on the membrane

world volume. The tensor indices M and N lie purely ‘within’ the membrane world volume

(i.e. TMNnM = 0 where nM is the normal to the membrane world volume), so this stress

tensor is equally well characterized by its restriction, Tµν , to the membrane world volume of

the membrane. The membrane is a consistent source for gravitational fluctuations about

the background spacetime in which it propagates if and only if its stress tensor field is

conserved in spacetime i.e. if

EM = ∇NTNM = 0 (1.1)

The projection of (1.1) tangent to the membrane world volume imposes the world

volume stress tensor conservation equations3

∇µTµν = 0 (1.2)

On the other hand the normal component of the equation of motion yields

nMEM ∝ TµνK
µν = 0 (1.3)

where Kµν is the extrinsic curvature of the membrane.

Eq. (1.2) and (1.3) are D equations for the D − 1 independent membrane variables.

These equations nonetheless define consistent membrane dynamics at large D because it

turns out that the form of the large D membrane stress tensor is such that (1.3) is obeyed

1The development of this ‘membrane-gravity’ correspondence was motivated by early observations and

computations [1–4] by Emparan, Suzuki and Tanabe (EST) (see also [5–7]). A precise formulation of the

duality between black hole motion and the solutions of an initial value problem for membrane motion was

presented in [8–13]. Parallel work developing the effective description of black hole dynamics at large D in

various special limits and using it to address physical questions of interest can be found in [14–33].
2The reason that the membrane does not correct the spacetime in which it moves is essentially kine-

matical. It follows from Newton’s law that the ‘Coulombic’ fields of the membrane die off with distance

away from the membrane like 1/rD−3 ∼ e−(D−3) ln r and so are exponentially small at fixed distances away

from the membrane. It turns out that radiation fields from the membrane die off even more rapidly —

like 1
DD [12]. Consequently the effect of the membrane on the background geometry is extremely small at

distances larger than those of order 1
D

away from the membrane; this is the case even though the membrane

stress tensor is not small at large D.
3In the equation below ∇µ is the covariant derivative on the world volume of the membrane.
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as an identity order by order in the 1
D expansion. If, for instance we insert the leading

order membrane stress tensor [12] into the l.h.s. of (1.3) we find that the r.h.s. is of a low

enough order in 1
D that it can — and presumably will — cancel against the contribution

of subleading terms in Tµν . In other words the conservation equations (1.1) applied to the

leading order stress tensor of [12] yields consistent probe membrane dynamics in a power

series expansion in 1
D . However if the equations of motion are taken literally at any finite

D, no matter how large, they are inconsistent and generically have no solutions.

This paper is devoted to a study of the near equilibrium properties of our membrane.

We will find it instructive to perform our analysis at finite D, even though our results are

guaranteed to reproduce black hole physics only at large D. This is only possible once

we have a formulation of probe membrane dynamics that is self consistent at finite D. It

turns out to be not too difficult to find such a formulation. In this paper we present an

‘improved’ version of the leading order membrane stress tensor of [12]. Our improved stress

tensor reduces to the results of [12] at large D, but differs from it at subleading orders in 1
D .

The improvement is chosen to ensure that the new stress tensor obeys the equation (1.3)

as an identity even at finite D. It follows that the equations of motion that follow from

the conservation of this stress tensor constitute D − 1 equations for the D − 1 membrane

variables even at finite D and so presumably define consistent membrane dynamics even

at finite D. Moreover the improved stress tensor turns out also to exactly obey a local

form of the second law of thermodynamics under certain assumptions. More precisely our

improved stress tensor quantitatively reproduces the entropy production equation reported

in [10] at leading order in large D.

In the rest of this paper we first present our improved version of the leading order large

D membrane stress tensor of [12]. We then use this stress tensor to study of the prop-

erties of the membrane in equilibrium. In particular we demonstrate that all stationary

solutions of the resultant membrane equations can be obtained from the extremisation of

an action functional of the shape of the membrane. We apply this formalism to simple sta-

tionary solutions. Finally, in the case of a background AdS spacetime, we proceed to study

the dynamics of our membrane in near equilibrium situations and investigate relationship

between our improved large D membrane equations and the equation of fluid gravity.

In the rest of this introduction we present a more detailed outline of the contents of

this paper. To end this subsection, we re emphasize that — as in previous work — the

membranes of this paper reproduce black hole motion only at large D limit even though

their dynamics is well defined even at finite D. The membrane equations presented in

this paper are just the first term in a systematically improvable approximation to black

hole dynamics. Given this fact it is somewhat surprising that the membrane equations

presented in this paper turn out — in simple situations — to reproduce black hole physics

better than we had the right to expect, getting some results exactly right even at finite

values of D — as we explain below.

– 3 –
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1.1 The improved membrane stress tensor and resultant equations of motion

Consider aD dimensional bulk spacetime with metric GMN that obeys Einstein’s equations

with a cosmological constant4

R̄MN + (D − 1)λGMN = 0 (1.4)

Consider a codimension one membrane propagating in this spacetime. The membrane

stress tensor obtained from the analysis of Einstein’s equations at large D was reported in

equation 1.10 of [12] as

16πTµν = Kuµuν − 2σµν +Kµν (1.5)

upto corrections that are subleading in 1/D. Here uµ is a velocity field on the membrane,

σµν is the shear tensor of this velocity field (see (2.2) for a definition), Kµν is the extrinsic

curvature of the membrane world volume (see (2.3) for a definition), K is the trace of the

extrinsic curvature.

Eq. (1.5) may be rewritten in the form

16πTµν = KPµν − 2σµν + (Kµν −Kgµν) (1.6)

where gµν is the induced metric on the membrane world volume and Pµν = gµν + uµuν is

the projector orthogonal to the membrane velocity.

In this paper we study the dynamics of membranes governed by the improved stress

tensor

16πTµν = K̃Pµν − 2σµν + (Kµν −Kgµν) (1.7)

where

K̃ =
K2 −KµνKµν + 2Kµνσµν

K + u.K.u
(1.8)

It is easily verified that K̃ reduces to K in the large D limit defined in [8, 9, 13], and

so it follows that (1.7) reduces to (1.6) at leading order in the large D limit. Moreover it

is easily verified that the stress tensor (1.7) obeys the equation

KµνT
µν = 0 (1.9)

as an exact algebraic identity (the same is not true for the stress tensor (1.5)).

We emphasize that (1.7) is the stress tensor that lives on a probe brane that does not

back react on the background spacetime.5

Note that the stress tensor (1.7) consists of the sum of the identically conserved Brown

York stress tensor

16πTBY
µν = Kµν −Kgµν (1.10)

4The constant λ in (1.4) is proportional to (minus of) the usual cosmological constant. We have chosen

the normalization of λ to ensure that AdSD with radius 1√
λ

is a solution the equations (1.4) when λ is

positive, while de Sitter space with radius 1√
−λ

solves (1.4) when λ is negative. Upon setting λ = 0 (1.4)

reduces to the usual (flat space) vacuum Einstein equations.
5In other words, in working with (1.7) we multiply the full stress tensor by ǫ, work only to first order in the

ǫ expansion and then set ǫ to unity at the end of the computation. The order ǫ back reaction of the membrane

on the background spacetime produces an order ǫ2 correction to the membrane equations, which we ignore.

– 4 –



J
H
E
P
0
9
(
2
0
1
8
)
1
3
7

and the ‘fluid’ stress tensor

16πT fluid
µν = K̃Pµν − 2σµν (1.11)

Comparing (1.11) to the standard fluid form of the stress tensor

T fluid
µν = ρuµuν + pPµν − 2ησµν (1.12)

(here ρ is the fluid energy density, p is its pressure and η its shear viscosity) we see that

our membrane fluid has

ρ = 0, p =
K̃
16π

, η =
1

16π
(1.13)

It is striking that fluid energy density vanishes identically; it follows immediately that the

notion of an intrinsic fluid temperature T is ambiguous and that the fluid entropy density

s is a pure number.6 However the dynamics of the membrane is defined by an interaction

between the membrane ‘fluid’ and its shape — this interaction apparently endows any bit

of the membrane with a definite temperature. Indeed the formula for the membrane pres-

sure (1.13) — together with the vanishing of the fluid energy density plus standard thermo-

dynamics — allows us to conclude that Ts = K̃
16π . As we have explained above we expect the

entropy density s to be a constant. Below we will see that s = 1
4 so that T = K̃

4π , where T is

the local temperature of the membrane. Note that the temperature — which was left unde-

termined by the fluid equation of state — is determined by the membrane’s local extrinsic

geometry.7,8 Note also that the viscosity of our membrane obeys the KSS relation [34]

η

s
=

1

4π
(1.14)

Simple algebraic manipulations (see the next section) reveal that

∇ · JS =
1

2K̃
σαβσ

αβ

Jµ
S =

uµ

4

(1.15)

We identify Jµ
S as the entropy current of our membrane. This definition reduces to the

entropy current of [12] at large D. In the same limit (1.15) reduces to the entropy produc-

tion equation eq. (1.5) of [10] at large D. It follows that the membrane equations of this

6Usually, the entropy density is a function of the energy density. However our fluid has vanishing energy

density. It follows that in this special case the entropy density has nothing to be a function of and so is a

pure number.
7It is easy to cook up systems with the unusual thermodynamics of our fluid. Consider a substance

consisting of 1
4 ln 2

qubits per unit volume. Let the Hamiltonian of this system simply vanish. A volume V

of such a system is associated with a finite dimensional Hilbert space of zero energy states whose number

is given by e
V

4 .
8Had our membrane fluid been less exceptional, the energy density of the fluid as a function of position

would have been an additional variable of our problem. Membrane motion would then have had D − 1

fluid variables plus one shape variable — the additional equation of motion could then have come from

the equation (1.3) which would no longer have been identically obeyed. Black hole membranes are special

precisely because they are described by a fluid of vanishing energy density — and so a total of D− 1 rather

than D variables, and so (for consistency) by a stress tensor that obeys (1.3) as an identity.
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paper obey a local form of the second law of thermodynamics provided K̃ is everywhere

(pointwise) positive. In this paper we simply restrict attention to those solutions — large

classes of which certainly exist — that obey this condition9 leaving the analysis of the

dynamical closure of this condition to later work.

The derivation (1.15) used the conservation of the Brown York part of the membrane

stress tensor. As this conservation applies only in spacetimes that obeys Einstein’s equa-

tion, it follows that, in general, the local form of the second law (1.15) is valid only when the

membrane probes solutions of Einstein’s equations rather than general smooth manifolds.

1.2 Stationary solutions and thermodynamics

In papers written over two years ago, Emparan, Suzuki and Tanabe [16, 17] demonstrated

that stationary black holes are governed by simple effective equations in a power series

expansion in 1
D . The formulation of [16, 17], while very convenient for the study of sta-

tionary solutions, has not previously been shown to generalize in a simple way to allow

for the study of dynamical phenomena. In this paper we rederive (suitably generalized

versions of) the equations of [16, 17] starting with the membrane equations that follow

from the conservation of our improved membrane stress tensor. It follows that (suitable

generalizations of) the beautiful results of [16, 17] follow from the restriction of our general

dynamical membrane equations to stationary situations.

Having obtained the equations of motion that govern stationary solutions we proceed

to elucidate their structure. In particular we demonstrate that these equations follow from

the extremization of an intriguing action, and uncover their thermodynamical significance.

In order to focus on stationary solutions, in this subsection we restrict attention to

background spacetimes GMN that have a timelike killing vector kM .10

Let JE
M denote the conserved ‘energy current’

JE
M = kNTMN (1.16)

and let JE
µ denote the restriction of this current to the membrane world volume. The

conserved energy of the membrane is given by

E =

∫ √
h q · JE (1.17)

where the integral in (1.17) is taken over any spatial slice of the membrane world-volume,

h is the determinant of the metric on this slice, and q is the unit normal to this slice within

the membrane world volume.

9This condition is always met in the strict large D limit. Even at finite D it is possible that this condition

is stable under time evolution (configurations that obey this condition never evolve to those that do not).

The investigation whether — and when — this is true is an interesting problem for the future.
10A large class of interesting examples of such backgrounds are the ‘vacuum’ solutions of Einstein’s

equations with a negative cosmological constant that are asymptotically locally AdS, and that tend, at

small z, to the metric

ds2 =
dz2 + gαβdx

αdxβ

z2

where gαβ is an arbitrary field theory metric that admits a timelike killing vector.

– 6 –
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Consider a membrane configuration in which kM is everywhere tangent to the mem-

brane and so defines a vector field kµ on the membrane. If, in addition Lku
ν vanishes (Lk

denotes Lie derivative, on the membrane world volume along kµ) then we say that the

membrane is in a stationary configuration w.r.t. the killing field kM .

As entropy production vanishes on any stationary solution ∇.u = 0 and so σµν = 0

(see (1.15)). The first of (1.15) then implies that ∇.u = 0. However a velocity field can be

both shear and divergence free only if it is proportional to a killing vector [35]. It follows

that

uµ =
kµ√
−k.k

(1.18)

Using (1.18) it is not difficult to demonstrate that the stress tensor conservation equation

projected orthogonal to the velocity uµ reduces to

Pα
µ∇α

(

K̃
√
−k.k

)

= 0 (1.19)

implying that

K̃ =
4πT0√
−k.k

(1.20)

where T0 is a constant. At large D, (1.20) reduces to

K =
4πT0√
−k.k

(1.21)

in agreement with the large D results of [16, 17] cited above.

We demonstrate in the main text below that the equations of motion (1.20) follow as

the condition that the action

S =
1

16π

[

−(D − 1)λ

∫

V

√
−G+

∫

M

√−g

(

K − 4πT0√
−k.k

)]

(1.22)

is extremized. Here K is the trace of the extrinsic curvature of the membrane, gµν is the

metric on the membrane world volume M and V denotes the region of spacetime enclosed

by the membrane. The variation of (1.22) w.r.t. the induced metric on the world volume

defines a stress tensor given by11

Tµν = − 2√−g

δS

δgµν
(1.23)

It is easily verified that the stress tensor (1.23) agrees with (1.7) evaluated on the equi-

librium solution (1.18), (1.20). In other words the offshell action (1.22) generates the

equations of motion for the shape of stationary solutions, while variation of the value of

11The variation in this equation is defined as follows. We change the metric on the membrane world-

volume by changing the background solution of Einstein’s equations with which we work. Note that regular

solutions of Einstein’s equations are completely determined — and therefore parametrized — by the induced

metric on a bounding surface, which in this case is taken to be the world volume of the membrane.

– 7 –
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the onshell action w.r.t. the background metric reproduces the conserved stress tensor of

this solution.12

We will now uncover the thermodynamical significance of the action (1.22). Let t be

any ‘time coordinate’ that obeys

k.dt = kt = 1 (1.24)

Consider the two time slices of the bulk space time t = t1 and t = t2. Let β = t1 − t2. Let

dB represent that part of the membrane world volume that lies between these two times

and let B denote the part of the bulk spacetime enclosed by the membrane between these

two time slices. In the main text we show that provided (1.18) (but not necessarily (1.19))

holds, the membrane energy and entropy is given by

E =
1

16πβ

(∫

dB

√−gK − (D − 1)λ

∫

B

√
−G

)

Sent =
1

4β

∫

dB

√−g√
−k.k

(1.25)

Note that the second term on the r.h.s. of (1.25) is proportional to the volume of spacetime

enclosed by the membrane world volume and the two time slices. The contribution of this

term vanishes at λ = 0.

Comparing (1.22) with (1.25) it follows that the action in (1.22) may be rewritten as

S = β (E − T0Sent) (1.26)

where β is the ‘length’ of the time coordinate. In Euclidean space β = 1
T where T is the

temperature of our system. It follows that the Euclidean action (1.26) is proportional to

the logarithm of the partition function (as expected on general grounds)

S = − lnZ =
E

T0
− Sent (1.27)

provided we identify

T = T0. (1.28)

In other words the arbitrary constant T0 that appears in the action (1.22) — which we

have already identified with the integration constant in (1.20) — is the temperature of the

stationary membrane configuration.

It then follows from (1.27) that, on shell,13

∂βS = E, (1.29)

12It may be useful to emphasize a potentially confusing point. The action (1.22) is defined as an integral

over the full world volume of the membrane — and so is well defined also for time dependent membrane

shape configurations. In this paper, however, we are interested in (1.22) only for stationary membrane

configurations. All variations of the action (1.22) are performed within the space of stationary membrane

shapes — and with respect to killing metrics.
13Naively the action (1.27) changes when we vary the temperature for two reasons. First because (1.27)

explicitly depends on β. Second because the equilibrium membrane solution — hence its energy and entropy

— depends explicitly on T = T0. However the second variation actually vanishes, as the onshell action is

stationary w.r.t. an arbitrary variation of the membrane configuration.

– 8 –
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confirming our identification the action14

S = − lnZ (1.30)

Recall that stationary solutions of the membrane equations extremize the action (1.27).

Viewing β = 1
T0

as a Lagrange multiplier, it follows from (1.27) that stationary membrane

solutions extremize membrane entropy at fixed membrane energy. This is satisfying as

we expect, on physical grounds, that the equilibrium configurations in the microcanonical

ensemble extremize their entropy.

It follows in particular from (1.20) that the temperature of a static spherical membrane

in flat space is given by T = K̃
4π . In a more general configuration that is not necessarily in

equilibrium, we simple define the local membrane temperature to be given by

T (x) =
K̃(x)

4π
, (1.31)

We emphasize that the formula (1.31) defines the local temperature of the membrane

in any dynamical configuration. The local temperature (1.31) is, in general, a function of

position and is distinct from the temperature T0 of a stationary solution of the membrane

equations. In a stationary solution the relationship between T0 and the local membrane

temperature T follows from (1.20) and takes the form

T (x) =
T0√
−k.k

(1.32)

In words, the local temperature in equilibrium is given by the global temperature T0 times

the effective red shift factor 1√
−k.k

. See [38] for a very similar discussion in the context of

hydrodynamics on a fixed background manifold.

The simplest stationary membrane solutions are those dual to Schwarzschild type black

holes of arbitrary size in global AdS and global dS spaces.15 Quite remarkably we will find

below that the membrane formalism described in this subsection reproduces the thermo-

dynamics of the dual black holes exactly — rather than only in the large D limit.

1.3 Fluid gravity from membranes

We now focus on the study of Einstein’s equations with a negative cosmological constant,

i.e. solutions of the equation (1.4) with λ = 1. A simple solution of these equations is unit

radius AdSD space in Poincare coordinates, i.e. the space

ds2 =
dz2 + dxµdxµ

z2
(1.33)

14In order to find the partition function of our system we first had to extremize the action w.r.t. the

membrane shape and then evaluate this extremized action. The situation is more closely analogous to that

of the superfluid partition function (see [36] ) than the ordinary fluid partition function of, e.g. [37].
15Schwarzschild black holes in flat space and black branes in AdS space can be regarded as special limits

of these solutions.
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where µ = 0, . . . D− 2 and µ indices are raised and lowered using the metric ηµν . A simple

solution of the membrane equations is the configuration

z =
D − 1

4πTbb
, uµ = zvµ, vµ = const, ηµνv

µvν = −1 (1.34)

where Tbb is the temperature T0 of the membrane configuration. This solution is dual

to uniform black brane of temperature Tbb. By treating the membrane stress tensor as a

linearized source for Einstein’s equations, it is easy to compute the resultant backreaction.

For z < D−1
4πTbb

the resultant spacetime is a linearized normalizable perturbation about AdS

space, and the (AdS/CFT ) boundary stress tensor induced by this fluctuation is easily

computed. It turns out that this boundary stress tensor agrees precisely (at finite D) with

the exact boundary stress tensor of a uniform black brane of temperature Tbb and moving

at a uniform velocity vµ. The membrane entropy density also exactly matches the entropy

density of the uniform black brane.

Now consider a membrane whose shape and velocity field take the form listed in (1.34)

with Tbb and vµ slowly varying functions of the membrane coordinates xµ. In an expansion

in derivatives it is, once again, not difficult to solve the ‘dynamical’ linearized Einstein equa-

tions to compute the linearized gravitational fluctuations sourced by such a membrane.16

As in the previous paragraph one can now compute the boundary stress tensor induced by

this linearized fluctuation. The fact that the boundary stress tensor is conserved follows

from Einstein’s constraint equations evaluated on the boundary. On the other hand the

membrane equations follow from the constraint equations evaluated ‘outside’ the membrane

(the constraint equations are identically obeyed ‘inside’ the membrane).

Given a solution to the dynamical Einstein equations, it is well known that the con-

straint equations on any slice imply the constraint equation on any other slice. It follows

that the condition of conservation of the boundary stress tensor is equivalent to the re-

quirement of conservation of membrane stress tensor. At the algebraic level, the procedure

described earlier in this subsection (coupling the membrane to linearized gravity fluctua-

tions) allows us to find a linear map from the membrane world volume stress tensor to the

boundary stress tensor. The fact allows us to regard the boundary stress tensor as a linear

functional of the membrane stress tensor (the precise form of this functional depends on

the membrane shape in a nonlinear way). This functional has the property that it ensures

that the boundary stress tensor is conserved whenever the membrane stress tensor it is

obtained from is also conserved.

The procedure outlined in the previous paragraph yields an expression for the bound-

ary stress tensor in terms of membrane stress tensor, and so in terms of membrane variables

(membrane shape and velocity field). It is possible, however, to perform a field redefini-

tion to a local boundary temperature and a local boundary fluid velocity, and rewrite the

boundary stress tensor in terms of these new variables. In these variables the boundary

stress tensor takes the standard form for the stress tensor of a conformal fluid in the deriva-

tive expansion. Below we have evaluated this expansion to second order in the derivative

16We compute the fluctuation fields with the boundary conditions that they die off (i.e. are normalizable)

towards the boundary of AdS, and also that they do not blow up as we approach the Poincare horizon.
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expansion, and compared our results with literature on the fluid gravity correspondence

in which the same expansion of the boundary stress tensor as a function of the boundary

velocity and temperature has been computed in every dimension by an exact direct analysis

of Einstein’s equations. We find that two results (the results of this paper and the exact

results of the fluid gravity correspondence) are in perfect agreement at zero and first order

in the derivative expansion even at finite D, but deviate from each other (at finite D) at

second order in the derivative expansion.

This discussion of the last paragraph implies, in particular, that the spectrum of the

lightest quasinormal modes around a black brane in an arbitrary number of dimensions

agrees at finite D and upto first subleading order in k, with the corresponding spectrum

around the uniform planar membrane solution (1.34). On the other hand these two spectra

deviate at order k3 and at finite D. We have independently verified that these predictions

are borne out.

Note that traditional hydrodynamics (and so, in the gravitational context, fluid grav-

ity) and our large D expansion are distinct expansions of bulk black brane dynamics. Fluid

gravity functions order by order in an expansion in derivatives; however the coefficients of

this expansion are computed exactly as functions of D. On the other hand the large D

membrane equations are constructed order by order in 1
D . At any given order in 1

D , how-

ever, the resultant equations are exact in derivatives, and so have terms of all orders in the

derivative expansion.

We have already pointed out that the leading order membrane equations presented

in this paper accurately reproduces the black brane Navier Stokes equations. In addition

the membrane equations capture the contribution of infinite number of arbitrarily high

derivative corrections to Navier Stokes. The membrane equations retain only the contri-

bution of those terms that survive in the improved large D limit. From the viewpoint of

a boundary observer the truncation to these terms does not appear to help much; outside

the long wavelength limit the equations for boundary hydrodynamics appear to continue

to be a nonlocal mess. The miracle is that there exists a field redefinition (namely the

redefinition that maps boundary to the membrane world volume) that turns this nonlocal

mess into local — and so tractable — hydrodynamical equations. Note that these D − 1

dimensional equations are local only when formulated on the membrane world volume,

itself a dynamical D − 1 dimensional submanifold of the D dimensional bulk AdS space.

The fact that the membrane equations remain local even outside the traditional bound-

ary derivative expansion potentially allows them to capture qualitatively new phenomena.

If, for example, the membrane were to fold on itself then the parametrization z(xµ), and

so the map to boundary fluid variables becomes singular. It is, however, manifest from the

bulk membrane viewpoint that this singularity is a fake, an artefact of the incorrect choice

of dynamical variables. We leave a serious investigation of this and other issues to future

work.

– 11 –
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2 Details of the formalism

As explained in the introduction, in this paper we study a membrane that resides on a

codimension one submanifold of any background spacetime that obeys the Einstein equa-

tion (1.4). For mathematical purposes it is sometimes convenient to parametrize the mem-

brane world volume by the solutions to the equation

ρ− 1 = 0

where ρ is a suitably chosen scalar function that takes values on the background manifold.

Let

|∂ρ| =
√

∂MρGMN∂Nρ, nA =
∂Aρ

|∂ρ| .

Note that nA is normal to the membrane world volume and that nMGMNnN = 1.

Our membrane has a stress tensor, TMN , living on its world volume. The stress tensor

has the form

TMN = |∂ρ|δ(ρ− 1)TMN , nMTMN = nNTMN = 0 (2.1)

Let Tµν
17 denote the pull back of TMN onto the membrane world volume. The equation

TMNnM = 0 ensures that there is as much information in Tµν as TMN ; knowledge of one

is sufficient to reconstruct the other. As explained in the introduction, the world volume

stress tensor, Tµν for the membrane studied in this paper is taken to be given by the

form (1.7) where the membrane shear and extrinsic curvature are defined by

σµν =
1

2
Pα
µPβ

ν

(

∇αuβ +∇βuα − Pαβ
2∇.u

D − 2

)

(2.2)

Kµν =

(∇AnB +∇BnA

2

)

∂XA

∂xµ
∂XB

∂xν
(2.3)

where, XM are coordinates on the full spacetime and xµ are the coordinates on the mem-

brane.

2.1 Membrane stress tensor and equations of motion

As explained in the introduction, our membrane stress tensor is a sum of two terms, TBY
µν

(see (1.10)) and T fluid
µν (see (1.11)). TBY

µν is identically conserved on the membrane world

volume (provided it propagates in a background satisfying Einstein equations)

∇µTBY
µν = 0 (2.4)

The non-trivial part of the membrane equation of motion is the conservation of the fluid

stress tensor
∇µT fluid

µν = 0

16πT fluid
µν = K̃ Pµν − 2σµν

(2.5)

17In the rest of this paper we will use the indices M,N . . . to denote spacetime coordinates and Greek

indices µ . . . to denote membrane world volume coordinates. GMN denotes the metric of spacetime, while

gµν is the metric on the world volume of the membrane.
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It is useful to decompose the membrane equations of motion into their components in the

direction of and orthogonal to uµ, i.e.

uν∇µTµν = 0, Pν
α∇µTµν = 0, Pν

α = δνα + uνuα (2.6)

Using

8π∇µT
µνuν = −K̃

2
∇ · u+ Pµα

(∇αuβ +∇βuα
2

)

∇µu
β − (∇ · u)2

D − 2

= −K̃
2
∇ · u+ Pµα

(∇αuβ +∇βuα
2

)

Pβθ∇µuθ −
(∇ · u)2
D − 2

= −K̃
2
∇ · u+ Pµα

(∇αuβ +∇βuα
2

)

Pβθ

(∇µuθ +∇θuµ
2

)

− (∇ · u)2
D − 2

= −K̃
2
∇ · u+ σαβσ

αβ (2.7)

it follows that the first equation in (2.6) can be rewritten in the form (1.15), and is a

statement of a local form of the second law of thermodynamics provided K̃ is everywhere

positive.

On the other hand, the stress tensor conservation equation projected orthogonal to uµ

takes the form

16π Pν
α∇µTµν =

(

K̃ u.∇uν +∇νK̃ − 2∇µσµν

)

Pν
α (2.8)

In order to explicitly verify that (2.8) reduces to the membrane equations of motion

presented in [8, 9, 13] we manipulate (2.8) as follows. Let XA denote any space time

coordinates and let R̄ABCD be the background spacetime Riemann tensor. Let xα denote

an arbitrary set of coordinates on the membrane world volume and let eAα = ∂XA

∂xα . Using

the Gauss Codacci relationship

Rµν = KKµν −Kβ
µKνβ + R̄ABCDe

A
σ e

B
ν e

C
γ e

D
µ g

σγ (2.9)

it is not difficult to show that

16π Pν
α∇µTµν =

(

K̃ u.∇uν +∇νK̃
)

Pν
α +

[

− 2u.∇uβ∇βuν − (∇.u)u.∇uν

−∇2uν − uγuµ∇γ∇µuν −K uµKµν + uµK
µγKγν − R̄ABCDe

A
σ e

B
ν e

C
γ e

D
µ g

σγuµ

+
2

D − 2
(∇.u)u.∇uν +

2

D − 2
∇ν(∇.u)

]

Pν
α

(2.10)

At leading order in the large D limit, (2.10) reduces to

16π Pν
α∇µTµν =

(

K u.∇uν +∇νK −∇2uν −K uµKµν

)

Pν
α (2.11)

in agreement with the membrane equations of motion presented in [8, 9, 13].18

18Using the large D counting described in [8, 9, 13] we find that, at leading order in the large D limit

K̃ → K. Moreover K̃ u.∇uν , ∇νK̃, ∇2uν and K uµKµν are all O(D) while R̄ABCDeAσ e
B
ν e

C
γ e

D
µ gσγuµPν

α are

all O(1). This conclusion holds for all values of the cosmological constant.
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2.2 Regular stationary solutions of Einstein’s equations

We now turn our attention to the construction of stationary solutions to our membrane

equations. As explained in the introduction, stationary solutions exist only when the

background spacetime in which the membrane propagates has a killing direction. In this

subsection and the next we assume this is the case, and denote the killing vector by kA.

We now construct a coordinate system for any such background spacetime that is adapted

to this killing direction. It is useful to look at [37, 39] as the setup and construction is

similar in flavour

Consider any spacetime with a timelike killing vector field kA. The spacetime in

question can be foliated by the D− 1 parameter set of integral curves of this killing vector

field, i.e. by curves that obey the equation

dXA(t)

dt
= kA(X) (2.12)

where XA represents an arbitrary set of coordinates in the bulk spacetime. Note that there

exists a D−1 parameter set of such curves which we choose to label by the D−1 parameters

Xa. Making an arbitrary (Xa dependent) choice for the origin of the t coordinate in (2.12),

it follows that the background spacetime metric takes the ‘Kaluza Klein’ form

ds2ST = GMNdXMdXN = −e2Σ(Xa)(dt+Aa(X
a)dXa)2 +Wab(X

a)dXadXb (2.13)

The fact that Σ, Aa and Wab are all independent of t follows from the condition that

∂t is a killing direction. Note also that an Xa dependent shift of the origin of t preserves

the form of the metric (2.13), inducing an effective a ‘Kaluza Klein gauge transformation’

on the ‘Kaluza Klein gauge field’ Aa.

We wish to study stationary membrane configurations. As explained in the introduc-

tion, this implies, in particular, that the killing field kA — evaluated at any point on

the membrane — is tangent to the membrane at that point. This requirement forces the

membrane world volume to be given by a shape of the form

f(Xa) = 0 (2.14)

(note that the function f does not depend on the ‘time’ t.). It follows that the induced

metric on the membrane, in a stationary configuration, takes the form

ds2 = −e2σ(x)(dt+ ai(x)dx
i)2 + wij(x)dx

idxj (2.15)

where the variables xi label the D− 2 parameter set of curves (2.12) that obey (2.14) and

so lie on the membrane.19

19In other words the D−2 parameters xi label the most general solution of (2.14). This solution is given

by the schematic form Xa(xi). Recall that while a runs over D − 1 variables, i runs over D − 2 variables.
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As explained in the introduction, the velocity field configuration for a stationary solu-

tion takes the form (1.18). It follows from (1.18) that

u.∇uµ =
kν√
−k.k

∇ν

(

kµ√
−k.k

)

=
kµ√
−k.k

kν∇ν

(

1√
−k.k

)

+
kν∇νkµ
(−k.k)

=
1

2

∇µ(−k.k)

(−k.k)

= ∇µ ln
√
−k.k

(2.16)

Eq. (2.16), together with the identity σµν = 0 turns the equation of motion (2.8) into the

simpler equation (1.19), which can immediately be integrated to (1.20).

We now turn to a derivation of the thermodynamical formulae (1.25). Let us begin

with the second of (1.25). Recall that the entropy of a stationary configuration of the

membrane is obtained by integrating the entropy current over any spacelike slice of the

membrane. Consider a spacelike slice of the membrane given by the equation

t = t0 (2.17)

where t0 is a constant.20

The normal oneform t to this slice — viewed as a oneform on the membrane world

volume — is given by

q =
dt

√

e−2σ − aiwijaj
(2.18)

Let g represent the determinant of the metric on the D−1 membrane world volume and let

h represent the determinant of the metric on the D−2 dimensional membrane slice (2.17).

It is easy to find an expression for g and h in terms w, the determinant of the metric wij

(see (2.15)). We have √−g =
√
weσ,

√
h =

√
w
√

1− e2σaiwijaj
(2.19)

Finally recall that in the coordinate system of (2.15) the velocity vector field u takes the

form

u = e−σ∂t (2.20)

The entropy of the membrane is given by

Sent =

∫ √
h qµJ

µ
S (2.21)

where the integral is taken over the D − 2 dimensional slice of the membrane world vol-

ume (2.17). Using (2.20), however, it follows that

Jµ
S qµ =

e−σ

4
√

e−2σ − aiwijaj

20This special choice of slice entails no loss of generality, as the most general slice of spacetime, t = f(xi),

can be recast in the form (2.17) by the‘Kaluza Klein’ xi dependent shift of the origin of t.
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Using (2.19) it then follows that

Sent =
1

4

∫ √−g√
−k.k

(2.22)

where, once again the integral is taken over the D − 2 dimensional slice of the membrane

world volume (2.17) and we have used the fact that
√
−k.k = eσ. The l.h.s. and r.h.s.

of (2.22) are both independent of time. Integrating both sides of that equation from t = t1
to t = t2 we obtain the second of (1.25).

We now turn to the derivation of the first of (1.25). The energy of the membrane is

given by

16πE = −16π

∫ √
h qµTµνk

ν = −
∫ √

h qµ(Kµν −Kgµν)k
ν =

∫ √−g (K −Kt
t ) (2.23)

As above, the integral in (2.23) is taken over the D− 2 dimensional slice of the membrane

world volume (2.17). In going from the middle expression in (2.23) to the r.h.s. we have

used the fact that k = ∂t and easily verified formulae

√
hk.q =

√−g,
√
hqµK

µ
ν k

ν =
√−gKt

t

Integrating both sides of this equation from t = t2 to t = t1 we obtain

16π(t1 − t2)E =

∫

M

√−g (K −Kt
t ) (2.24)

where the integral on the r.h.s. of (2.24) is taken over the part of the membrane world

volume that lies between t = t1 and t = t2.

We will now complete our derivation of (1.25) by demonstrating that

∫

M

√−g Kt
t = (D − 1)λ

∫

V

√
−G (2.25)

The l.h.s. of (2.25) is integrated, as in (2.24), over the part of the membrane contained

between times t1 and t2. The r.h.s. of (2.25), on the other hand, is integrated over the

region of the bulk D dimensional spacetime enclosed by three codimension one surfaces:

the membrane world volume, the bulk slices t = t1 and the bulk slice t = t2. If (2.25) holds

then clearly (1.25) follows from (2.24).

In order to establish (2.25), consider

Q =

∫

V

√
−G∇M

[

(dt)N∇NkM
]

(2.26)

where the integral is taken over the bulk region V defined in the previous paragraph. We

will establish (2.25) by evaluating (2.26) in two separate ways.

Our first evaluation uses an integration by parts to express (2.26) as

Q =

∫

M

√−gnM

[

(dt)N∇NkM
]

(2.27)

– 16 –



J
H
E
P
0
9
(
2
0
1
8
)
1
3
7

where nM is the normal to the membrane and the integral is taken over the region of the

membrane world volume for times t that lie between t1 and t2.
21 Recall that kM is tangent

to the membrane, in other words nMkM vanishes. It follows that nM∇NkM = −kM∇NnM ,

so that (2.27) may be rewritten as

Q = −
∫

M

√−g(∇NnM )(dt)NkM

= −
∫

M

√−gKN
M (dt)NkM

= −
∫

M

√−g Kt
t

(2.28)

where the integral is, once again, taken over the part of the membrane world volume at

times between t1 and t2.
22 Eq. (2.28) is the final result of our first evaluation of Q.

Our second evaluation proceeds by expanding out the integrand in (2.26). We have

∇M

(

(dt)N∇NkM
)

= (∇M (dt)N )∇NkM + dtN [∇M ,∇N ]kM + (dt)N∇N∇MkM

The first term in this expression vanishes because (∇M (dt)N ) is symmetric23 whereas

∇NkM is antisymmetric in its indices (recall kM is a killing vector). The third term

in this equation vanishes because ∇MkM vanishes. The second term is non-vanishing and

is easily evaluated to be

RNA(dt)
NkA = −(D − 1)λ

where in the final equality we have used the bulk Einstein equation (1.4). It follows that

Q = −(D − 1)λ

∫

V

√
−G (2.29)

Eq. (2.29) and (2.28) together establish (2.25).

Note that the last step in our derivation of (2.25) made crucial use of the fact that the

membrane encloses a regular solution of Einstein’s equations (1.4). Our derivation does not

apply to a membrane propagating in an arbitrary spacetime, and also does not apply to the

membrane propagating about a solution of Einstein’s equations if that solution encloses

either a singularity or (secretly) a second asymptotic region, as is the case for a black hole

spacetime.

3 The action and its variations

We now demonstrate that equilibrium membrane configurations are governed by the ac-

tion (1.22) and establish some properties of this action.

21In addition we have similar surface terms on the time slices at t = t1 and t = t2. However it is easily

verified that the contribution of the bulk constant time slice at t2 cancels the analogous contribution at t1.
22In obtaining the first line in (2.28) starting from (2.26) we have integrated by parts and used the fact

that n.k = 0.
23This follows from the symmetry of Γ matrices in our particular coordinate system.
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3.1 Variation of the action w.r.t. the membrane shape

Consider a membrane whose world volume is given by a smooth codimension one submani-

fold of the ambient spacetime. Let xµ represent a set of coordinates on the membrane. The

membrane world volume can be described by specifying the spacetime coordinates XM as

functions of the membrane coordinates, i.e. by the functions fM (xµ) s.t.

XM = fM (xµ) (3.1)

We denote the induced metric on this membrane surface by gµν(x). The extrinsic curvature

of the membrane surface is denoted by Kµν(x).

Now consider the slightly displaced membrane described by

XM = fM (xµ) + δz(xµ)nM (xµ) (3.2)

Here nM (xµ) is the normal vector of the membrane surface at the point xµ and δz(xµ) is

an arbitrary infinitesimal displacement function on the membrane. Let the induced metric

on the displaced surface (3.1) be given by gµν + δgµν , and let the extrinsic curvature of the

displaced surface be given by Kµν + δKµν . In appendix A we demonstrate that, to first

order in δz

δgµν = 2Kµνδz

δgµν = −2Kµνδz

δKµν = (Rµν + (D − 1)λGµν + 2KµαK
α
ν −KKµν) δz −∇µ∇νδz

δ
√−g =

√−g K δz

δK = (−KµνK
µν + (D − 1)λ) δz −∇2δz

δγ = γ(u.K.u)δz

δ

∫

V

√
−G =

∫

M

√−g δz

(3.3)

where we have used the notation

γ =
1√
−k.k

, u =
k√
−k.k

= γk (3.4)

In order to obtain the formula for δγ reported in (3.3) above we have used the fact that, for

stationary membrane configurations, nAk
A = 0 where nA is the normal to the membrane.

All of the other formulae in (3.3) are valid even without making this assumption.

In the last of (3.3) the volume integral on the l.h.s. is taken over V , the region of

spacetime enclosed by the membrane, whereas the integral on the r.h.s. is taken over the

M , the world volume of the membrane.

Using (3.3) it follows immediately that the variation of the action (1.22) under the

operation (3.2) is given by24

δS =
1

16π

∫

M

√−g

(

K2 −KµνK
µν − 4πT0√

−k.k
(K + u.K.u)

)

δz (3.5)

24The variation of this action w.r.t. its shape can be more systematically computed using the general

formalism developed in [40–46], and yields the same results as those presented below. We thank J. Armas

and J. Bhattacharya for discussions on this point.
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It follows that the action (1.22) is stationary under shape variations provided that

K2 −KµνK
µν

K + u.K.u
=

4πT0√
−k.k

(3.6)

In the stationary situation under consideration σµν = 0 and so the l.h.s. of (3.6) equals K̃
(see (1.8)) and (3.6) is the same as (1.20). We have thus demonstrated that (1.20) follows

as the condition for stationarity of the membrane action (1.22).

3.2 Variation of the action w.r.t. the metric

In this subsection we study the change in the membrane action as a response to a variation

of the induced metric on the membrane world volume — rather than the membrane shape

as in the previous subsection. We pause to explain precisely what this means.

Consider a spacetime with a boundary S. Consider the Einstein Hilbert action for

the spacetime contained within S, supplemented by the Gibbon’s Hawking term on the

boundary S. It is well known that Einstein’s equations in the interior of S follow from the

variation of this functional, subject to the boundary conditions that the induced metric on

S is a specified metric gµν . Moreover it is expected to be generically true that there are at

most discretely many solutions to Einstein’s equations for any given boundary metric gµν .

In other words the boundary metric, on any surface surrounding a region of spacetime,

labels solutions of Einstein’s equations in its interior upto discrete ambiguities.25

Now the membrane action (1.22) is a functional of both the induced metric on the

membrane as well as the extrinsic curvature of the membrane. As the extrinsic curvature

depends on the normal derivative of the spacetime metric away from the membrane, (1.22)

would appear to be a functional of both the induced metric on the membrane as well as its

first normal derivative inwards. However the spacetimes on which the membrane propagates

are not arbitrary — they are solutions to Einstein’s equations. And we have just argued

in the previous paragraphs that the entire solution to the interior of the membrane —

hence the normal derivative of the boundary metric on the membrane — and hence the

extrinsic curvature of the membrane — are all determined by the induced metric on the

world volume of the membrane. It follows that the variation the extrinsic curvature Kµν

(and so the membrane action) w.r.t. the boundary membrane metric is well defined. We

define the membrane stress tensor in equilibrium via the equation26

δS = −1

2

∫

M

√−gTµνδgµν (3.7)

The variation in (3.7) is performed within the space of stationary membrane metrics (i.e.

membrane metrics that admit a killing direction). The variation in (3.7) can be taken to be

25These expectations are best motivated in Euclidean space — and so are expected to apply well to the

equilibrium spacetimes under study in this section.
26We emphasize that the variation in (3.7) is performed onshell. The initial membrane configuration

in (3.7) is assumed to be onshell w.r.t. shape variations of the membrane. Logically speaking, the final

membrane configuration in (3.7) should also be taken onshell, but for the purposes of computing the stress

tensor (3.7) this condition is unimportant and can be dropped. The reason for this is simply that the

variation of the membrane action — due to a change in shape of the membrane — vanishes when taken

around a solution to the membrane equations of motion.
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performed with kµ held fixed. Though we will not need this for calculational purposes, at

the conceptual level it is sometimes useful to work in the coordinate system (2.15). In this

coordinate system stationary variations of gµν are a consequence of varying wij , ai and σ.

Note that we have enough variations to define every component of the stress tensor; note

also that, with this coordinate choice, all variations are performed holding kµ∂µ = ∂t fixed.

Although the stress tensor (3.7) is well defined, there is a catch. The variation of

the extrinsic curvature w.r.t. the induced metric on the membrane is, in general, a highly

nonlocal function of the induced metric on the membrane.27 Consequently the variation

of a generic action build out of Extrinsic curvatures would lead to a highly nonlocal stress

tensor (3.7). However our membrane action

S =
1

16π

[

−(D − 1)λ

∫

V

√
−G+

∫

M

√−g K − 4πT0

∫

M

√−g γ

]

(3.8)

is not generic. In particular the sum of the first two terms in (3.8) is precisely one half of the

onshell value of the Einstein action of the region of spacetime enclosed by the membrane.28

It follows that (3.8) may be rewritten as

S =
1

2
Sin −

T0

4

∫

M

√−g γ (3.9)

where

Sin =
1

8π

[

−(D − 1)λ

∫

V

√
−G+

∫

M

√−g K
]

(3.10)

Sin is the value of Einstein’s action of the spacetime to the interior of our membrane; this

can be made more explicit by using the bulk Einstein equation to rewrite (3.10) as

Sin =
1

16π

∫

V

√
−G (R+ λ(D − 1)(D − 2)) +

1

8π

∫

M

√−g K (3.11)

The only dependence of (3.9) on the extrinsic curvature comes from the fact that Sin

depends on Kµν . However this dependence is very special. In particular it follows from the

Hamilton Jacobi equations applied to Einstein gravity that29

δSin = − 1

16π

∫

M

√−gδgµν (K
µν −Kgµν) (3.12)

27This is analogous to the fact — familiar from the study of electrostatics — that the ‘normal component of

the electric field’, n.∇φ at a point x just outside a conductor is given by an integral of the form
∫
G(x, y)φ(y)

where he integral is taken over the boundary of the conductor and G is a Greens function. In this analogy

the boundary value of the potential φ plays the role of the induced metric, while the normal component of

the electric field plays the role of the extrinsic curvature.
28More precisely, the first term in (3.8) is half of the onshell value of the bulk part of the action

1

16π

∫
V

√
−G (R+ λ(D − 1)(D − 2))

(this is easily verified by making the onshell substitution R = −D(D − 1)λ) while the second term is half

of the Gibbons Hawking boundary term
1

8π

∫
M

√
−g K

.
29Logically speaking the variation in (3.12) is performed in a completely onshell manner in the bulk — i.e.

from one solution of Einstein’s equations parametrized by an induced boundary metric to another solution
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Consequently the variation of the first two terms in (3.8) leads to a contribution to the

membrane stress tensor equal to half of the Brown York stress tensor, i.e.

δ

(

Sin

2

)

= −1

2

∫

M

√−g

(

1

16π
(Kµν −Kgµν)

)

δgµν (3.13)

and is completely local.

The third term in (3.8) is a manifestly local functional of the induced metric on the

membrane, and so its variation w.r.t. the induced metric results in an manifestly local

contribution to the stress tensor.

δ
(√−g γ

)

=
1

2

√−g γ gµν δgµν +
1

2

√−g γ3 kµkνδgµν

=
1

2

√−g γ (gµν + uµuν) δgµν

=
1

2

√−g γPµνδgµν

(3.14)

Consequently it follows that

δ

(

−T0

4

∫

M

√−g γ

)

= −1

2

∫

M

√−g

(

T0

4
γPµν

)

δgµν (3.15)

Adding (3.13) and (3.15), it follows from (3.12) that

δS = −1

2

∫

M

√−g

(

1

16π
(Kµν −Kgµν) +

T0

4
γPµν

)

δgµν (3.16)

Comparing (3.16) with (3.7) we conclude that

16π Tµν =
4πT0√
−k.k

Pµν + (Kµν −Kgµν) (3.17)

Recall that (3.17) applies only for stationary membranes that obey the onshell condi-

tion (1.20). Using (1.20) it follows that (3.17) may be rewritten as

16π Tµν = K̃ Pµν + (Kµν −Kgµν) (3.18)

of Einstein’s equations parametrized by a slightly varied boundary metric. At the formal level, however,

one could ask the following question. Suppose we start in a solution of the bulk Einstein equation, but

let the bulk metric variation be offshell. This offshell variation is an arbitrary function of the full bulk,

not just the boundary. We could then define the appropriately normalized coefficient of the bulk metric

variation to be the bulk spacetime stress tensor resulting from the action (3.12). J. Armas has pointed out

to us that provided we use (3.11) to define Sin then — as follows from standard textbook derivations of

Einstein’s equations — the bulk stress tensor that follows has the form (2.1) where the restriction of TMN

to the membrane is given by (3.12). Note, in particular, that with this choice of Sin our bulk stress tensor

has no terms proportional to δ′(ρ− 1). The offshell stress tensor that follows from the full action (3.9) also

has the form (2.1) where the restriction of TMN to the membrane is given by (3.18). It is important that,

in the language of [40–46], we find T̂MNO
2 = 0 (this is equivalent to the fact that the ‘bulk’ stress tensor

has no δ′ pieces). From the point of view of [40–46] it is this fact that allows — for example — the energy

current of our membrane to take the simple form (1.16) rather than the more complicated form it would

have taken had the bulk stress tensor also had δ′ pieces. We thank J. Armas and J. Bhattacharya detailed

discussions and explanations on this topic.
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in perfect agreement with (1.7) in the stationary case. In summary, we have demonstrated

that the stress tensor that follows from the variation of our membrane action agrees with

the general fluid stress tensor (1.7) evaluated on equilibrium configurations.

As (3.18) is a special case of (1.7), it follows that it obeys the condition (1.9). We

end this subsection with a brief logical explanation (i.e. one that does not rely on algebraic

verification) that this had to be the case.

Consider a membrane propagating in a given background solutions of Einstein’s equa-

tions. There is one vary easy way to vary the induced metric on the membrane while

ensuring that the spacetime inside the membrane continues to solve Einstein’s equations.

One can do this by simply infinitesimally displacing the membrane a little bit within the

given background solution of Einstein’s equations. Even though this process does not mod-

ify the background metric, it changes the induced metric on the membrane. As explained

in (3.3), the change in the induced membrane metric produced by such a manoeuvre is

equal to 2Kµνδz where δz is arbitrary. As explained in the previous subsection, however,

the onshell membrane action is stationary under arbitrary variations of the membrane

volume, and so we find from (3.7) that

0 = −1

2

∫

M

√−gTµν(2Kµνδz) (3.19)

As (3.19) is true for any choice of the function δz it follows that

TµνKµν = 0.

In other words the stress tensor defined by varying the action using (3.7) automatically

obeys the equation (1.9).

4 Simple static membrane configurations and their thermodynamics

In this section we study simple static solutions of the membrane equations and compare

their thermodynamics with that of the dual black holes. The solutions we study are

Schwarzschild black holes in flat space, global AdS space and de Sitter space.

4.1 Coordinates and conventions

In this section we study the maximally symmetric backgrounds

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

D−2, f(r) = 1 + λ r2. (4.1)

Of course (4.1) are exact solutions to the Einstein equations (1.4). Before proceeding with

our analysis we pause to describe the coordinates employed in (4.1).

When λ = 0 (4.1) is just flat space in polar coordinates, and this case requires no further

elaboration. When λ > 0 the spacetime (4.1) is Anti de Sitter space of squared radius 1
λ in

global coordinates. Notice that the function f(r) never vanishes in this case. For r2 ≪ 1
λ

this spacetime is approximately flat; for r2 ≫ 1
λ the spacetime approximates Poincare
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Patch AdS space (i.e. AdS space with planar sections). According to the AdS/CFT corre-

spondence, this is the spacetime dual to the vacuum of N = 4 Yang Mills theory. Finally

when λ < 0, the part of (4.1) with r2|λ| < 1 is the static patch of de Sitter spacetime.

Recall that the static patch is the causal past of a static observer in global de Sitter space-

time. The submanifold r2|λ| = 1 is the future horizon of the causal patch. Points with

r2|λ| > 1 lie outside the static patch. While the killing vector ∂t is timelike within the

causal patch, it is spacelike outside the causal patch. As we have explained above, our

construction of stationary membranes is based on a timelike killing vector field, which we

will chose to be ∂t in the case of the backgrounds (4.1). When λ < 0 the requirement that

our killing vector field be timelike forces us to restrict our attention to within the static

patch. At any rate below we will focus our attention principally on λ = 0 or λ positive.

4.2 Exact black hole solutions and their thermodynamics

It is well known that following metrics are exact solutions of the Einstein equations (1.4)

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

D−2, f(r) = 1− rD−3
0

rD−3
+ λ r2 (4.2)

The metrics (4.2) reduce to (4.1) at large r. They also possess an event horizon (or in the

case of λ < 0 an additional event horizon) and so represent Schwarzschild black holes in

flat, global AdS and static patch de Sitter space respectively.

The (additional) event horizon of the metric (4.2) is located at r = rH determined by

the condition that f(rH) = 0, i.e. rH obeys the equation

rD−3
0 =

(

1 + λr2H
)

rD−3
H (4.3)

At least for λ = 0 and λ > 0 — the cases to which we restrict attention in most of the

rest of this subsection - the mass, entropy and temperature of the black hole solutions are

unambiguously well defined; specializing to this case, the mass and entropy of the black

holes were listed in, e.g., [47] and are given by;30

Mbh =
(D − 2)

(

1 + λr2H
)

rD−3
H ΩD−2

16π
, Sbh =

rD−2
H ΩD−2

4
,

Tbh =
1

4πrH

[

(D − 3) + (D − 1)λr2H
]

(4.4)

4.3 Membrane solutions and their thermodynamics

We now study stationary membrane solutions in the background (4.1). We use the formal-

ism developed in earlier sections, base our construction on the killing vector kµ∂µ = ∂t. It

is easily verified that the spherical membranes r = r̃H are solutions of the stationary mem-

brane equations (1.20). As we will see below, the thermodynamics of spherical membranes

at r = r̃H exactly matches (4.4) provided we make the identification r̃H = rH , forcing us to

30In the case λ = 0 the black hole mass is its usual ADM energy. In the case λ > 0 the black hole mass

is given by integrating the boundary stress tensor (Brown York stress tensor plus suitable counterterms)

over the boundary sphere, and coincides with the energy of the dual field theory on SD−2.
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identify r̃H with rH . We use this foreknowledge to lighten the notation of this subsection

by simply dropping the tilde on rH in all the formulae that follow.

For the membrane shape under consideration it is not difficult to verify that

qµ =
(

1 + λr2H
)1/2

(dt)µ, kµ = (∂t)
µ, uµ =

(

1 + λr2H
)−1/2

(∂t)
µ

Ktt = −λrH(1 + λr2H)1/2, Kta = 0, Kab = rH(1 + λr2H)1/2Ωab

(4.5)

and that

K = rHλ(1 + λr2H)−1/2 +
D − 2

rH
(1 + λr2H)1/2,

KµνK
µν = λ2r2H(1 + λr2H)−1 +

D − 2

r2H
(1 + λr2H), u.K.u = −λrH(1 + λr2H)−1/2,

K̃ = (1 + λr2H)−1/2

[

D − 3

rH
+ (D − 1)λrH

]

,
√
−k.k = (1 + λr2H)1/2 (4.6)

It follows from the second last and the last of (4.6) and from (1.20) that the temper-

ature, T0, of this membrane configuration is given by

T0 =
1

4πrH

[

(D − 3) + (D − 1)λr2H
]

(4.7)

in perfect agreement with (4.4).

The energy of our membrane is given by

E = −
∫ √

h qµTµνk
ν = − 1

16π

∫ √
h qµ(Kµν −Kgµν)k

ν (4.8)

and its entropy by

Sent =

∫ √
h qµJ

µ
S =

1

4

∫ √−g γ (4.9)

Substituting (4.5) into (4.8) and (4.9) we find the explicit results

E =
(D − 2)rD−3

H (1 + λr2H)ΩD−2

16π
, Sent =

rD−2
H ΩD−2

4
(4.10)

Once again (4.10) is in perfect agreement with (4.4).

As a check we note that

∂E

∂Sent
=

∂E

∂rH

(

∂Sent

∂rH

)−1

=
1

4πrH

[

(D − 3) + (D − 1)λr2H
]

= T0 (4.11)

(where we have used (4.7) in the last equality). We conclude that the thermodynamical

temperature or our system is, indeed, T0.

Finally, it is not difficult to evaluate the S = − lnZ of our spherical membrane solu-

tions. Using (1.22) we find

− lnZ = S =
rD−3
H ΩD−2

16πT0

[

(D − 2)
(

1 + λr2H
)

− 4πT0rH
]

(4.12)
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The partition function (4.12) has been presented as a function of rH ; however one can,

in principle, invert (4.7) to obtain rH as a function of temperature and so view lnZ as a

function of temperature.

As a check, it is not difficult to use (4.12), together with the thermodynamical relations

E = ∂βS, Sent = ∂T (TS) (4.13)

together with the explicit formula for the temperature (4.7) to reproduce the rela-

tions (4.10).

In this section we study only the membrane duals of static Schwarzschild type black

holes. We largely leave the generalization of this discussion to rotating Kerr type black

holes to future work. However see appendix D for preliminary work in this direction.

4.4 The membrane and boundary stress tensors

It may be verified that the induced metric on the membrane and its world volume stress

tensor, evaluated on the equilibrium configurations of this section are given by

ds2 = −(1 + λr2H)dt2 + r2HdΩ2
D−2

16πTtt =
D − 2

rH
(1 + λr2H)3/2, Tta = 0, 16πTab = (1 + λr2H)−1/2λr3HΩab

(4.14)

where Ωab is the metric on the world volume of a unit sphere. As a check on this formula

it may be verified that
∫ √−g

−gtt
Ttt = Mbh (4.15)

where g represents the metric on the world volume of the membrane.

It is interesting to specialize (4.14) to the case λ = 1 (in which case our solution is a

spherical membrane in a unit radius AdS space) and compare (4.14) with the boundary

stress tensor of the dual gravitational black hole (4.2). The stress tensor lives on the

manifold on which the field theory is defined, i.e.

ds2 = −dt2 + dΩ2
D−2 (4.16)

Its form may be read off, for instance, from section 5.3 of [38] and is given by

16πTB
tt = 2m(D − 2) = (D − 2)rD−3

H (1 + r2H), TB
ta = 0,

16πTB
ab = 2mΩab = rD−3

H (1 + r2H)Ωab

(4.17)

It is also easily verified that
∫ √−g

−gtt
TB
tt = Mbh (4.18)

where, here g represents the metric (4.16).

The fact that (4.18) and (4.15) are both true of course means that the membrane and

field theory stress tensors are related to each other. However the precise relationship, while

easy to state,31 is not visually transparent.

31The requirement that (4.18) and (4.15) be simultaneously valid determines the ratio of the membrane

and boundary Ttt components. The requirement that the boundary stress tensor is traceless, while the

membrane stress tensor obeys (1.3) then also determines the ratio of energy density to pressure, on both

the boundary and the membrane.
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In the large rH limit, on the other hand, (4.14) simplifies to

ds2 ≡ gαβdx
αdxβ = r2H(−dt2 + dΩ2

D−2)

16πTtt = (D − 2)r2H , 16πTab = r2HΩab

(4.19)

while (4.17) simplifies to

ds2 ≡ Gαβdx
αdxβ = −dt2 + dΩ2

D−2

16πTtt = (D − 2)rD−1
H , 16πTab = rD−1

H Ωab

(4.20)

In this case (4.19) and (4.20) are simply related by the Weyl scaling

gαβ = r2HGαβ , Tα
β =

1

rD−1
H

T
α
β .

where the Field Theory metric and Stress tensor are written with ‘hollow’ letters (Gαβ , Tµν)

and the Membrane metric and Stress tensor are written with ‘thick bold’ letters (gαβ , Tµν).

4.5 Spectrum of linearized excitations

In appendix B we have linearized our membrane equations around the spherical membranes

dual to Schwarzschild black holes in flat space. The final results for the spectrum of

linearized fluctuations is presented in (B.11), (B.12), (B.13). It is easily verified that this

spectrum agrees with the results of Emparan, Suzuki and Tanabe [4] at leading order in

the large d limit. It should be straightforward to generalize this fluctuation analysis to

static membranes at non-zero λ, however we have not done this calculation in this paper.

5 Fluid gravity from membrane dynamics

In this section we specialize to the study of the motion of a membrane in planar AdS space,

and ask ourselves the following question: what does the membrane dynamics look like from

the perspective of a boundary observer.

In principle this question is easily answered in the following manner. The membrane is

a source for linearized gravitational fluctuations about pure AdS space. The precise form

of these fluctuations may be obtained by convoluting the membrane stress tensor with the

appropriate Green’s function. The Green’s function may be obtained along the lines of the

analysis of [12] (in which the same problem was solved about flat space). This Green’s

function may be used to construct a linear map from the membrane to the boundary stress

tensor of the schematic form

T(x) =

∫

H(x, y)T(y) (5.1)

for some kernel function H(x, y) (all indices have been omitted in the highly schematic

equation (5.1)). As gravitational fluctuations can only be consistently sourced by a con-

served bulk stress tensor, the map (5.1) is well defined only when T(y) is conserved in the

bulk. Whenever this is the case, T(x) is well defined — and is automatically conserved

and traceless on the boundary. In other words (5.1) maps a membrane stress tensor that is
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conserved in the bulk to a boundary stress tensor conserved on the boundary. We will see

below that the relationship between these two conservation equations is very tight — at

the algebraic level the map (5.1) converts the membrane world volume stress tensor con-

servation equation (1.2) into a conservation equation for the boundary stress tensor, while

the equation (1.3) is mapped to the condition that the boundary stress tensor is traceless.

Restated, the membrane equations — which we have so far viewed as conservation

equations on the world volume of the membrane — may be recast as conservation equa-

tions in the flat boundary spacetime Rd−1,1. If we adopt this presentation then it is very

unnatural to use the membrane velocity and height function as our dynamical variables,

as these variables do not naturally live on the boundary. Instead, as we explain below,

it is natural for the boundary observer to use a boundary velocity field vµ(x) and a local

boundary temperature field T (x) to study dynamics (we will provide precise definitions of

these variables in terms of the boundary stress tensor below).32 Note that the boundary

velocity field has the same number of components as the bulk membrane velocity field

while the ‘location’ variable of the bulk membrane is traded for the boundary temperature.

Using the map (5.1), the explicit form of the membrane stress tensor (1.7) yields precise

expressions for the boundary variables in terms of the bulk variables. These expressions

take the schematic form

vµ = vµ(uµ, z), T = T (z, uµ) (5.2)

where z denotes the location of the membrane in the radial AdS direction (see below)

and uµ is the membrane world volume velocity field. The relations (5.2) may be inverted,

and may be regarded as a field redefinition from membrane to boundary variables. The

boundary stress tensor may now be re expressed in terms of vµ and T , and the condition

that the boundary stress tensor is conserved yields a set of boundary equations of motion

for these natural boundary variables. In the long wavelength limit — which we will now

focus on — these are simply the equations of boundary hydrodynamics.

In general the expressions (5.2) are highly non-local; as a consequence the boundary

dynamical system for the variables vµ and T is, in general, highly non-local Consider

however a limit in which the membrane is ‘nearly flat’ (see below for what this means)

and varies slowly in the ‘field theory directions’. In this limit it turns out that the map

between membrane and boundary variables is approximately local. The boundary stress

tensor is, thus, also an approximately local functional of boundary variables in this limit

— and takes the form of a hydrodynamical stress tensor that is expressed in terms of the

boundary temperature and velocity field by a set of constitutive relations that may be

obtained and presented, order by order, in a derivative expansion. In this section we focus

in this limit and work out the resultant boundary hydrodynamical constitutive relations

at upto second order in the derivative expansion.

Of course the exact finite D expressions for the constitutive relations of the boundary

stress tensor are known upto second order in the derivative expansion — the determination

of these coefficients was achieved as part of the programme of the fluid gravity correspon-

32In the long wavelength limit this choice of boundary variables is standard in the study of hydrodynamics.

We emphasize, however, that these variables are well defined, and so can be utilized, even outside this limit.
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dence. Comparing our results with those of fluid gravity we find — perhaps unexpectedly

— that our membrane induced constitutive relations agree exactly -at finite D — with the

results of fluid gravity at zeroth and first order in the derivative expansion. At second order

in derivatives, however, the membrane constitutive relations agree with the exact results

of fluid gravity only at large D and deviate from the exact results in a power series in 1
D .

The papers [23, 25] have previously demonstrated that the equations of ‘scaled black

brane dynamics’ reduce — under an appropriate field redefinition — to the equations of

boundary hydrodynamics at large D in an appropriate scaling limit. The analysis of this

subsection generalizes the discussions of [23, 25] in several ways. First, in this paper we map

the full nonlinear membrane equations of motion to full nonlinear equations of boundary hy-

drodynamics, and do not work in a particular scaling limit. Next, the starting point of our

analysis is the equations for probe membrane dynamics. Our probe membrane is defined by

the improved stress tensor (1.7) and its motion is well defined at finite D. In this section we

map our finite D probe membrane dynamics to the equations of finite D boundary hydro-

dynamics, and obtain results that agree exactly with those of fluid gravity at zero and first

order in derivatives even at finite D. Finally, the method we employ in our analysis utilizes

the linearized backreaction of the membrane on gravity, and — in our opinion — conceptu-

ally clarifies the relationship between membrane dynamics and boundary hydrodynamics.

Let us end these introductory comments by re emphasizing that the improved mem-

brane stress tensor (1.7) yields the exact zero and first order constitutive relations of hy-

drodynamics even at finite D. Recall that our improved stress tensor (1.7) represents the

sum over of what — from other points of view — would be regarded as a very particularly

chosen infinite set of corrections to the leading large D stress tensor (1.5). The fact that

precisely this infinite class of terms was sufficient to obtain exact results for zero and first

order fluid coefficients suggests that improved membrane equations presented in this paper

represents a useful resummation of 1
D perturbation theory.

5.1 Equilibrium

5.1.1 Black branes

In the previous section we studied the membrane solutions dual to static black holes of

radius rH in AdSD spacetime. In the limit that rH → ∞, black hole reduce (locally) to

black branes and their dual spherical membranes in global AdS space reduce locally to

planar membranes in Poincare patch AdS space. We use notation

d = D − 1 (5.3)

Recall that a black brane in AdS space is defined by the metric

ds2 =
1

ρ2



−
(

1− ρd

zd

)

dt2 +
dρ2

(

1− ρd

z
d

) + δijdx
idxj



 (5.4)
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In (5.4) ρ = z is the event horizon of the black brane. Now we rewrite the metric (5.4) in

Fefferman-Graham coordinates by change of ρ variable to z.33 The metric becomes

ds2 =
1

z2






−

(

1− zd

4zd

)2

(

1 + zd

4zd

)2−4/d
dt2 + dz2 +

(

1 +
zd

4zd

)4/d

δijdx
idxj






(5.5)

Throughout this section we employ the Fefferman-Graham coordinate choice. Now ex-

panding the metric (5.5) in power series in zd

z
d and retaining terms upto the first subleading

order in this expansion we get

ds2 = −
[

1−
(

d− 1

d

)

zd−2

zd

]

dt2 +
dz2

z2
+

[

1 +

(

1

d

)

zd−2

zd

]

δijdx
idxj (5.6)

Now we can recover the boundary stress tensor corresponding to the black brane solu-

tion (5.6) by the prescription

T
µ
ν = − 1

8π
lim
z→0

Kµ
ν − δµν
zd

(5.7)

Note that to use the prescription (5.7), it is sufficient to use the metric expanded to linear

order in zd

4zd
, i.e. (5.6), rather than full metric (5.5). Indeed it is easily verified that the

boundary stress tensor corresponding to this solution is just the coefficient of zd−2 in the

metric (5.6), and the boundary stress tensor34 dual to the black brane solution is given by

16πTµν =

(

4πTbb

d

)d

(ηµν + dvµvν) (5.8)

where vµ = (1, 0, 0, 0 . . .) and the temperature of the black brane Tbb is given by

Tbb =
d

4πz
, (5.9)

The boundary entropy current corresponding to the black brane is given by

J
µ
S =

1

4

(

4πTbb

d

)d−1

vµ (5.10)

5.1.2 Flat membranes

The membrane configuration dual to this black brane is given by the submanifold z = z of

the pure AdS metric

ds2 =
dz2 + ηµνdx

µdxν

z2
=

dz2 − dt2 + dxidxi
z2

(5.11)

33Fefferman-Graham coordinates are defined by the requirement Gzz = 1
z2

and Gzµ = 0.
34For this subsection, the boundary fluid-gravity metric, Stress tensor and Entropy current are written

with ‘hollow’ letters (Gαβ , Tµν , J
µ
S) and the Membrane metric, Stress tensor and Entropy current are

written with ‘thick bold’ letters (gαβ , Tµν J
µ
S).
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The membrane induced metric and stress tensor are given by35

gµν =
ηµν
z2

TMN = zδ(z − z)TMN

Tzz = Tµz = 0, TM=µ,N=ν = Tµν = independent of xµ

(5.12)

Until the very end of this subsection we will use no property of Tµν other than the fact

that it is constant.

Let us now regard the stress tensor (5.12) as a source for gravitational fluctuations

about AdS space (5.11) and compute the resultant linearized gravitational response. We

consider the most general linearized correction to the background metric of the form

ds2 ≡ GMNdXMdXN = (GMN + hMN ) dXMdXN =
dz2 + ηµνdx

µdxν

z2
+ hMNdXMdXN

(5.13)

We adopt the Fefferman-Graham coordinate choice and so set

hzM = 0 (5.14)

The linearized Einstein equations evaluate to

Ezz = −(d− 1)

2
z∂zh− (d− 1)h+

z2

2
∂2h− z2

2
∂α∂βh

αβ

Ezµ =

(

z2

2
∂z + z

)

(∂αh
α
µ − ∂µh) (5.15)

Eµν =
z2

2

(

∂ν∂αh
α
µ + ∂µ∂αh

α
ν − ∂2hµν

)

− z2

2
∂2
zhµν −

z2

2
∂µ∂νh+

(

d− 5

2

)

z∂zhµν

+ (d− 2)hµν +

[

z2

2
∂2
zh+

z2

2
∂2h− z2

2
∂α∂βh

αβ − (d− 5)

2
z∂zh− (d− 2)h

]

ηµν

In (5.15), the µ, ν indices are raised with ηµν and h ≡ hµνη
µν . Now in this case, clearly

the resultant response inherits the translational invariance in the xµ directions of the

source (5.12). Away from z = z the response is thus a translationally invariant solution to

the linearized Einstein equations about AdS space. In the Fefferman-Graham gauge it is

easily verified that the most general linearized solution of this form is given by

hµν =
1

z2

(

A(out)
µν zd +A(in)

µν

)

(5.16)

The requirement that our fluctuation is normalizable ensures A
(in)
µν = 0 outside the mem-

brane , i.e. for z < z. On the other hand the requirement that the fluctuation remain

bounded on the Poincare horizon forces A
(out)
µν = 0 inside the membrane i.e. for z > z. The

requirement that the fluctuation hµν is continuous across the membrane implies that

A(in)
µν = zdA(out)

µν ≡ zdAµν

35The factor of z on the r.h.s. of (5.12) is the factor of |∂ρ| in (2.1). In the case at hand ρ = −z + z+ 1.
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So we have

hµν =

{

Aµνz
dz−2, for z ≥ z

Aµνz
d−2, for z ≤ z

(5.17)

Finally, the junction matching condition on the membrane (refer [12] for similar calcula-

tion) relates the discontinuity of the Extrinsic curvature (as calculated in the linearized

metric (5.13)) to membrane stress tensor as

Tµν = − 1

8π

([

K(out)
µν −K(in)

µν

]

−
[

K(out) −K(in)
]

gµν

)

(5.18)

We find the answers for Extrinsic curvature of the membrane seen from the inside and

outside as

Kµν =

{

ηµν
z
2 + zd−2Aµν , for z ≥ z

ηµν
z
2 − d−2

2 zd−2Aµν , for z ≤ z
(5.19)

Using (5.19) in (5.18) we get

Aµν =
16π

d

Tµν

zd−2
(5.20)

It follows that the backreaction of the probe membrane modifies the metric of AdS space-

time to

GMNdXMdXN =

{

1
z2

(

dz2 + ηµνdx
µdxν +Aµνz

ddxµdxν
)

, for z ≥ z

1
z2

(

dz2 + ηµνdx
µdxν +Aµνz

ddxµdxν
)

, for z ≤ z
(5.21)

where Aµν is given by (5.20). As we have explained above, the boundary Stress tensor is

defined by the limit

T
µ
ν = − 1

8π
lim
z→0

Kµ
ν − δµν
zd

(5.22)

Using (5.19) in (5.22) we get the answer for boundary Stress tensor as

Tµν =
Tµν

zd−2
(5.23)

Eq. (5.23) is the main result of this subsection. The analogous relationship between mem-

brane and boundary metrics and energy currents takes the form

Gµν = z2gµν

J
µ
E ≡ T

µ
νk

ν =
T

µ
νkν

zd
=

J
µ
E

zd

(5.24)

Note that (5.24) are meaningful equations because we have used the ‘same’ xµ coordinate

on the membrane and on the boundary of spacetime. Note that (5.24) simply expresses

the condition that the membrane velocity field and stress tensor are Weyl equivalent to

the boundary velocity field and stress tensor in the case of stationary black branes. Note

in particular that the boundary energy (charge carried by the current JµE) contained in a

part of a spacelike slice of the boundary is given by
∫

√

Gind J
µ
E rµ (5.25)
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where
√
Gind is the boundary (fluid gravity) metric induced on the spatial slice, and rµ is

the unit normal to this slice. Noting that
√

Gind = zd−1√gind. rµ = z qµ

and using (5.24) it follows that (5.25) can be rewritten as
∫ √

gind J
µ
E qµ (5.26)

Identical comments apply to the entropy. In summary, the energy/entropy contained in any

part of the boundary, computed using boundary currents, is identical to the energy/entropy

of the ‘same’ region of the membrane, computed using membrane currents. In particular

the formulae (4.4) in the planar black brane limit are easily reproduced directly from the

membrane side.

Finally, to end this subsection we plug the explicit form of the membrane stress ten-

sor TMN into the formulae above and obtain explicit formulae for the linearized metric

perturbation, the boundary stress tensor and the boundary entropy current dual to our

flat membrane configuration. In order to obtain these quantities we note that the induced

metric and extrinsic curvature of the membrane located at z = z are given by

ds2ind ≡ gµνdx
µdxν =

ηµν
z2

dxµdxν =
−dt2 + dxidxi

z2
, Kµν = gµν (5.27)

It follows that the temperature of the flat membrane configuration is given by

Tm =
K̃
√
−k.k

4π
=

d

4πz
(5.28)

and that the world volume membrane stress tensor is given by

16πTµν =
ηµν
z2

+ d uµuν (5.29)

Putting (5.29) in (5.23) it follows that the boundary stress tensor induced by the flat mem-

brane of this subsubsection agrees exactly - at finiteD —with the boundary stress tensor of

the exact black brane solution (5.8) provided we make the identification (see (5.9), (5.28))

Tbb = Tm =
d

4π z
, vµ =

uµ

z
(5.30)

With these identifications the relations between the membrane and boundary entropy cur-

rents is given by

J
µ
S =

J
µ
S

zd
(5.31)

We can get the explicit value of the total linearized metric outside the membrane using

explicit value of the Stress tensor (5.29). Setting vµ = (1, 0, 0 . . . 0) we find

htt =

(

d− 1

d

)(

4πTm

d

)d

zd−2, hij =

(

1

d

)(

4πTm

d

)d

zd−2 δij (5.32)

Note that (5.32) matches exactly with the expansion at linear order in zd

z
d of the Fefferman

Graham form of exact black brane metric i.e. (5.6). It follows immediately that the bound-

ary stress tensor dual to our flat membrane configuration exactly matches the boundary

stress tensor of a black brane once we use the identifications (5.30).
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5.2 The boundary stress tensor in the derivative expansion

In the previous subsection we computed the linearized metric fluctuation (and thereby the

boundary stress tensor) sourced by a membrane like stress tensor (5.12) that was localized

at a constant value of z (z = z) and was also uniform in space. Our final result was

presented in (5.21). In this subsection will generalize the computation of the previous

subsection in the following manner. We compute the linearized metric fluctuation sourced

by the stress tensor

T MN = z
√

1 + ∂µz∂µz δ(z − z(x)) TMN

T zz = ∂µz ∂νz Tµν , T νz = ∂µz Tµν , TM=µ,N=ν = Tµν
(5.33)

where z and Tµν are no longer constants but are slowly varying functions of xµ.36 In what

follows we view Tµν as a tensor valued field on the membrane world volume, and use the

induced metric on the membrane to raise and lower its indices.

We will take advantage of the slowly varying nature of the functions z and Tµν to

perform our computation to first nontrivial order (which turns out to be the second order)

in an expansion of the derivatives of these fields.

At leading (zero) order in the derivative expansion the metric fluctuation sourced

by (5.33) is simply given by the local form of (5.21), i.e.

GMNdXMdXN =
dz2 + ηµνdx

µdxν

z2
+ hµνdx

µdxν (5.34)

where

hµν =

{

Aµν(x)z(x)
dz−2, for z ≥ z(x)

Aµν(x)z
d−2, for z ≤ z(x)

(5.35)

with

Aµν(x) =
16π

d

Tµν(x)

z(x)d−2
(5.36)

Of course the metric (5.35) does not exactly solve Einstein’s equations linearized about

AdS space; when we plug (5.35) into Einstein’s equations (1.4) with λ = 1, the l.h.s. of

these equations evaluates to an expression that is not zero, but turns out to be of second

order in ‘field theory’ (i.e. xµ) derivatives. In order to find a solution to the linearized

Einstein equations valid to second order in derivatives we replace hµν in (5.35) by

hµν =

{

Aµν(x)z(x)
dz−2 + δhµν(z, x), for z ≥ z(x)

Aµν(x)z
d−2 + δhµν(z, x), for z ≤ z(x)

(5.37)

where δhµν is an as yet unknown correction. We then plug (5.37) into the Einstein equa-

tion (1.4). We assume that δhµν is of second order in derivatives, and work consistently to

this order (i.e. we ignore all terms in the equation that are of third or higher order). The

l.h.s. of (1.4) now has terms of two sorts. First we have the ‘source’ terms, independent

of δhµν that we have already encountered earlier in this paragraph. In addition we have

36In the equation (5.33) µ indices have been raised using the induced metric on membrane gµν .
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new terms proportional to δhµν . Setting the sum of these terms to zero in the dynamical

Einstein equations (dynamical w.r.t. evolution in z) yields an equations of the schematic

form

Hδhµν = sµν (5.38)

where sµν are source terms and H is a differential operator of second order in z derivatives.

Note that the differential operator has no derivatives in the xµ directions — xµ derivatives

on δhµν result in expressions that are of third or higher order in derivatives and so are

ignored at the order at which we work.

In order to obtain a unique solution to the equations (5.38) we impose the following

boundary conditions. First we demand that the ‘outside’ solution is normalizable. Second

we demand that the ‘inside’ solution does not blow up at z = ∞. Third we require that δhµν
is continuous across the membrane located at z = z(x). Fourth we require the solution to

obey the appropriate junction matching condition across the membrane (see below). These

four conditions allow us to determine the four integration constants (two for the outside

solution and two for the inside solution) that appear in the most general solution of (5.38)

and thereby obtain a unique solution for δhµν . The algebra involved in our work out is

straightforward and we simply present our final results.

δhµν(z, x) =

{

C
(in)
µν z−2 +B

(in)
µν , for z ≥ z(x)

C
(out)
µν zd−2 +B

(out)
µν zd, for z ≤ z(x)

(5.39)

where

B(out)
µν = −∂2A

(out)
µν

2(d+ 2)

B(in)
µν = − 1

2(d− 2)



∂ν∂
αA(in)

αµ + ∂µ∂
αA(in)

αν − ∂2A(in)
µν −

∂α∂βA
(in)
αβ

d− 1
ηµν





C(out)
µν =

z2

2d
∂2A(out)

µν − 1

d(d− 2)

(

∂ν∂
αA(in)

αµ + ∂µ∂
αA(in)

αν − ∂2A(in)
µν

)

− ∂αz∂αz

2
A(out)

µν +





∂α∂βA
(in)
αβ

d(d− 2)zd−2
− ∂αz∂βz A

(out)
αβ



 ηµν

C(in)
µν = C(out)

µν zd +B(out)
µν zd+2 − z2B(in)

µν

A(in)
µν = zdA(out)

µν ≡ zdAµν

(5.40)

In order to obtain the results listed above we have used the fact that the extrinsic curvature

of the slice z = z(x) is given up to linear order in hµν and second order in field theory

derivatives by

Kµν =

[

ηµν
z2

− z

2
∂zhµν +

∂µ∂νz

z
+

∂µz∂νz

z2
+

z

4
∂zhµν∂

αz∂αz

− z

2
∂αz (∂µhαν + ∂νhαµ − ∂αhµν) +

1

2z2

(

−∂αz∂αz+ z2hαβ∂αz∂βz
)

ηµν

−
(z

2
∂z + 1

)

(hµα∂
αz∂νz+ hνα∂

αz∂µz)

]

z→z

(5.41)
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Note that the expression (5.41) depends on ∂zhµν . As this quantity jumps across the

membrane, the extrinsic curvature ‘above’ the membrane is discontinuously different from

the same quantity ‘below’ the membrane. The difference between these two quantities is

governed by the ‘junction condition’ mentioned above

Tµν = − 1

8π

([

K(out)
µν −K(in)

µν

]

−
[

K(out) −K(in)
]

gµν

)

(5.42)

It is not difficult to evaluate the boundary stress tensor dual to the solution presented

above using the definition (5.22); we find

Tµν =
Tµν

zd−2
+

z2

2d
∂2

(

Tµν

zd−2

)

− ∂αz∂αz

2 zd−2
Tµν +

∂α∂β
(

z2Tαβ

)

d(d− 2)zd−2
ηµν −

∂αz∂βzTαβ

zd−2
ηµν

− 1

d(d− 2)zd−2

[

∂ν∂
α
(

z2Tαµ

)

+ ∂µ∂
α
(

z2Tαν

)

− ∂2
(

z2Tµν

)]

(5.43)

The results (5.39), (5.40) were obtained by solving the dynamical Einstein equations.

The Einstein constraint equations (for evolution along the z direction) remain to be solved.

The situation with these equations is closely analogous to that encountered in section 4.3

of [12] in a distinct but related context.

Let us first recall the following general property of Einstein’s equations: provided the

dynamical equations are solved everywhere, the constraint equations are automatically

solved everywhere if they are solved on a single slice. As we have already dealt with the

dynamical equations, it remains only to solve the constraint equations on any one slice on

the outside and on any other slice on the ‘inside’. It is convenient to choose these slices to

be the membrane world volume, approached either from the outside or from the inside.

Let us recall that the constraint equations are of two sorts; the momentum constraint

equations and the ‘Hamiltonian’ constraint equations. Let us first deal with the momentum

constraint equations. These equations are simply the statement that the Brown York

tensor of the full metric (background plus fluctuation) is conserved on our slice. Now as

in section 4.3 of [12], it turns out that this condition is automatic for the inside solution

(this is suggested by the general argument of section 4.3 of [12] and we have explicitly

algebraically verified that it is the case for the explicit solution presented above). On

the other hand the Brown York stress tensor is not identically conserved just outside the

membrane. However it follows from (5.42) that the difference between the conservation of

the BY tensor outside and the BY tensor inside the membrane is simply the condition that

the membrane stress tensor is conserved on its world volume. As the inside BY tensor is

identically conserved, it follows that the outside BY tensor is conserved — and hence the

outside Einstein constraint equation obeyed — if and only if the membrane stress tensor

is conserved on its world volume.

We have already mentioned above, once the membrane stress tensor is conserved on

the membrane world volume, this automatically ensures that the momentum constraint

equations are solved everywhere. The momentum constraint equations are particularly

interesting when evaluated on the boundary of AdS, where they assert the conservation

of the boundary stress tensor (5.43). It follows, in other words, that conservation of the
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membrane stress tensor and the boundary stress tensor must be algebraically equivalent

statements: one must imply the other. It is easy to directly verify that this is the case. In

particular we have algebraically verified, using (5.43), that (1.2) is algebraically equivalent

to the condition

∇µ
Tµν = 0 (5.44)

(where ∇µ in (5.44) is the boundary field theory covariant derivative -i.e. the raised partial

derivative in flat space.37

In a similar manner, the Hamilton constraint equations are automatically (identically)

obeyed for the inside solution. The condition that they are also obeyed on the outside solu-

tion follows provided that (1.3) holds (see around 4.25 of [12] for a proof). At the boundary

of AdS, on the other hand, this constraint equation simply reduces to the condition that

the boundary stress tensor is traceless. It follows, in other words, that the tracelessness of

the boundary stress tensor

Tµνη
µν = 0 (5.45)

must be algebraically identical to the condition (1.3) for the membrane stress tensor. Using

the explicit result (5.43) we have directly verified that this is the case.

In summary, the solution (5.39), (5.40) solves all Einstein momentum constraint equa-

tions in addition to the Einstein dynamical equations if and only if the membrane stress

tensor is conserved on its world volume and also obeys the equation (1.3). The resultant

boundary stress tensor (5.43) is then automatically conserved and traceless.

5.3 Boundary stress tensor in terms of fluid variables

Plugging the explicit form of the membrane stress tensor, (1.7) into the general for-

mula (5.43), we find that the boundary stress tensor dual to our membrane -accurate

to second order in derivatives — is given by

Tµν = t(0)µν + t(1)µν + t(2)µν

t(0)µν =
1

zd
(ηµν+d vµvν)

t(1)µν =− 2

zd−1
σµν

t(2)µν =
1

zd−2

[

[

−
(

d

2

)

∂αz∂αz

z2
+

(

d−2

d−1

)

∂α∂αz

z
−
(

d

d−1

)

vαvβ∂α∂βz

z

]

Pµν

+

[(

d−1

2

)

∂αz∂αz

z2
− ∂α∂αz

z

]

ηµν+

[

∂µz∂νz

z2
+
∂µ∂νz

z

]

−d
∂αz

z
(vµ∂αvν+vν∂αvµ)

+
1

2

(

d

d−2

)

(

vµ∂
2vν+vν∂

2vµ+2∂αvµ∂αvν
)

− 1

d−2

[

(vµ∂ν+vν∂µ)(∂.v)

+(∂.v)(∂µvν+∂νvµ)+(∂µv
α∂αvν+∂νv

α∂αvµ)+v.∂ (∂µvν+∂νvµ)
]

37Note that, as in discussions of the fluid gravity correspondence, the equation (5.44) has an explicit

derivative. It follows that the constraint equation (5.44) at (n + 1)th order is completely determined by

knowledge of the stress tensor at nth order.
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+

[

d
∂αz∂αz

2z2
− ∂α∂αz

2z

]

(ηµν+dvµvν)−
[

∂αz∂αz

z2
+d

(v.∂z)2

z2

]

ηµν

+
1

d−2

[

(∂.v)2+2v.∂(∂.v)+∂αvβ∂βvα

]

ηµν−d
(v.∂z)2

z2
vµvν

]

(5.46)

where,

vµ =
uµ

z
, Pµν = ηµν + vµvν , σµν =

(

∂αvβ + ∂βvα
2

)

Pα
µ P

β
ν −

(

∂.v

d− 1

)

Pµν (5.47)

The expression for t
(2)
µν above can be simplified by recalling that we are interested

only in onshell configurations of our boundary fluid. At zero order in derivatives, the

conservation of t
(0)
µν yields

∂µt(0)µν = 0, ∂α∂
µt(0)µν = 0 (5.48)

From (5.48) we get

∂µz

z
= v.∂vµ − ∂.v

d− 1
vµ

∂µ∂νz

z
=

(

v.∂vµ − ∂.v

d− 1
vµ

)(

v.∂vν −
∂.v

d− 1
vν

)

− 1

d− 1
∂µ(∂.v)vν

− ∂.v

d− 1
∂µvν + ∂µv

λ∂λvν + v.∂(∂µvν)

(5.49)

Of course the object that is really conserved is the full stress tensor rather than simply t
(0)
µν .

This means that the r.h.s. of (5.49) has corrections that are of higher order in derivatives.

We will now use the equations (5.49) to simplify t
(2)
µν ; the corrections to (5.49) yield terms

of third or higher order in derivatives and so can be ignored. We thus proceed to sim-

plify (5.46) by using (5.49) to replace occurrence of a term in t
(2)
µν involving derivatives of z

with the expressions on the r.h.s. of (5.49). The resultant expression for t
(2)
µν is a sum of two

derivative terms with all derivatives acting on the velocity field vµ. The final expression

for the resulting expression is somewhat cumbersome and we do not explicitly list it here.

We will now perform a field redefinition from the natural membrane variables vµ and

z to more natural — and more standard — boundary variables. Let us define the Landau

Frame boundary velocity field vµ and the boundary temperature T by the conditions

T
µ
νv

ν = −(d− 1)

(

4πT

d

)d

v
µ (5.50)

In other words vµ is the unique timelike eigenvector of the boundary stress tensor (normal-

ized to be a boundary velocity field) and T is simply defined in terms of its eigenvalue. It

is not difficult to solve for vµ and T in terms of vµ and z, order by order in the derivative

expansion. At zero order in derivatives we work with the simple stress tensor t
(0)
µν ; it is

easily verified that

T = T =
d

4π z
, v

µ = vµ =
uµ

z
(5.51)
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Note that, at this order, (5.51) agrees with (5.30) as we might have anticipated on general

grounds.

The relation

t(1)µν v
µ = 0

immediately implies that the solution (5.51) continues to hold at first order in derivatives.

The situation is more complicated at second order. At this order (5.51) is corrected to

T = T (1 + δT ), vµ = vµ + δvµ (5.52)

where,

δT =
1

d(d− 1)

(

d

4πT

)2
[

− 1

2

(

d2 − 7d+ 8

d− 2

)

σαβσ
αβ +

1

2

(

d2 − 3d+ 8

d− 2

)

ωαβω
αβ

− (d− 4)

2
v.∂(∂.v) +

(d− 1)(d− 2)

2
v.∂vλv.∂v

λ − (d− 1)(d− 2)

2

(

∂.v

d− 1

)2
] (5.53)

and

δvµ=
P λ
µ

d

(

d

4πT

)2
[

− 1

2

(

2d2−5d+4

(d−1)(d−2)

)

(∂.v)v.∂vλ+
1

2

(

3d−4

(d−1)(d−2)

)

∂λ(∂.v)

+
(d−4)

2(d−2)
v.∂(v.∂vλ)−

d

2(d−2)
∂2vλ+(d) v.∂vα∂αvλ−

(d−4)

2(d−2)
∂λvαv.∂v

α

] (5.54)

Plugging (5.53) and (5.54) into (5.46) we obtain our final expression for the boundary stress

tensor expressed in terms of boundary Landau frame temperature and velocity fields

Tµν = p (ηµν + d vµvν)− 2ησµν

+ 2η

(

d

4πT

)

[

(

σλ
µσλν −

σαβσ
αβ

d− 1
Pµν

)

− 2

d− 2

(

ωλ
µωλν +

ωαβω
αβ

d− 1
Pµν

)

− 1

2

(

d

d− 2

)

(

ωλ
µσλν + ωλ

νσλµ

)

+
1

2

(

d− 4

d− 2

)

(v.Dσµν)

]

(5.55)

Where we have

p =
1

16π

(

4πT

d

)d

, η =
1

16π

(

4πT

d

)d−1

, v.Dσµν = Pα
µ P

β
ν v.∂σαβ +

∂.v

d− 1
σµν (5.56)

and the quantities σµν , ωµν , Pµν are constructed from v. As a nontrivial check of the alge-

bra leading up to (5.55) we note that the stress tensor (5.55) is Weyl covariant (see [48, 49]).

Let us now compare the second order hydrodynamical stress tensor (5.55) with the

corresponding object obtained from the fluid gravity map listed in [48–50]. In the current

paper we have worked with a flat boundary metric, and so should set the boundary Weyl
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tensor in the fluid gravity papers listed above to zero. In this case the results of [48–50] are

T
(fg)
µν = p(ηµν+d vµvν)−2ησµν (5.57)

−2ητω

[

v.Dσµν+ωλ
µσλν+ωλ

νσλµ

]

+2η

(

d

4πT

)[

v.Dσµν+σλ
µσλν−

σαβσ
αβ

d−1
Pµν

]

where, τω =

(

d

4πT

)∫ ∞

1

yd−2−1

y(yd−1)
dy=

(

d

4πT

)(

1

2
− π2

3d2
+O(

1

d3
)

)

The quantities p and η in (5.57) were listed in (5.56).

Clearly (5.55) agrees exactly (at finite d) with (5.57) at zero and first order in the

derivative expansion.38 At second order the two stress tensors have the same tensor struc-

tures. The coefficients of individual tensor structures match perfectly at leading order in

the large d limit, but deviate from each other at subleading orders in this expansion.

The ‘flow’ from membrane hydrodynamics to boundary hydrodynamics derived in this

section has some similarities with the analysis of [51]. It might be interesting to explore

this connection in greater detail in the future.

Note that the large D effective theory for AdS black branes is non-relativistic as ob-

served in [23], unlike the improved membrane hydrodynamics considered above — which

is relativistic at finite D.

5.4 Quasinormal modes from membrane stress tensor about uniform planar

membrane in AdS

In the previous subsection we demonstrated that the nonlinear equations that govern the

motion of a membrane in planar AdS space reduce, in the derivative expansion, to the equa-

tions of boundary hydrodynamics. The boundary stress tensor is given in terms of the local

boundary fluid velocity and temperature by a constitutive relation that agrees on the dot

with the finite D fluid gravity constitutive relation at first order in the derivative expansion,

but deviates (at finite D) from fluid gravity at second and higher orders in this expansion.

In this subsection we will explore related physics by performing a related but distinct

computation — we use the membrane equations to compute the spectrum of small fluctu-

ations about an exactly planar membrane in Poincare patch AdS space, and compare our

results with the spectrum of quasinormal modes about the dual black brane in AdS space.

Once again we find that the spectrum computed using our membrane equations perfectly

reproduces black brane quasinormal mode spectrum to leading and first subleading order

in k, but reproduces higher order corrections only in the large D limit.

We consider background spacetime AdSD with λ = 1
L2 = 1

ds2 = −r2dt2 +
dr2

r2
+ r2(dxadxa) (5.58)

Let the planar membrane be located at r = r0. For convenience we choose r0 = 1; it is easy

to reinstate factors of r0 in the final answer. In this section we closely follow the method

38This exact agreement is presumably a consequence of two facts that we have already noted. First that

black brane and membrane thermodynamics agree at finite D, Second that the viscosity to entropy ratio

equals 1
4π

both in fluid gravity and our membrane equations.
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used in [13]; we refer the reader interested in details to that paper and report only key

results.

Consider the membrane configuration

r = 1 + ǫδr(t, a)

u = −(1 + ǫδr)dt+ ǫδua(t, a)dx
a

(5.59)

(the δr dependence in the velocity fluctuation is dictated by the requirement that u2 = −1).

The induced metric on membrane is

ds2 = gµνdx
µdxν = −(1 + 2ǫδr)dt2 + (1 + 2ǫδr)(dxadxa) (5.60)

The projector orthogonal to the fluid velocity is easily evaluated; we find

Pa
b = δab , Pt

t = 0, Pt
a = ǫδua, Pa

t = −ǫδua (5.61)

We have the membrane equation

∇.u = 0

16π Pν
α∇µTµν =

(

K̃ u.∇uν +∇νK̃ − 2∇µσµν

)

Pν
α ≡ EνPν

α

(5.62)

To linear order in fluctuations we find

σtt = 0, σta = 0, σab = ǫ
∂aδub + ∂bδua

2
+ ǫ∂tδrδab

K̃ = (D − 1) + 2ǫ
(

∂2
t δr − ∂2δr

)

+

(

D − 1

D − 2

)

ǫ∂2δr

u.∇ut = 0, u.∇ua = ǫ∂tδua + ǫ∂aδr

(5.63)

Using these results the membrane equations (5.62) simplify to

∂aδu
a = −(D − 2)∂tδr

Va ≡ (D − 1)(∂tδua + ∂aδr) + 2(∂a∂
2
t − ∂a∂

2δr) +

(

D − 1

D − 2

)

∂a∂
2δr

−
(

∂2δua − (D − 2)∂a∂tδr
)

− 2∂a∂tδr = 0

(5.64)

Inserting the plane wave expansion

δr = aeik.x−iωt, δua = bae
ik.x−iωt (5.65)

into (5.64), we find that our equations have solutions if and only if ω obeys either the sound

wave dispersion relation (recall d = D − 1 and k =
√
k.k)

ωs = ±
(

k√
d− 1

)

[

√

d2(d− 1)2 + 4(d− 1)2k2 + 2(d− 2)k4

d(d− 1) + 2k2

]

− i

[

(d− 2)k2

d(d− 1) + 2k2

]

(5.66)
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or the shear wave dispersion relation

ωv = −i
k2

d
(5.67)

Note, in particular, that (5.67) takes an incredibly simple purely imaginary form.

In order to compare with the spectrum of quasinormal modes about black branes, we

expand these results in power series in k. We get

ωv = −i
k2

d
+O(k3), ωs = ±

(

k√
d− 1

)

− i

[

(d− 2)k2

d(d− 1)

]

+O(k3) (5.68)

The results (5.68) exactly (i.e. at arbitrary values of D and not merely at large D) match

the spectrum of the lightest quasinormal modes expanded around a black brane to the

respective orders reported in the derivative expansion [15] (see equation (6.1) and (6.2)

in that paper); as might have been anticipated from the fact that our membrane exactly

reproduces the fluid gravity stress tensor at zero and first order in derivatives even at finite

D (see above). It is also, however, easily verified that (5.66) and (5.67) do not match the

exact finite D gravitational results at higher orders in k. (however the match persists in

the large D limit). This could also have been anticipated from the fact that our membrane

accurately reproduces the second order terms in the hydrodynamical stress tensor only at

large D (see above).

Note that the paper [15] directly computed the black brane quasi normal modes within

gravity in an expansion in largeD. They obtained results very similar to our (5.68); however

the effective coefficient functions of the various terms in (5.68) were obtained in [15] order

by order in an expansion in 1
D (upto a particular order see (4.23), (4.24), (4.25) of that

paper). In contrast our membrane equations reproduces the reported coefficients exactly.

We find it very encouraging that the simple membrane equations of this paper repro-

duce some gravitational results exactly as a function of D. It appears that the simple

membrane equations presented in this paper (whose form was dictated by physical consis-

tency requirements) resum an infinite class of corrections of other approaches, and so do

a particularly good job of reproducing gravitational results to higher accuracy than might

have been reasonable to expect.

6 Discussion

In this paper we have made four main points.

• At least at leading order, it is possible to ‘improve’ the largeD perturbative expansion

of black hole physics presented in earlier work. The improved leading order equations

are chosen so that they agree with earlier derived results at leading order in the

large D limit but also define consistent probe membrane dynamics at finite D .

Even though our improved equations define consistent probe dynamics at finite D,

they do not exactly reproduce black hole physics at finite D in generic situations,

even though they appear to work surprisingly well in some equilibrium and near

equilibrium configurations.
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• The velocity field in stationary solutions of the improved membrane equations is

always proportional to a killing vector of the background spacetime in which the

membrane propagates. The membrane shape in such configurations obeys a differen-

tial equation that follows from extremizing a simple action for the membrane shape.

Onshell this action reduces to the thermodynamical membrane partition function.

• The thermodynamics of static spherical membranes in flat space and global AdS

space, obtained via this procedure, agrees exactly with that of their dual black holes

even at finite D.

• The motion of a membrane in Poincare Patch AdS space sources linearized gravita-

tional fluctuations and so a boundary stress tensor. In the long wavelength limit the

resultant boundary stress tensor is a hydrodynamical stress tensor for a conformal

boundary fluid. At zero and first order in the derivative expansion, this stress tensor

exactly reproduces the results of the fluid gravity correspondence even at finite D.

At second order in derivatives, the fluid dual to improved probe membrane agrees

with the second order fluid gravity stress tensor at large D, but deviates from these

exact results at finite D.

Each of the points listed above throws up several interesting questions and directions for

future research. One immediate question is whether the improvement of the leading large

D membrane equations, presented in this paper can be systematically continued order by

order, in large D perturbation theory. More precisely the question is the following. Given

any positive integer n, can we always (in principle) find an improved nth order membrane

stress tensor with the following two properties. First, that the expansion of our improved

stress tensor to nth order in 1
D agrees with the ‘naive’ nth order stress tensor obtained from

the naive large D expansion (i.e. by following the algorithm presented in [10, 12]). Second,

that our improved nth order stress tensor autonomously defines consistent probe dynamics

at finite D.39 We suspect that the answer to this question is in the affirmative, and that

the techniques developed in [52] and related subsequent work [53–68] will prove useful in

demonstrating this issue. In particular, a device adopted in several of the papers [54–

68] — namely the use of ‘diffeomorphisms’ as the basic degrees of freedom to describe

hydrodynamics — may have a very natural generalization to the context of this paper, as

a single bulk diffeomorphisms (starting from a prescribed membrane world volume) could

generate both the most general membrane shape as well as the most general membrane

velocity field. We hope to return to these questions in the future.40

There are also several interesting open questions relating to the action that governs

equilibrium membrane configurations. First, as we have explained in the main text, we

suspect that the very simple general structure of this action — namely that it is given by

the sum of a Gibbons Hawking term and the action for a stationary fluid on the membrane

— persists to every order in the 1
D expansion. It would be useful to explicitly verify this

39As a first calculational check it would be useful to obtain explicit results for the improved large D

expansion at first subleading order in 1
D
.

40We thank M. Rangamani for discussions on this topic.
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expectation, atleast at first subleading order in 1
D . Second, it is natural to wonder whether

this structure of the action — that it is the sum of a Gibbons Hawking like term plus a

fluid action — generalizes to the study of an arbitrary higher derivative diffeomorphically

invariant theory of gravity. Finally, it may be interesting to investigate whether there is a

sense in which the offshell membrane action presented in this paper can be obtained from

an offshell gravitational action for an appropriate dual set of configurations.

In appendix D we have noted that the exact finite D agreement between spherical

membranes and their dual Schwarzschild black holes appears not to carry over to rotat-

ing black holes. It may be possible to construct a further improved stress tensor (and

correspondingly, improved membrane equations of motion and actions) whose rotating

membrane solutions exactly reproduce the thermodynamics of arbitrary Myers Perry black

holes at finite D. In this context it is encouraging to recall that, in the context of the fluid

gravity correspondence, it was possible reproduce the exact thermodynamics of AdS Kerr

black holes using only the second order corrected fluid stress tensor [48].

Finally, we find it absolutely fascinating that even the leading order large D membrane

equations are equivalent to a set of equations of boundary hydrodynamics that reproduce

the correct fluid constitutive relations at zero and first order in derivatives even at finite D,

but also automatically resum a very particular infinite class of higher derivative corrections

to the Navier Stokes equations — namely those that survive at large D. It would be inter-

esting to compare this resummation with other partial resummations of the hydrodynamical

derivative expansion investigated in the hydrodynamics literature (see e.g. [69–73]). We

also note that some higher derivative corrections to the Navier Stokes equations — like the

Israel Stewart correction — turn the parabolic Navier Stokes PDEs into hyperbolic PDEs.

It would be interesting to investigate whether the corrections induced by our membrane

also have this property (i.e. whether the membrane equations are hyperbolic PDEs).

We re-emphasize that our improved membrane equations define a generalization of

the Navier Stokes equations that can be used to study the dynamics of thermal systems

outside the validity of hydrodynamics (i.e. at length scales shorter than thermal length

scales) atleast in the large D limit. We have already pointed out that the membrane

picture suggests the possibility of qualitatively new phenomena — like membrane folds —

that cannot be captured by the variables of hydrodynamics.

It would be useful to generalize the discussion of this paper to the study of improved

equations, the partition function and hydrodynamics of charged membranes (see [9, 12]).

Apart from all these issues of principle, it would also be interesting to put the formulae

presented in this paper to practical use. It would be interesting to use the improved mem-

brane equations presented in this paper as the starting point for a ‘rederivation’ of the equa-

tions of black fold dynamics41 and to compare our results with the exact gravitational re-

sults [74–77]. Such a discussion could proceed along the lines of our ‘rederivation’ of bound-

ary hydrodynamics from our improved membrane equations, presented earlier in this paper.

It is already known that the black hole membranes have a ‘Gregory-Laflamme like’

instability at large D. At large D, however, this transition is of second order and ends

41We thank Mukund Rangamani for a discussion on this point.
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up in a wiggly string. It would be interesting to re-investigate Gregory Laflamme physics

using the improved membrane equations presented in this paper. As our probe membranes

define consistent dynamics even at finite D, it is meaningful to ask whether their Gregory

Laflamme like transition switches from second to first order below a critical value of D

(recall this is the case for actual black strings; the critical value of D is 13.5 [18]). Assuming

this is the case as a related analysis suggests [18], it would be interesting to investigate

whether the equations of membrane hydrodynamics presented in this paper capture the

fascinating dynamics of the ‘self-similar cascade and pinch off’ observed in [78]. It is far from

clear that this will turn out to be the case.42 Nonetheless we find the possibility tantalizing,

as it holds out the promise of relating the mysterious process of horizon bifurcation to the

more mundane process of hydrodynamical droplet formation in a semi quantitative manner.

Finally it is possible that the formalism developed in this paper can be combined with

that of [52–68] to establish a second law of thermodynamics for dynamical event horizons

in higher derivative theories of gravity. We hope to return to this point in the future.
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A Shape variations

In this appendix, we demonstrate the results (3.3). That is, we calculate variations of

various membrane quantities with respect to change in shape of membrane. We find it

useful to use the Gaussian normal coordinates for this purpose. The form of the spacetime

metric in Gaussian normal coordinates is

ds2 = GMNdxMdxN = dz2 + gµν(z, x
µ)dxµdxν (A.1)

and we take the membrane surface at z = 0. The induced metric on the membrane

worldvolume is gµν(0, x
µ). We use overhead bar for the quantities defined in spacetime

metric. Unbarred quantities are defined in induced metric on membrane. The normal to

membrane is n = dz. The Christoffel symbols for the spacetime metric (A.1) are

Γ̄M
zz = 0, Γ̄z

zM = 0, Γ̄z
µν = −1

2
∂zgµν , Γ̄µ

zν =
1

2
gµα∂zgαν , Γ̄µ

νρ = Γµ
νρ (A.2)

42We thank R. Emparan for emphasizing this to us.
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∇̄MnN and P̄M
N ≡ δMN − nMnN evaluate to

∇̄znz = 0, ∇̄znµ = 0, ∇̄µnz = 0, ∇̄µnν =
1

2
∂zgµν

P̄ z
z = P̄ z

µ = P̄µ
z = 0, P̄µ

ν = δµν

(A.3)

Thus the Extrinsic curvature of the membrane evaluates to

Kµν =
1

2
∂zgµν |z=0, Kµν = −1

2
∂zg

µν |z=0 (A.4)

Now we consider a new membrane surface z = δz(xi) (Note that δz is not a function of t, so

xi are rest of the spacial coordinates). We work in the linear order in shape perturbations.

Using (A.4), the change in the induced metric on the membrane can be found to be

gµν(z = δz, xµ) = gµν(z = 0, xµ) + ∂zgµν(z, x
µ)|z=0 δz

∴ δgµν = 2Kµνδz
(A.5)

and for the inverse metric it is

δgµν = −2Kµνδz (A.6)

Using (A.5) we get the variation

δ
√−g =

√−g K δz (A.7)

The normal to new surface is n = dz − ∂µδz(x
i)dxµ. For the new surface, ∇̄MnN and

P̄M
N ≡ δMN −nMnN evaluate to (with ∇µ denotes the covariant derivative on the membrane

worldvolume)

∇̄znz = 0, ∇̄znµ = ∇̄µnz =
1

2
∇ρδz ∂zgµρ, ∇̄µnν =

1

2
∂zgµν −∇µ∇νδz (A.8)

P̄ z
z = 0, P̄ z

µ = ∇µδz, P̄µ
z = ∇µδz, P̄µ

ν = δµν

Using (A.4) and (A.8), the Extrinsic curvature for the new surface is found to be

Kµν |z=δz =
1

2
∂zgµν |z=δz −∇µ∇νδz = −∇µ∇νδz +Kµν |z=0 +

1

2
∂2
zgµν |z=0 δz (A.9)

Hence we get

δKµν = −∇µ∇νδz +
1

2
∂2
zgµνδz (A.10)

Ricci tensor R̄MN in spacetime evaluates to

R̄zz = −1

2
gµν∂2

zgµν −
1

4
∂zgµν∂zg

µν

R̄zµ = ∇νΓ̄
ν
zµ −∇µΓ̄

ν
νz

R̄µν = Rµν −
1

2
∂2
zgµν +

1

2
∂zgµαg

αβ∂zgβν −
1

4
∂zgµν(g

αβ∂zgαβ)

= Rµν −
1

2
∂2
zgµν + 2KµαK

α
ν −KKµν

(A.11)
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Because the spacetime metric solves Einstein equations,

R̄ = −D(D − 1)λ, R̄MN = −(D − 1)λGMN (A.12)

Thus using (A.12) and (A.11) in (A.10) we get

δKµν = (Rµν + (D − 1)λGµν + 2KµαK
α
ν −KKµν) δz −∇µ∇νδz (A.13)

Using (A.6), (A.13) and Gauss’s identity, R = K2 −KµνK
µν − (D − 1)(D − 2)λ we get

δK = δKµνg
µν +Kµνδg

µν = (−KµνK
µν + (D − 1)λ) δz −∇2δz (A.14)

Using (A.7) and (A.14) we get

δ(
√−gK) =

√−g
(

K2 −KµνK
µν + (D − 1)λ−∇2

)

δz (A.15)

Notice that the term
√−g∇2δz in (A.15) is total derivative.

The variation of the volume term can be seen to be

δ

[

−(D − 1)λ

∫

V

√
−G

]

= −(D − 1)λ

∫

M

√−g δz (A.16)

The variation of γ becomes43 (Recall γ = 1√
−k.k

)

δγ = (∂zγ) δz = γ(u.K.u)δz (A.18)

Using (A.18) and (A.7) we get

δ(
√−g γ) =

√−g γ(K + u.K.u) δz (A.19)

This completes the demonstration of (3.3).

B QNM for spherical membrane in flat spacetime

In this section, we find the quasinormal mode spectrum for linearized fluctuations about

a spherical membrane in arbitrary D dimensional flat spacetime background. Since the

calculation is very similar to done e.g. in [9, 13] we present only key steps. For details, [9, 13]

can be referred. We consider the background spacetime metric

ds2ST = −dt2 + dr2 + r2dΩ2
D−2 (B.1)

43This can be seen from the following manipulations

∂zγ =
1

2
γ3n.∇(kMkM ) = γ3kMn.∇kM = −γ3kMnN∇MkN = γ3kMkN∇MnN = γ(u.K.u) (A.17)

Where we have used the fact that there is a Killing vector kM in spacetime whose pullback on the membrane

is kµ (see section 1.2). In the third step, we use the Killing equation. In the fourth and last step we use

the fact that kMnM = 0 on the membrane.
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We consider the shape and velocity fluctuations about a uniform spherical membrane, so

we consider the shape and the velocity field of the following form

r = 1 + ǫδr(t, θa), u = −dt+ ǫδua(t, θ
a)dθa (B.2)

We will always work in linear order in ǫ. Putting (B.2) in (B.1) we get the induced metric

on the membrane

ds2 = −dt2 + (1 + 2ǫδr)dΩ2
D−2 (B.3)

We have the membrane equations

∇.u = 0

16π Pν
α∇µTµν =

(

K̃ u.∇uν +∇νK̃ − 2∇µσµν

)

Pν
α ≡ EνPν

α

(B.4)

We use the notation that Ωab denotes the metric on the unit sphere, ∇a denotes the

covariant derivative on the unit sphere, and ∇2 ≡ ∇a∇a. To linear order in fluctuations

we calculate the quantities present in (B.4)

Pt
t = 0, Pa

t = −ǫδua, Pt
a = ǫδua, Pa

b = δab

σtt = 0, σta = 0, σab =
ǫ

2

(

∇aδub +∇bδua

)

+ ǫ∂tδrΩab

K̃ = (D − 3)− (D − 3)ǫδr + 2ǫ∂2
t δr − ǫ

(

D − 3

D − 2

)

∇2δr

u.∇ut = 0, u.∇ua = ǫ∂tδua

(B.5)

Hence the membrane equations (B.4) simplify to

∇aδua + (D − 2)∂tδr = 0

Va ≡ −(D − 3)∇aδr + 2∂2
t∇aδr −

(

D − 3

D − 2

)

∇a∇2δr + (D − 3)δtδua

−∇b∇aδub −∇2δua − 2∂t∇aδr = 0

(B.6)

We write the velocity field as

δua = δva +∇aΦ, with ∇aδva = 0 (B.7)

Putting (B.7) into the first equation in (B.6) we get

∇2Φ = −(D − 2)∂tδr (B.8)

We expand the fluctuations in the Spherical Harmonic basis as

δr =
∑

l,m

al,mYl,me−iωs
l t, δva =

∑

l,m

bl,mY l,m
a e−iωv

l t (B.9)

Recall that for the Spherical Harmonics

∇2Yl,m = −l(D − 3 + l)Yl,m, ∇2Y l,m
a = − (−l(D − 3 + l)− 1)Y l,m

a (B.10)
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We take the divergence of the second equation in (B.6) i.e. ∇aVa. We then eliminate the

terms containing Φ using (B.8). We put the basis (B.9) and use (B.10), to get the scalar

QNM frequencies, which are found to be

ωs
l = ±

√
−b2 − 4ac

2a
− i

b

2a
(B.11)

where,

a = l
(

l +D − 3
)

+

(

D − 3
)(

D − 2
)

2

b =
(

D − 3
)

[

l
(

l +D − 3
)

−
(

D − 2
)

]

c = l
(

l +D − 3
)

(

D − 3

2

)[

1− l
(

l +D − 3
)

D − 2

]

(B.12)

Using the fact that δr solves the equation ∇aVa = 0 the second equation in (B.6) reduces

to the equation only for the variable δva. Putting (B.9) into this equation and using (B.10)

we find the vector QNM frequencies

ω
(v)
l = −i

[

l
(

l +D − 3
)

− 1

D − 3
− 1

]

(B.13)

Expanding the answers (B.11) and (B.13) in a power series in 1/D, we get

ωs
l = ±

√
l − 1− i(l − 1)± l

√
l − 1(2l − 3)

2D
− i

l(l − 1)

D
+O(D−2)

ωv
l = −i(l − 1)− i(l2 − 1)

D
+O(D−2)

(B.14)

Whereas the actual answers found from gravity analysis in [4] and from Membrane

paradigm approach in [10] are

ωs
l = ±

√
l − 1− i(l − 1)±

√
l − 1(3l − 4)

2D
− i

(l − 1)(l − 2)

D
+O(D−2)

ωv
l = −i(l − 1)− i(l − 1)2

D
+O(D−2)

(B.15)

Note that the answers of (B.14) and (B.15) match at leading order but differ at the sub-

leading orders in 1/D.

C Membrane energy and bulk Hamiltonian

In the main text we have demonstrated that the first two terms in the action (3.8) have a

simple bulk interpretation — they are equal to half the action of the bulk region enclosed by

the membrane. We will now present an alternative — but equivalent — reinterpretation of

the same two terms in (3.8) in terms of the Hamiltonian of the region of spacetime enclosed

by the membrane.
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In order to do this we first rewrite the stationary spacetime (2.13) in the standard

ADM form

ds2ST = GMNdXMdXN = −N2dt2 + qab(dX
a +Nadt)(dXb +N bdt) (C.1)

where, the various metric coefficients are related to (2.13) by the relations

qabN
b = −e2ΣAa, −N2 + qabN

aN b = −e2Σ, qab = −e2ΣAaAb +Wab (C.2)

Notice that

kM = (∂t)
M , qM = −N(dt)M , kM = NqM +NaeMa with eMa =

(

∂XM

∂Xa

)

t

(C.3)

where kM is the killing vector field as usual, qM is the unit normalized normal vector

orthogonal to slices of constant time t. As is well known, the offshell action of a region

of spacetime can be rewritten in terms of the Hamiltonian of general relativity (see e.g.

section 4.2 of [79])

SG =
1

16π

[ ∫

V

√
−G (R̄− 2Λ) dDX + 2

∫

M

√−g K dD−1x

+ 2

∫

Σt1

√
q Cab d

D−1X − 2

∫

Σt2

√
q Cab d

D−1X

]

=

∫

dt

(∫

Σt

pabq̇ab −HG

)

where pab ≡
√
q

16π
(Cab − Cqab), q̇ab ≡ Ltqab = (LkGMN )eMa eNb

(C.4)

In (C.4), Σt is the spacelike slice of spacetime at time t. Cab, C are the extrinsic curvature

and its trace of the spacelike slice of the spacetime as embedded in the spacetime. Σt2 , Σt1

are respectively the initial and final spacelike slices. Focusing on the special case of the

stationary solutions of interest to us we have

q̇ab = 0

Moreover, onshell, the Hamiltonian of spacetime is given by the ADM formula (see Equation

(4.80) of [79])

HG = − 1

8π

∫

St

√−g

(

K + qM∇MnNqN − Na

N
(Cab − Cqab)n

b

)

(C.5)

In the special case at hand (C.5) can be further simplified.

Naqabn
b =

(

kM −NqM
)

GMNnN = 0

NaCabn
b =

(

kM −NqM
)

∇MqNnN = −kMKM
NqN +NqM∇MnNqN

= NKt
t +NqM∇MnNqN

(C.6)

Hence, we get

HG = − 1

8π

∫

St

√−g (K −Kt
t ) (C.7)
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Where St is the boundary of the Σt, that is the timeslice of the membrane worldvolume at

time t.

It follows that the first two terms in the action (3.8) are equal both to the ‘length of

time’ (equal to β in Euclidean space) times

1. Half of the General Relativistic Hamiltonian (i.e. ADM energy) of the region of

spacetime enclosed by the membrane

2. The actual energy E of the membrane

The discussion in this appendix provides an alternate derivation of the equation (1.27).

D Rotating membranes in 4 dimensions

It would be interesting to find the exact solutions corresponding to rotating membrane

solutions at all values of D. The problem we need to solve is the following. Specializing to

the case of even D, consider flat space in the coordinates

ds2 = −dt2 + dz2 +

[D/2]
∑

i=1

dr2i + r2i dφ
2
i (D.1)

Consider the killing vector

k = ∂t +
∑

i

ωi∂φi
(D.2)

With this choice of k we need to find the membrane shape that obeys the equation (1.20).44

We postpone the general consideration of this problem to future work. For the present,

we focus our attention on a simple special example, namely D = 4. In this case the most

general velocity field is characterized by a single rotational velocity ω, and the construction

of the membrane shape — dual to the Kerr black hole — turns out to be particularly easy.

The trick turns out to be a good choice of coordinates; in this case the zero mass Boyer-

Lindquist coordinates.

As our starting point consider the flat space metric in Minkowski coordinates

ds2 = −dt2 + dz2 + dx2 + dy2 (D.3)

Then perform the coordinate change to the zero mass Boyer-Lindquist coordinates

z = r cos θ, x =
√

r2 + a2 sin θ cosφ, y =
√

r2 + a2 sin θ sinφ (D.4)

Under which (D.3) becomes

ds2 = GMNdxMdxN = −dt2 +
r2 + a2 cos2 θ

r2 + a2
dr2 +

(

r2 + a2 cos2 θ
)

dθ2 + (r2 + a2) sin2 θdφ2

(D.5)

44For other studies of reliable fluid descriptions of localized black holes see e.g. [43, 45, 80, 81].
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Under this coordinate change the killing vector (D.2) retains its form

k = ∂t + ω∂φ (D.6)

We will find it useful to define a new constant a of dimension length by the equation

ω =
a

r2H + a2
(D.7)

Working in the coordinate system (D.4) we will now demonstrate that the surface

r = rH (D.8)

(together with the choice of k listed in (D.6) and (D.7)) solve (1.20) with

4πT0 =
rH

a2 + r2H
(D.9)

In order to see this we note that the velocity field corresponding to the killing vec-

tor (D.7), (D.6) is given by

uM = γkM , γ =
1

√

−kMGMNkN
=

(

1− a2 sin2 θ

r2H + a2

)−1/2

(D.10)

For the surface (D.8) we find

K =
rH

√

r2H + a2

2r2H + a2(1 + cos2 θ)
(

r2H + a2 cos2 θ
)3/2

KMNKMN =
r2H

r2H + a2

(

r2H + a2
)2

+
(

r2H + a2 cos2 θ
)2

(

r2H + a2 cos2 θ
)3

u.K.u =
rH

√

r2H + a2

a2 sin2 θ
(

r2H + a2 cos2 θ
)3/2

(D.11)

It follows that
K̃
γ

=
K2 −KMNKMN

γ(K + u.K.u)
=

rH
r2H + a2

= 4πT0 (D.12)

demonstrating that the surface r = rH solves the equations (1.20) with T0 given in (D.9).

Let us emphasize that the quantities γ, K, KMN , u.K.u — which went into the l.h.s.

of (D.12) — all depend on θ in a nontrivial manner. Interestingly however, the θ depen-

dences of the combination of these quantities that appears in K̃ cancel out, allowing the

configuration r = rH to solve (1.20).

Inverting (D.9) to solve for the parameter rH in terms of a and T0 we find

rH = m±
√

m2 − a2, where m ≡ 1

8πT0
(D.13)

It is not difficult to determine the thermodynamical charges of our solution. The

entropy is given by

Sent =

∫

sM

√
h qµJ

µ
S =

1

4

∫

sM

√−g γ = π(r2H + a2) (D.14)
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Where, sM denotes integration over the spacelike slice of the membrane. h is the deter-

minant of the metric on this slice. g is the determinant of the metric on the membrane

worldvolume.

The mass of the membrane is given by

M = −
∫

sM

√
h qµTµν(∂t)

ν =
−1

16π

∫

sM

√
h qµ(K̃Pµν +Kµν −Kgµν)(∂t)

ν

=
r2H + a2

2a
tan−1

(

a

rH

) (D.15)

and the angular momentum

J =

∫

sM

√
h qµTµν(∂φ)

ν =
1

16π

∫

sM

√
h qµ(K̃Pµν +Kµν −Kgµν)(∂φ)

ν

=
r2H + a2

4a

[

−rH +
r2H + a2

a
tan−1

(

a

rH

)] (D.16)

It is easily verified that our results obey the first law of thermodynamics

dM = T0dSent + ωdJ (D.17)

The ‘energy’ of the membrane — i.e. conserved charge E = M −ωJ of membrane dual

to the killing vector k is given by

E = −
∫

sM

√
h qµTµνk

ν =
−1

16π

∫

sM

√
h qµ(Kµν −Kgµν)k

ν

=
rH
4

[

1 +

(

a

rH
+

rH
a

)

tan−1

(

a

rH

)] (D.18)

Provided we restrict attention to those variations that keep ω fixed we have (from (D.17))

dE = T0dSent (D.19)

in agreement with the general analysis presented earlier in this paper (recall that it was

assumed — for the purpose of that analysis — that the killing vector kµ — and hence ω

of this subsection — is kept constant while taking all variations).

The Partition function for the rotating membrane in 4D flat spacetime, written in

terms of chemical potentials becomes

lnZ =
−1

4T0ω
tan−1

(

ω

4πT0

)

(D.20)

Whereas, the partition function for actual Kerr black hole (see [82]) is (with M as the mass

of black hole)

lnZ = − M

2T0
= − 1

8πT 2
0 + 4T0

√

4π2T 2
0 + ω2

(D.21)

Note that for ω → 0 we have both the partition functions reduce to − 1
16πT 2

0
in agreement

with (4.12) and (4.11) at D = 4. It is easy to check that the partition functions (D.20)

and (D.21) satisfy the thermodynamic relations

J = T0
∂ lnZ

∂ω
, −T 2

0

∂ lnZ

∂T0
= −M + ωJ, Sent = lnZ + T0

∂ lnZ

∂T0
(D.22)
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It is also easy to check that the thermodynamical charges that we have computed for our

4D rotating membrane above obey the ‘Smarr relation’

M = 2ωJ + 2T0Sent (D.23)

(of course the exact thermodynamical charges for the Kerr black hole — see below — also

obey (D.23)).

It is natural to interpret the rotating membrane solution presented in this paper as

the dual to the Kerr black hole solution given, for instance, pages (221, 222) of [79] with

electromagnetic charge Q of [79] set to zero and the parameter r+ of [79] identified with rH
of this subsection and a andM of [79] identified with a andM of this subsection. With these

identifications, the entropy of the Kerr black hole agrees exactly with the (D.14). However

the mass of the Kerr black hole does not agree exactly with (D.15); indeed we find the

correct gravitational results for the Kerr black hole mass only once we make the replacement

1

a
tan−1 a

rH
→ 1

rH
.

This replacement is exact in the limit a → 0, and so at ω = 0. However the two expressions

above differ already at O(ω2).

The match between our membrane’s angular momentum and the angular momentum

of the Kerr black hole is even worse. The equation (D.16) reduces to the formula for half

of the angular momentum of the Kerr black hole under the replacement

1

a
tan−1 a

rH
→ 1

rH

The surprise here is the additional factor of half which means that the membrane descrip-

tion fails to quantitatively reproduce the even the leading order — order ω.45

Of course the discrepancies of this subsection all occur at D = 4 — which is as far from

the large D limit as we can be. Consequently the thermodynamical mismatches described

above do not contradict any clearly established expectation. Nonetheless — given the

fact that our membrane worked so remarkably well for static black holes, we find them

disappointing. Given the fact that the second order fluid gravity correspondence was able

to exactly reproduce the thermodynamics of Kerr-AdS black holes, it seems likely to us

that the membrane stress tensor (1.7), will turn out to admit an additional improvement

term that is irrelevant at large D and in static situations, but will allow us to reproduce

the thermodynamics of rotating black hole solutions exactly at finite D. We postpone the

study of this possibility to future work.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

45Recall that the energy and angular momentum enter thermodynamical relations in the combination

E−ωJ . The mismatch of J at order ω is, therefore, connected to the mismatch of E at order ω2 noted above.
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