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Abstract

Action languages serve for describing changes that are
caused by performing actions. We define a new action
language g, based on the theory of causal explanation
proposed recently by McCain and Turner, and illus-
trate its expressive power by applying it to a number
of examples. The mathematical results presented in
the paper relate C to the Baral--Gelfond theory of
concurrent actions.

Introduction
Representing properties of actions has been the subject
of many papers and two recent books (Sandewal11995),
(Shanahan 1997). One direction of work makes use
of "action languages," such as ,4 (Gelfond & Lifschitz
1993) and its dialects. An action language serves for
describing the effects of actions on fluents. The mean-
ing of a set of propositions in an action language can
be represented by a "transition diagram."

In this paper we define a new action language ¢,
based on the theory of causal explanation proposed in
(McCain & Turner 1997) and extended in (Lifschitz
1997a). The main idea of this theory (Geffner 1990) 
to distinguish between the claim that a formula is true
and the stronger claim that there is a cause for it to be
true. This idea leads to a semantics for "causal rules"
of the form

F 4- a (1)
where F and G axe formulas of classical logic. This
rule expresses that there is a cause for F if G is true.

The distinction between being true and being caused
is used here to define the syntax and semantics of a lan-
guage for representing transition diagrams. We use the
new language g to formalize a number of examples of
reasoning about action, relate g to causal logic, and
compare it with .4 and with the extension of ~4 pro-
posed by Baxal and Gelfond [1997] for describing the
concurrent execution of actions.

In this preliminary report, discussion is limited to
the propositional fragment of C, in which all fluents
axe truth-valued, and neither fluents nor actions are
allowed to have parameters. The full language is de-
scribed in a forthcoming paper.

Copyright 1998, American Association for Artificial In-
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Language C

Syntax and Semantics
A propositional signature is a set of propositional
atoms. An interpretation of a propositional signature

is a truth-valued function defined on a.
Consider a propositional signature a partitioned into

the fluent symbols ~r~ and the action symbols aact. An
action is an interpretation of aact. We will identify an
action symbol A with the action that assigns the value
t to A and the value f to all other action symbols.
Such actions will be called elementary. An action can
be viewed as a set of elementary actions--as the set of
all action symbols to which it assigns t. Intuitively, to
execute an action a means to execute concurrently all
elementary actions that belong to a.

There are two kinds of propositions in C: static laws
of the form

caused F if G (2)

and dynamic laws of the form

caused F if G after H, (3)

where F, G, H axe formulas of a such that F and G do
not contain action symbols. In a proposition of either
kind, the formula F will be called its head.

An action description is a set of propositions.
Consider an action description D. A state is an in-

terpretation of a~ that satisfies G D F for every static
law (2) in D. tr ansition isanytrip le (s, a, s’) wher
s, st are states and a is an action; s is the initialstate of
the transition, and # is its resulting state. A formula
F is caused in a transition (s, a, t) if i t i s

¯ the head of a static law (2) from D such that t
satisfies G, or

¯ the head of a dynamic law (3) from D such that 
satisfies G and s U a satisfies H.

A transition (s, a, #) is causally explained according to
D if its resulting state # is the only interpretation of
afl that satisfies all formulas caused in this transition.

The transition diagram represented by an action de-
scription D is the directed graph which has the states
of D as nodes, and which includes an edge from s to st
labeled a for every transition (s, a, #) that is causally
explained according to D.
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Two abbreviations are useful. A dynamic law of the
form1

caused F if True after H

will be written as

caused F after H.

Such propositions can be used to describe a direct effect
of an elementary action. In this case F is the formula
that is made true by executing this action (no matter
what other elementary actions are performed concur-
rently), and H is the conjunction of the elementary
action with the preconditions for its effect. Second, a
dynamic law of the form

caused F if F after F

will be written as

inertial F.

Such propositions can be used to express the common-
sense law of inertia understood as in (McCain & ~rner
1997): if F has remained true then there is a cause for
this.

We will combine a group of propositions

inertial F1, inertial F2,...

into
inertial F1, F2 ....

Example

Let ~r~ = {P, Q}, ~act = {A}, and let D consist of the
propositions

inertial P, -P, Q, -~Q,
caused P after Q A A. (4)

The second line of (4) tells us that P is made true 
the execution of A if the precondition Q is satisfied (as,
for instance, in the familiar shooting example which
corresponds to Dead as P, Loaded as Q, and Shoot as
A).

According to the definitions above, (4) is shorthand
for

caused P if P after P,
caused -~P if -~P after -~P,
caused Q if Q after Q, (5)
caused -~Q if -~Q after ~Q,
caused P if True after Q A A.

In this action description, there are 4 states (PQ, PQ,
pQ, p Q)2 and 2 actions (A and A). Consequently
there are 4 x 2 × 4 = 32 transitions. Out of these,
8 transitions are causally explained: (PQ, A, PQ) and
the transitions of the form (s, a, s) where s # PQ or
a#A.

1True stands for False D False, where False is a 0-
place connective assumed to be available in the language of
propositional logic.

2We represent a propositional interpretation by listing
the literals that are satisfied by it. L is the literal comple-
mentary to L.

A

[_5
A,A A,A

Figure 1: Transition diagram for action description (4).

Figure 1 shows the corresponding transition dia-
gram. We can see from it that each of the actions
A, A can be executed in any state in exactly one way.

To check that the transition (PQ, A, PQI is causally
explained, note that the formulas caused in this transi-
tion are the heads Q, P of the 3rd and 5th propositions
in (5), and that the resulting state PQ of the transition
is the only interpretation that satisfies both heads.

As another illustration of the definition, let us verify
that (PQ, A, PQ) is not causally explained. The only
formula caused in this transition is the head Q of the
3rd proposition in (5). It is satisfied by more than one
interpretation.

The mathematical theory presented in the next sec-
tion makes it easier to compute the causally explained
transitions in examples like this.

Relation to A
"Effect propositions" of the language A from (Gelfond
& Lifschitz 1993) are essentially part of the new lan-
guage C. They correspond to dynamic laws of the form

caused L after F A A (6)

where L is a literal, F a formula that does not contain
action symbols, and A an action symbol. Propositions
of this form will be called A-propositions.

An action description D is an A-description if it is
the union of the set of propositions

inertial P, -~P

for all fluent symbols P with a set of A-propositions.
For instance, (4) is an A-description. Proposition 1 be-
low shows that the transitions causally explained by an
A-description are characterized by the semantics that
is given to effect propositions in the definition of A.

To state this theorem, we need the following defi-
nitions. Let D be an A-description. For any state s,
action a and literal L of the fluent signature, we say
that executing a in s causes L if D includes a dynamic
law (6) with the head L such that a U s satisfies F A 
A transition (s, a, I} i s an A-transit/on for Dif sI sat-
isfies every literal L such that

¯ executing a in s causes L, or

¯ executing a in s does not cause L, and s satisfies L.



Proposition 1 For any A-description D, a transition
is an A-transition for D iff it is causally explained ac-
cording to D.

Note that this characterization is applicable to a
transition (s, a, s’> even when a is not elementary, al-
though such transitions are not covered by the seman-
tics of ,4.

Computing Causally Explained
Transitions

According to (Lifschitz 1997a), cansal th eory is a
finite set of rules (1), with some of the nonlogical con-
stants of the underlying language designated as ex-
plainable. In this paper we only need the special case
when the language is propositional.

The semantics of causal theories is defined in
(Lifschitz 1997a) by a translation that turns these the-
ories into formulas of classical logic. A model of a
causal theory T is an interpretation that satisfies the
translation of T. A theorem of T is a formula that is
entailed by the translation of T.

The formula representing T in classical logic is
stronger than the conjunction of the material impli-
cations G D F for all rules (1) of T; it contains 
additional conjunctive term which makes the transla-
tion nonmonotonic (and which is similar in this sense
to the minimality condition in the definition of circum-
scription). Details can be found in (Lifschitz 1997a);
it is not necessary to know them to understand the
computational procedure described below.

In the first of the next two subsections we define, for
any positive integer n, a translation ct,~ that turns any
finite action description D into a causal theory. The
models of ctn(D) correspond to "histories" of length
n--to the paths of length n in the transition diagram
represented by D. In particular, the models of ctl (D)
correspond to the transitions causally explained ac-
cording to D. The second subsection describes the
process of literal completion, proposed in (McCain
& ~lrner 1997) and generalized in (Lifschitz 1997a),
which can be used to find the models of such theories.

Representing Histories in Causal Logic
The translation ctn(D) of an action description D is
defined as follows. Its signature an consists of n + 1
disjoint copies o~i (0 < i < n) of the fluent signature
a/~ and n disjoint copies aac~ (0 < i < n) of the ac-
tion signature aac~. For any formula F of the original
signature a, by Fi we denote the result of replacing ev-
ery atom in F by the corresponding atom from o~i or
from aac~. Intuitively, the subscript i represents time.
For any fluent symbol P, the atom P~ expresses that
P holds at time i. For any action symbol A, the atom
A~ expresses that A is among the elementary actions
executed between times i and i + 1.

The rules of ctn(D) are

F~ +- G~ (0 < i < n)

for all static laws (2) in D, and

F~+I +- G~+I A Hi (0 _< i < n)
for all dynamic laws (3) in D. The explainable symbols

of ctn(D) are the atoms from a~ for all i > 
For instance, the result of applying the translation

Ctl to action description (4) is the causal theory whose
rules are

PI +- PI A Po,
~PI +-- -,P~ A ~Po,
Q1 +- Q1 A Qo, (7)
-,Q1 ~- -~Q1 A ~Qo,
P1 +- True A Qo A Ao

and whose explainable symbols are P1 and Q1.
Proposition 2 below shows that there is a one-to-one

correspondence between the models of ct,,(D) and the
paths of length n in the transition diagram represented
by D. To define this correspondence, we need the fol-
lowing notation. Let I be an interpretation of an. For
any i ~ n, the interpretation State~[I] of a/~ is defined
by the condition: for every fluent symbol P,

State~ [I] (P) I(Pi).

For any i < n, the interpretation Actioni[I] of aact is
defined by the condition: for every action symbol A,

Actioni[I](A) = I(Ai).

Proposition 2 For any finite action description D
and positive integer n, an interpretation I of a,~ is a
model o/ ctn(D) iff each of the triples

(Statei[I], Action~[I], State~+l[I]) (0 <_ i < 

is a transition causally explained by D.

For instance, the claim that (PQ, A, PQI is a tran-
sition causally explained by (4) can be equivalently ex-
pressed by saying that the interpretation PoQoAoP1Q1
is a model of causal theory (7). The problem of com-
puting all transitions that are causally explained by (4)
is equivalent to the problem of finding all models of (7).

Literal Completion
The formula of classical logic that represents the mean-
ing of a causal theory contains, generally, bound
second-order variables. In case of a propositional
causal theory, these variables are propositional and can
be always eliminated, although the formula can become
much longer in the process.

There is a special case, however--the case of "def-
inite" theories--when a modification of the process
of completion familiar from logic programming (Clark
1978) allows us to construct a short formula that is
equivalent to the given causal theory and has no new
higher-order variables.

In the propositional case, a causal theory T is de/i-
nite if the head F of every rule F +- G of T is a literal
or contains no explainable symbols. For instance, (7)
is definite. Generally, if the head of every proposition



in an action description D is a literal then ct,~(D) is a
definite causal theory.

Literal completion differs from Clark’s completion
in that the "completed definition" of any explainable
symbol P consists of two equivalences, one "positive"
and one "negative." The positive completion formula
is obtained from the rules whose head is P in exactly
the same way as in (Clark 1978). The negative com-
pletion formula is generated in a similar way from the
rules whose head is -~P. In addition, for every rule
F +-- G whose head F does not contain explainable
symbols, there is a corresponding completion formula,
which is simply the material implication G D F. The
conjunction of all completion formulas for a definite
causal theory T is equivalent to the formula represent-
ing T in classical logic.

For instance, the set of completion formulas for
causal theory (7) consists of the positive definition 
P1

Px - (P1 A P0) V (Q0 A A0), (8)
the negative definition of P1

-~P1 -- -1/)1 A-~P0, (9)
the positive definition of Qt

Q1 - QI A Qo (10)
and the negative definition of Q1

-~Q1 - ~Q1 ^-~Q0. (11)
Causal theory (7) is equivalent to the conjunction 
these formulas.

To simplify this conjunction, note that (9) can 
rewritten as

P0 D P1, (12)
and (10), (11) can be rewritten 

V~ ̄  Qo,
Q0 ̄  Q1.

In the presence of (12), (8) is equivalent 

Pt -= P0 V (Q0 A A0). (13)

The last formula entails (12). Consequently, the con-
junction of (8)-(11) is equivalent to the conjunction 
(13) and

Q1 -= Q0. (14)
We conclude that causal theory (7) is equivalent 

the conjunction of (13) and (14). These formulas define
P1 and Q1 in terms of P0, Q0 and A0. Consequently,
(7) has 8 models, corresponding to the interpretations
of {P0, Q0, Ao). These models represent the 8 transi-
tions shown in Figure 1.

The same procedure is applicable when n > 1. The
result of applying the translation eta to action descrip-
tion (4) consists of 5n rules

Pi+l +- Pi+~ A P~,
~P~+~ +- -~P~+~ A-~P~,
Q~+~ ~- Qi+~ A Qi,
-~Q~+~ e- ~Qi+l A-~Qi,
Pi+l +- Qi A Ai

for all i < n, with P1,... ,Pn, Q1,... ,Qn explainable.
(We dropped the trivial conjunctive term True in the
last rule.) The literal completion of this theory is
equivalent to the conjunction of 2n formulas

P~+~ - Piv (Q~ A A~),
Qi+l - Q~

for all i < n. The models of this set of formulas repre-
sent paths of length n in the graph shown in Figure 1.

Example: Loading and Shooting
The Shooting Domain
The shooting scenario from (Hanks & McDermott
1987) involves three actions: Load, Wait and Shoot.
In C, there is no need to introduce Wait as an ele-
mentary action, because it can be identified with the
empty set of elementary actions. On the other hand,
since there is an action in g that includes both Load
and Shoot, we may wish to postulate that these two el-
ementary actions cannot be executed concurrently. For
any conjunction H of action symbols, we wilt write

nonexecutable H

for
caused False after H.

The shooting domain is characterized by the propo-
sitions

inertial Loaded, -~ Loaded, Alive, -~ Alive,
caused Loaded after Load,
caused -~Alive after Loaded A Shoot, (15)
caused ~Loaded after Shoot,
nonexecutable Load A Shoot.

Computing Causally Explained Transitions
The ctl translation of (15) is a definite causal the-
ory. (The head of the rule corresponding to the last
line of (15) is False and consequently does not con-
tain explainable symbols.) Having simplified the set of
completion formulas for this translation, we get:

Loaded1 -~ Loado V ( Loadedo A -~Shooto),
Alivei - Aliveo A -~(Loadedo A Shooto), (16)
-~( Loado A Shooto ).

The first two of these formulas define Loaded1 and
Alive1 in terms of

Loadedo, Aliveo, Loado, Shooto. (17)
Consequently, the edges of the transition diagram for
(15) correspond to the interpretations of (17) that 
isfy the last of formulas (16). Any proper subset 
the set of elementary actions (Load, Shoot) can be ex-
ecuted in any state in exactly one way.

More generally, the ctn translation of (15) is equiv-
alent to the conjunction of the formulas

Loadedi+l - Loadi V (Loadedi A -~Shooti),
Alivei+t =- Alivei A -~(Loadedi A Shooti), (18)
~(Loadi A Shooti)

for all i < n.



Temporal Reasoning

The "Yale Shooting Problem" (Hanks & McDermott
1987) and the "Stanford Murder Mystery" (Baker
1991) correspond to propositional reasoning problems
involving formulas (18). In the first case, the goal is 
establish that ."Alive3 is entailed by

Loado, -~Shooto,
-~ Load l , -~Shoot l ,
-~ Load2, Shoot2

conjoined with formulas (18) for all i < 3. The second
problem is to establish that Loadedo is entailed by

Aliveo,
." Loado, -"Shooto,
-"Load1, Shoot1,
."Alive2

conjoined with formulas (18) for all i < 2. Both claims
can be easily verified.

Expressive Possibilities of C

Action Preconditions

In action description (15), Loaded is a "fluent precon-
dition" for the action Shoot: if it is not satisfied then
the action is still possible to execute, although its ef-
fect on the fluent Alive is not guaranteed. We may
wish to treat Loaded as an "action precondition," that
is to say, to postulate that the action Shoot is nonexe-
cutable when Loaded is false.

It is convenient to extend the notation previously
introduced as follows: if H is a conjunction of action
symbols and F is a formula that does not contain ac-
tion symbols, we will write

nonexecutableHif F

for

caused False after H A F.

In the following modification of (15), Loaded is an ac-
tion precondition for Shoot:

inertial Loaded, ~Loaded, Alive, -.Alive,
caused Loaded after Load,
caused -.Alive after Shoot,
caused ."Loaded after Shoot,
nonexecutable Shoot if -,Loaded,
nonexecutable Load A Shoot.

The ctl translation of this domain description is
equivalent to

Loaded1 - Loado V (Loadedo A -~Shooto),
Alive1 - Aliveo A -~Shooto,
Shooto D (Loadedo A -~Loado).

Indirect Effects and Implicit Preconditions
So far we have not had a chance to use static laws--
propositions of form (2). As observed in (Lin 1995)
and (McCain & Turner 1995), a static law can play
two roles in reasoning about action. First, postulat-
ing caused F if G may allow us to conclude that an
action has an indirect effect: any action that causes
G to become true will also indirectly cause F to be-
come true. Second, we may be able to conclude that
an action has an implicit precondition: an action that
causes F to become false is not executable if G is true
(unless it causes G to change its truth value also).

For instance, if an object is submerged in water then
there is a cause for it to be wet. The action of putting
a puppy in water causes it to be in water; consequently,
it has an indirect effect: it will make the puppy wet.
The action of drying a puppy with a towel causes it to
be dry; consequently, it has an implicit precondition:
it is impossible to dry a puppy with a towel when it is
in water.

This example can be formalized in g as follows:

inertial In Water, -~In Water, Wet, -7 Wet,
caused In Water after PutIn Water,

(19)caused -~ Wet after Dry With Towel,
caused Wet if In Water.

The states of action description (19) are the inter-
pretations of the fluent signature {In Water, Wet} that
satisfy

InWater D Wet;
there are 3 such interpretations. To find the causally
explained transitions, we write out the completion for-
mulas for the ctl translation of (19) and simplify them.
The result can be written in the form

InWaterl - InWatero V PutlnWatero,
Wet1 - (Weto A -.DryWithTowelo) V PutlnWatero,
InWatero D Weto,
DryWithTowelo D (."InWatero A -~PutlnWatero).

The first two formulas characterize In Waterl and
Wet1 in terms of the other atoms; they show that
any action can be performed in at most one way. The
second disjunctive term in the second line represents
the indirect effect of Putln Water on Wet. The third
line says that the initial state of a transition is in-
deed a state. The last line shows that the action
Dry With Towel can be executed only when InWater
is false---this is the implicit precondition mentioned
above---and also that this action cannot be executed
concurrently with PutlnWater.

Nondeterminism
When Jack goes to work, he can walk there or, if his car
is in his garage, he can drive. The action GoToWork
always makes the fluent JackAtWork true; it will also
make the fluent CarlnGarage false if Jack chooses to
drive. One of the two effects of Go To Work is nonde-
terministic.



We will use

possibly caused F after H

as an abbreviation for

caused F if F after H.

The example above can be formalized as follows:

inertial JackAt Work, -~JackAt Work,
inertial CarInGarage, -~ CarInGarage,
caused JackAtWork after GoToWork,
possibly caused -~CarInGarage

after CarInGarage A GoToWork,
nonexecutable GoToWork if JackAtWork.

The ctl translation of this action description is equiv-
alent to

JackAt Work l -- JackAt Worko V Go To Worko,
-,GoToWorko D ( CarlnGarage1 - CarlnGarageo),
CarInGarage1 D CarInGarageo,
~( JackAtWorko A Go To Worko).

The nondeterministic behavior of CarInGarage is de-
scribed by the two formulas in the middle. After
performing the action Go To Work in a state in which
CarInGarage is true, this fluent can either remain true
or become false. The corresponding transition dia-
gram has two edges that are labeled GoToWork and
begin in the state in which JackAtWork is false and
CarInGarage is true.

Regarding the abbreviation possibly caused we
can observe that

inertial F
is identical to

possibly caused F after F.

Noninertial Fluents
In all examples so far, every literal in the fluent sig-
nature was postulated to be inertial. In some useful
action descriptions this is not the case.

We would not assume inertia, first of all, for a flu-
ent that is explicitly defined in terms of other fluents.
Imagine, for instance, that we want to enhance the
shooting domain by saying that the potential victim
is in danger if he is alive and the gun is loaded. This
idea can be formalized by adding InDanger to the flu-
ent signature, and adding the static law

caused InDanger -- (Alive A Loaded) if True. (20)

to action description (15). This amounts to adding the
formulas

InDangeri - Alivei A Loadedi (i = O, 1)

to the formulas of classical logic representing the ctl
translation of (15).

There is no need to assume inertia for the new fluent
in this example. Actually, adding

inertial InDanger , -~ InDanger

to (15) along with (20) would have led to unintuitive
results. (The execution of Load in the state in which
Loaded is false and Alive is true would be nondeter-
ministic: it would be possible for both fluents to be
affected.)

Note that the head of (20) is not a literal, so that
the literal completion method is not applicable to the
corresponding causal theory. But this proposition can
be equivalently replaced here by a pair of propositions
whose head are literals:

caused InDanger if Alive A Loaded,
caused -~InDanger if -~( Alive A Loaded).

Second, there are fluents whose values tend to
change in a specific way, rather than remain un-
changed. Consider, for instance, a pendulum that
moves from its leftmost position to the rightmost and
back, with each swing taking one unit of time. We
want to describe the action of holding the pendulum
steady in its current position for the duration of one
unit of time. In the following action description, Right
is a fluent symbol, and Hold is an action symbol:

possibly caused Right after -~Right,
possibly caused -~Right after Right,

(21)caused Right after Right A Hold,
caused -~Right after -~Right A Hold.

The first two lines of (21) are similar to the inertia
assumption but different: if the pendulum has changed
its position then there is a cause for this. The "normal"
behavior of an unloaded gun is to remain unloaded;
the "normal" behavior of a pendulum in the leftmost
position is to move to the rightmost position.

The completion formulas for the ctl translation of
(21) are equivalent 

Right1 - (Holdo =- Righto).
The pendulum is in the rightmost position in two cases:
if it was in this position earlier and was held there, and
if it was in the leftmost position earlier and was not
held there.

Finally, some fluents have a "default" value that they
take unless an action causes them to take a different
value. A spring-loaded door is closed unless someone
has just opened it; its behavior is not described by
inertia. For any formula F without action symbols, let

default F
stand for the static law

caused F if F
--if F holds then there is a cause for this. Several
propositions of this form can be combined like inertia
propositions.

A spring-loaded door is characterized by the follow-
ing action description:

default Closed,
caused ~Closed after OpenDoor.

Its ctl translation is equivalent to
Closed1 =- -~OpenDooro.

The door is closed unless it has just been opened.



Interaction between Concurrent Actions

Pednault [1987] considers lifting the opposite ends of a
table upon which various objects have been placed. If
one end of the table has been raised, a cup on the table
falls off. But if both ends are lifted simultaneously, the
cup remains fixed.

Formalizing (a modification of) this example in the
situation calculus is discussed in Section 8.3.2 of (Gel-
fond, Lifschitz, & Rabinov 1991). Baral and Gelfond
[1997] expressed Pednault’s example in their action
language Ao (see the next section). Turner [1996] for-
malized it using a static law, and our representation of
this example in C is based on the same idea.

We describe the positions of the two ends of the table
by the fluents Up1 and Up2. By default, these fluents
are false, that is, normally the two sides are not in
their up position. These fluents can be made true by
performing the actions Raise1 and Raise2. The fluent
OnTable indicates that the cup is on the table. This
last fluent is inertial.

Our formalization of the lifting example consists of
the following propositions:

inertial OnTable, -~OnTable,
default -1 Up1, -~ Up2,
caused Up1 after Raise1,
caused Up2 after Raise2,
caused ~OnTable if-~(Upl =_ Up2).

The ctl translation of this action description is equiv-
alent to

Up11 - Raiselo,
Up21 =- Raise2o,
OnTablel =- OnTableo A (Raiselo -- Raise2o),
OnTableo D (Uplo - Up2o).

Embedding .4o into C

In this section we analyze the relationship between the
treatment of concurrency in two action languages--
,4o fl’om (Baral & Gelfond 1997) and the new language
C--by embedding the former into the latter.

The Language Ao

The main idea of ~4o is that the effects of a set of ele-
mentary actions are "inherited" from its subsets, and
that this inheritance is defeasible.

To specify an action description in the language Ao,
just as in case of g, we first select a set of fluent symbols
a~ and a set of action symbols a~ct. An action is a
finite subset of aact.

An action description in the language Ao is a set of
propositions of the form

a causes L after F, (22)

where a is an action, L a literal of the fluent signa-
ture, and F a formula of the fluent signature. We will
abbreviate (22) as (a, L, 

The semantics of Ao is defined as follows. Consider
an action description D in this language. A state is an
interpretation of the fluent signature. For any action a,
state s and literal L of the fluent signature, we say that
executing a in s causes L if there exists a proposition
(a’, L, F) in D such that
¯ aI ~ a,

¯ s satisfies F, and
¯ there is no proposition (a", L, G) in D such that

a’ C a" C_ a

and s satisfies G.

Thus a proposition (22) of the Baral--Geffond lan-
guage tells us what the effect of the supersets of a might
be; in case of conflict, the "more specific" proposition
applies. Finally, we say that a state s’ is the result of
executing a in s if s’ satisfies every literal L such that

* executing a in s causes L, or

¯ executing a in s does not cause L, and s satisfies L.

It is clear that, for any a and s, there can be at most
one such resulting state s’.

Consider, for instance, an fl~ description of the form

{A1} causes L after F1,
(23)

{A1, A2} causes L after F2.

If a does not include A1 then the execution of a in any
state s has no effect on s. If a includes A1 but not A2,
and s satisfies F1, then the resulting state s’ satisfies
L. If a includes both A1 and A2, and s satisfies F1,
then s’ satisfies L or L depending on whether or not s
satisfies F2.

The characterization of Me above differs from (Baral
& Gelfond 1997) in a number of details. Baral and Gel-
fond require that F in (22) be a conjunction of literals,
and write if instead of after. Their language includes
"v-propositions" that we do not discuss here; our ver-
sion is the "action description component" (Lifschitz
1997b) of theirs.

First Translation from .Ac into C

Consider a finite action description D in the language
J[o. We will define the corresponding action descrip-
tion O (D) in C. To simplify notation, we will identify
an action a with the conjunction of the action symbols
that belong to it. The description Cl(D) consists of the
dynamic laws

caused L after (a A F) A -~(a’ A G)

aI ,G:

(a’,’L,G) e D, aCa’

(24)
for all propositions (22) in D, and of the inertia propo-
sitions

inertial P,-~P (25)
for all fluent symbols P.



For instance, the translation of (23) into g includes

caused L after A1 A F1 A -~(A1 A A2 A F2),
caused L after A1 A A2 A F2

and the inertia propositions.
The following theorem shows that the translation Cl

preserves the meaning of action descriptions.
Proposition 3 For any finite action description D in
the language ~4c, a state s’ is the result of executing an
action a in a state s iff (s, a, I) is atr ansition causally
explained by cl ( D ).

Second Translation from ,4c into g
The translation cl is applicable to finite descriptions
only: without this restriction, the set of conjunctive
terms in (24) can be infinite. Furthermore, cl 
not "elaboration tolerant," in the sense that adding
a proposition to D requires, generally, that some of
the propositions in cl (D) be modified. We therefore
define a second translation c2 in which these defects
are corrected.

The fluent signature of c2(D) includes, along with
every fluent symbol P of the description D, the atoms
pa for all actions a such that D includes a proposi-

tion (22) with ILl = p.3 Intuitively, pa means that
the given action description "allows" a to modify P.

The translation c2(D) consists of the following
propositions:
¯ for each proposition (22) in D, the dynamic law

caused L if [Lp after a A F

and, for all propositions (a~,L,G) in D such that
a~ C a, the dynamic law

caused ~]LIa’ after a A F;

¯ for each of the additional fluent symbols P~, the
static law

¯ default P~;

¯ the inertia propositions (25) for each fluent symbol
P from D.
For example, the new translation of (23), with

[L[ {A1} and [LI{A"A2} abbreviated as P1 and P2, con-
sists of the propositions

caused L if P1 after A1 A F1,
caused L if P2 after A1 A A2 A F2,
caused -~P1 after A1 A A2 A F2,
default Pi (i = 1, 2)

and the inertia propositions (25) for all fluent symbols
P from (23).
Proposition 4 For any action description D in the
language Ac, a state s~ is the result of executing an ac-
tion a in a state s iff there exists a transition (Sl, a, s~)
causally explained by c2(D) such that s and # are the
results of restricting sl and, respectively, s~ to the flu-
ent signature of D.

3By ILl we denote the atom contained in the literal L.
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