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Abstract. In this paper we present an action/state-based logical frame-
work for the analysis and verification of complex systems, which relies on
the definition of doubly labelled transition systems. The defined tempo-
ral logic, called UCTL, combines the action paradigm—classically used
to describe systems using labelled transition systems—with predicates
that are true over states—as captured when using Kripke structures as
semantic model. An efficient model checker for UCTL has been realized,
exploiting an on-the-fly algorithm. We then show how to use UCTL, and
its model checker, in the design phase of an asynchronous extension of the
communication protocol SOAP, called aSOAP. For this purpose, we de-
scribe aSOAP as a set of communicating UML state machines, for which
a semantics over doubly labelled transition systems has been provided.

1 Introduction

Complex systems are often modelled according to either a state-based or an
event-based paradigm. While in the former case the system is characterized by
states and state changes, in the latter case it is characterized by the events
(actions) that can be performed to move from one state to another. Both are
important paradigms for the specification of complex systems and, as a result,
formal methods ideally should cover both. Indeed, this trend is witnessed by
the recent widespread use of modelling frameworks that allow both events and
state changes to be specified. An example are UML state diagrams, which are
used more and more in industry to specify the behaviour of (software) systems,
though often without caring much for their formal aspects. Also the specifica-
tion of Service-Oriented Applications has seen several applications of UML state
diagrams [25]. What is missing in order to use in full specification techniques
that allow one to specify both events and state changes, is the availability of a
formal framework in which desired properties can subsequently be proved over
the specification, with the support of specific verification tools.
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In this paper, we aim to fill this gap by presenting the action/state-based
temporal logic UCTL, which allows one to both specify the basic properties
that a state should satisfy and to combine these basic predicates with advanced
temporal operators dealing with the events performed. As was done for CTL
and ACTL in the past, we consider a fragment of a doubly labelled tempo-
ral logic, interpreted over doubly labelled structures: This fragment is UCTL,
which preserves the property shared by CTL and ACTL of having an explicit
local model-checking algorithm in linear time. The semantic domain of UCTL is
doubly labelled transition systems [11]. A prototypical on-the-fly model checker,
called UMC, has been developed for UCTL: The tool allows the efficient verifi-
cation of UCTL formulae that define action- and state-based properties.

In recent years, several logics that allow one to express both action-based
and state-based properties have been introduced, for many different purposes.
An event- and state-based temporal logic for Petri nets is given in [17]. In [16],
a modal temporal logic without a fixed-point operator and interpreted over so-
called Kripke modal transition systems (a modal version of doubly labelled tran-
sition systems) is defined. In [4,6], a state/event extension of LTL is presented,
together with a model-checking framework whose formulae are interpreted over
so-called labelled Kripke structures (essentially doubly labelled transition sys-
tems). Finally, in [5], this linear-time temporal logic is extended to a universal
branching-time temporal logic. The latter logics are used extensively to verify
software systems. The advantage of all such logics lies in the ease of expres-
siveness of properties that in pure action-based or pure state-based logics can be
quite cumbersome to write down. Moreover, their use often results in a reduction
of the state space, the memory use and the time spent for verification. Obviously,
the real gain depends—as always—on the specific system under scrutiny.

To conclude, we present a case study that shows the use of UCTL and its
model checker UMC in the design phase of aSOAP, which is an asynchronous
extension of the web service communication protocol SOAP. Mobile communi-
cation networks typically are unstable, since terminal devices can dynamically
change reachability status during their lifetime. In Service-Oriented Architec-
tures, asynchronous service invocation is often the more suitable paradigm for
the choreography and orchestration of their mobile components. Hence, there is
a need for communication protocols that can manage asynchronous communi-
cation also in the presence of unstable network connections. Formal modelling
and analysis of such protocols is a first step towards the successful implementa-
tion and evaluation of reliable Service-Oriented Applications. For this purpose,
we describe aSOAP as a set of communicating UML state machines, for which
a semantics over doubly labelled transition systems has been provided, express
several behavioural properties on this UML model of aSOAP in UCTL and verify
them with UMC.

The paper is organized as follows. Some preliminary definitions are given in
Section 2. In Section 3, we present the syntax and semantics of UCTL, while in
Section 4 we describe its model checker UMC. The case study illustrating their
use is presented in Section 4. Finally, Section 5 concludes the paper.
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2 Preliminaries

In this section, we define the basic notations and terminology used in the sequel.

Definition 1 (Labelled Transition System). A Labelled Transition System
(LTS for short) is a quadruple (Q, q0, Act, R), where:

– Q is a set of states;
– q0 ∈ Q is the initial state;
– Act is a finite set of observable events (actions) with e ranging over Act, α

ranging over 2Act and ε denoting the empty set;
– R ⊆ Q× 2Act ×Q is the transition relation; instead of (q, α, q′) ∈ R we may

also write q α→ q′.

Note that the main difference between this definition of LTSs and the classical
one is the labelling of the transitions: we label transitions by sets of events rather
than by single (un)observable events. This extension allows the transitions from
one state to another to represent sets of actions without the need of intermediate
states, which has proved to be useful when modelling, e.g., UML state diagrams.

Another extension is to label states with atomic propositions, like the concept
of doubly labelled transition systems [11], again extended as in Definition 1.

Definition 2 (Doubly Labelled Transition System). A Doubly Labelled
Transition System (L2TS for short) is a quintuple (Q, q0, Act, R,AP, L), where:

– (Q, q0, Act, R) is an LTS;
– AP is a set of atomic propositions with p ranging over AP; p will typically

have the form of an expression like VAR = value;
– L : Q −→ 2AP is a labelling function that associates a subset of AP to each

state of the LTS.

The L2TSs thus obtained are very similar to so-called Kripke transition sys-
tems [19]. The latter are defined as an extension of Kripke structures by a la-
belling over transitions.

The usual notion of bisimulation equivalence can be straightforwardly ex-
tended to L2TSs by taking into account equality of labelling of states, and con-
sidering the transitions labelled by sets of events.

Definition 3 (Bisimulation). Let A1 = (Q1, q01 , Act,→1,AP1, L1) and A2 =
(Q2, q02 , Act,→2,AP2, L2) be two L2TSs and let q1 ∈ Q1 and q2 ∈ Q2. We
say that the two states q1 and q2 are strongly equivalent (or simply equivalent),
denoted by q1 ∼ q2, if there exists a strong bisimulation B that relates q1 and q2.
B ⊆ Q1 ×Q2 is a strong bisimulation if for all (q1, q2) ∈ B and α ∈ 2Act:

1. L1(q1) = L2(q2),
2. q1

α→1 q
′
1 implies ∃ q′2 ∈ Q2 : q2

α→2 q
′
2 and (q′1, q

′
2) ∈ B, and

3. q2
α→2 q

′
2 implies ∃ q′1 ∈ Q1 : q1

α→1 q
′
1 and (q′1, q

′
2) ∈ B.
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We say that the two L2TSs A1 and A2 are equivalent, denoted by A1 ∼ A2, if
there exists a strong bisimulation B such that (q01 , q02) ∈ B.

The usual notions of simulation preorder or weak (observational) equivalence
can be defined analogously.

LTSs and Kripke structures can be lifted to L2TSs in a straightforward man-
ner. An LTS T = (Q, q0, Act, R) can be lifted to an L2TS AT , on the same
set of states and maintaining the same transition relation, in the following way:
AT = (Q, q0, Act, R,∅, L), where for all q ∈ Q: L(q) = ∅.

A Kripke structure K = (Q, q0, R,AP , L) can be lifted to an L2TS AK , on the
same set of states and maintaining the same labelling function, in the following
way: AK = (Q, q0, {ε}, R′,AP , L), where for all (q, q′) ∈ R: (q, ε, q′) ∈ R′.

3 The Action/State-Based Temporal Logic UCTL

In this section, we present the syntax and semantics of UCTL. This temporal
logic, action and state based, allows one to reason on state properties as well as
to describe the behaviour of systems that perform actions during their lifetime.
UCTL includes both the branching-time action-based logic ACTL [10,11] and
the branching-time state-based logic CTL [7].1

Before defining the syntax of UCTL, we introduce an auxiliary logic of events.

Definition 4 (Event formulae). Let Act be a set of observable events. Then
the language of event formulae on Act ∪ {τ} is defined as follows:

χ ::= tt | e | τ | ¬χ | χ ∧ χ

Definition 5 (Event formulae semantics). The satisfaction relation |= for
event formulae of the form α |= χ is defined over sets of events as follows:

α |= tt holds always;
α |= e iff α = {e1, . . . , en} and there exists an i ∈ {1, . . . , n} such that ei = e;
α |= τ iff α = ∅;
α |= ¬χ iff not α |= χ;
α |= χ ∧ χ′ iff α |= χ and α |= χ′.

As usual, ff abbreviates ¬tt and χ ∨ χ′ abbreviates ¬(¬χ ∧ ¬χ′).

Definition 6 (Syntax of UCTL)

φ ::= true | p | ¬φ | φ ∧ φ′ | Aπ | Eπ
π ::= Xχφ | φ χU φ′ | φ χUχ′ φ′ | φ χW φ′ | φ χWχ′ φ′

1 Note that ACTL is also used to denote the universal fragment of CTL, originally
called ∀CTL in [8]. For easy of writing, ∀CTL was changed to ACTL, thus generating
a conflict with the previously introduced acronym ACTL for Action-based CTL.
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State formulae are ranged over by φ, path formulae are ranged over by π, A and
E are path quantifiers, and X, U and W are the indexed next, until and weak
until operators.2

In linear-time temporal logic (LTL), the formula φ W ψ can be obtained by
deriving it from the until (U) and the always (G) operators, as follows: φ U ψ ∨
Gφ. This way to derive the weak until operator from the until operator is not
applicable in UCTL since disjunction or conjunction of path formulae is not
expressible according to the UCTL syntax, and the same holds for any pure
branching-time temporal logic.

To define the semantics of UCTL, we need the notion of a path in an L2TS.

Definition 7 (Path). Let A = (Q, q0, Act, R,AP , L) be an L2TS and let q ∈ Q.

– σ is a path from q if σ = q (the empty path from q) or σ is a (possibly in-
finite) sequence (q0, α1, q1)(q1, α2, q2) · · · with (qi−1, αi, qi) ∈ R for all i > 0.

– The concatenation of paths σ1 and σ2, denoted by σ1σ2, is a partial operation,
defined only if σ1 is finite and its final state coincides with the first state of
σ2. Concatenation is associative and has identities: σ1(σ2σ3) = (σ1σ2)σ3

and if q0 is the first state of σ and qn is its final state, then q0σ = σqn = σ.
– A path σ is said to be maximal if it is either an infinite sequence or it is a

finite sequence whose final state has no successor states.
– The length of a path σ is denoted by |σ|. If σ is an infinite path, then |σ| = ω.

If σ = q, then |σ| = 0. If σ = (q0, α1, q1)(q1, α2, q2) · · · (qn, αn+1, qn+1), for
some n ≥ 0, then |σ| = n+ 1. Moreover, the ith state in such a path, i.e. qi,
is denoted by σ(i).

Definition 8 (Semantics of UCTL). The satisfaction relation for UCTL for-
mulae is defined as follows:

q |= true holds always;
q |= p iff p ∈ L(q);
q |= ¬φ iff not q |= φ;
q |= φ ∧ φ′ iff q |= φ and q |= φ′;
q |= Aπ iff σ |= π for all paths σ such that σ(0) = q;
q |= Eπ iff there exists a path σ with σ(0) = q such that σ |= π;
σ |= Xχφ iff σ = (σ(0), α1, σ(1))σ′, and α1 |= χ, and σ(1) |= φ;
σ |= [φ χUφ

′] iff there exists a j ≥ 0 such that σ(j) |= φ′ and for all 0 ≤ i < j:
σ = σ′(σ(i), αi+1, σ(i+1))σ′′ implies σ(i) |= φ and αi+1 = ε or αi+1 |= χ;

σ |= [φ χUχ′φ′] iff there exists a j ≥ 1 such that σ = σ′(σ(j − 1), αj , σ(j))σ′′

and σ(j) |= φ′ and σ(j − 1) |= φ and αj |= χ′, and for all 0 < i < j:
σ = σ′

i(σ(i− 1), αi, σ(i))σ′′
i implies σ(i− 1) |= φ and αi = ε or αi |= χ;

σ |=[φ χWφ′] iff either there exists a j≥0 such that σ(j) |=φ′ and for all 0≤ i<j:
σ = σ′(σ(i), αi+1, σ(i+1))σ′′ implies σ(i) |= φ and αi+1 = ε or αi+1 |= χ;
or for all i ≥ 0: σ = σ′(σ(i), αi+1, σ(i + 1))σ′′ implies σ(i) |= φ and
αi+1 = ε or αi+1 |= χ;

2 Note that, differently from the original ACTL logic, in UCTL the operator Xχφ can
be derived as false falseUχ φ.



138 M.H. ter Beek et al.

σ |=[φ χWχ′ φ′] iff either there exists a j≥1 such that σ=σ′(σ(j−1), αj , σ(j))σ′′

and σ(j) |= φ′ and σ(j − 1) |= φ and αj |= χ′, and for all 0 < i < j:
σ = σ′

i(σ(i − 1), αi, σ(i))σ′′
i implies σ(i− 1) |= φ and αi = ε or αi |= χ;

or for all i > 0: σ = σ′
i(σ(i − 1), αi, σ(i))σ′′

i implies σ(i − 1) |= φ and
αi = ε or αi |= χ.

It is now straightforward to obtain a set of derived operators for UCTL, such as:

< χ > φ stands for E[true τUχ φ];
[χ]φ stands for ¬ < χ > ¬φ;
EFφ stands for E[true trueUφ];
AGφ stands for ¬EF¬φ;

Operators < χ > φ and [χ]φ are the diamond and box modalities, respectively,
of the Hennessy-Milner logic [15]. The meaning of EFφ is that φ must be true
sometimes in a possible future; that of AGφ is that φ must be true always.

The logic UCTL is adequate with respect to strong bisimulation equivalence
on L2TSs. Adequacy [21] means that two L2TSs A1 and A2 are strongly bisimilar
if and only if F1 = F2, where Fi = {ψ ∈ UCTL : Ai |= ψ } for i = 1, 2. In other
words, adequacy implies that if there is a formula that is not satisfied by one
of the L2TSs but satisfied by the other L2TS, then the L2TSs are not bisimilar,
and—on the other hand—if two L2TSs are not bisimilar, then there must exist
a distinguishing formula.

Proof (sketch). Let A1 and A2 be two L2TSs. Note that neither the existential
nor the universal next operator of a UCTL formula can distinguish the transi-
tion q1

a→ q′1 in A1 from the two transitions q2
a→ q′2 and q2

a→ q′′2 , with {q′2, q′′2}
bisimilar to q′1, which makes q1 and q2 bisimilar as well. The same can be said for
the atomic predicates, since the labelling of bisimilar states is the same, as well
as for the until operators, which just follow recursively the transition relation.
Hence, if two L2TSs are bisimilar, then no distinguishing formula can be found.

On the other hand, if two L2TSs are not bisimilar, then applying recursively
the definition of bisimulation to the pair of initial states {q01 , q02} of the two
L2TSs implies that we eventually end up in at least one pair of states {q1, q2}
with the following characteristics: A sequence a1, a2, . . . , an of actions leads from
q01 and q02 to q1 and q2, respectively, and q1 and q2 can be differentiated either
(but not necessarily exclusively) by their labelling or by an outgoing transition.

In the former case, there exists at least one predicate p such that p ∈ L(q1) but
p /∈ L(q2) (or vice versa), which means that Xa1Xa2 · · ·Xanp is a distinguishing
formula for the two L2TSs.

In the latter case, there exists at least one transition q1
a→ q′1, for some action a

and state q′1, while there exists no transition labelled with a from q2 to some state
q′2 (or vice versa), which means that Xa1Xa2 · · ·XanXa true is a distinguishing
formula for the two L2TSs. �
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Starting from the syntax of UCTL, it is possible to derive both CTL [7] and
ACTL [10,11] by simply removing the action or the state component, respec-
tively: Given a Kripke structure K = (Q, q0, R,AP , L) that has been lifted to
an L2TS AK = (Q, q0, Act, R′,AP , L), a CTL formula φ and a state q ∈ Q, it
follows that

q |=K φ iff q |=AK φ′,

where φ′ is a UCTL formula which is syntactically identical to φ, apart from
the fact that all occurrences of Xψ′ have been replaced by Xtrueψ

′ and all
occurrences of ψUψ′ have been replaced by ψ trueUψ

′.
Given an LTS T = (Q, q0, Act ∪ τ, R) that has been lifted to an L2TS AT =

(Q, q0, Act, R,AP , L), an ACTL formula φ and a state q ∈ Q, it follows that

q |=T φ iff q |=AT φ′,

where φ′ is a UCTL formula which is syntactically identical to φ, apart from the
fact that all occurrences of Xtrueψ are replaced by X¬τψ.3

4 The UCTL Model Checker UMC

We have developed an on-the-fly model checking tool for UCTL, called UMC [18].
The big advantage of the on-the-fly approach to model checking is that, de-

pending on the formula, only a fragment of the overall state space might need
to be generated and analyzed in order to produce the correct result [2,12,24].
This type of model checking is also called local [9], in contrast to global model
checking [7], in which the whole state space is explored to check the validity of
a formula.

The basic idea behind UMC is that, given a state of an L2TS, the validity
of a UCTL formula on that state can be evaluated by analyzing the transitions
allowed in that state, and by analyzing the validity of some subformula in only
some of the next reachable states, all this in a recursive way. The following simpli-
fied schema gives an idea of the algorithmic structure of the evaluation process:
F denotes the UCTL formula (or subformula) to be evaluated, Start denotes the
state in which the (recursive) evaluation of F was started and Current denotes
the current state in which the evaluation of F is being continued.4

3 The original definition of ACTL [10] is based on a definition of LTSs in which a tran-
sition label can be a single (un)observable action. Hence, to be precise, we actually
need to use here a different definition of lifting an LTS to an L2TS, namely one in
which τ -transitions are replaced by ε-transitions.

4 The given schema can be extended to handle also max and min fixpoint operators,
by replacing the single Start state with a vector of states according to the fix-
point nesting depth of the formula. UMC actually supports this extension, but with
drawbacks in the level of optimizations performed.
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Evaluate (F : Formula, Start : State, Current : State) is
if we have already done this computation and its result is available,
i.e. (〈F, Start, Current〉 → Result) has already been established then

return the already known result;
else if we were already computing the value of exactly this computation,
i.e. (〈F,Start,Current〉→inprogress) has already been established then

return trueor false depending onmax ormin fixed point semantics;
else

keep track thatwe started to compute the value of this computation,
i.e. set (〈F, Start, Current〉 → inprogress);
foreach subformula F′ and next state S′ to be computed do loop

if F �= F (i.e. this is a syntactically nested subformula) then
call Evaluate(F′, S, S′);

else if F = F (i.e. this is just a recursive evaluation of F) then
call Evaluate(F, Start, S′);

end
if the result of the call suffices to establish the final result then

exit from the loop;
end

end loop
At this point we have in any case a final result. We keep track of the
result of this compuation (e.g. set (〈F, Start, Current〉 → Result)).
return the final result;

end
end Evaluate;

This simplified schema can be extended with appropriate data-collection ac-
tivities in order to be able to produce, in the end, also a clear and detailed
explanation of the returned result.

In case of infinite state spaces, the above schema may fail to produce a result
even when a result could actually be deduced in a finite number of steps. This
is a consequence of the “depth-first” recursive structure of the algorithm. The
solution taken to solve this problem consists of adopting a bounded model-
checking approach [3], i.e. the evaluation is started assuming a certain value as
limit of the maximum depth of the evaluation. In this case, if a formula is given
as result of the evaluation within the requested depth, then the result holds for
the whole system; otherwise the maximum depth is increased and the evaluation
is subsequently retried (preserving all useful subresults that were already found).
This approach, initially introduced in UMC to overcome the problem of infinite
state machines, happens to be quite useful also for another reason. By setting a
small initial maximum depth and a small automatic increment of this limit at
each re-evaluation failure, once we finally find a result then we have a reasonable
(almost minimal) explanation for it, and this is very useful also in the case of
finite states machines.

Given a formula F, the upper bound on the number of necessary computa-
tions steps, identifiable by the triple 〈subformula, startstate,currentstate〉
apparently tends to grow quadratically with respect to the number of system
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states. A linear complexity of the above model-checking algorithm can be
achieved by performing several optimizations in the management of the “archive”
of performed computations.5 In particular, we consider the property that if
(〈F, State, State〉 → Result) is true, then for any other State′, (〈F, State′,
State〉 → Result) is also true. Moreover, when (〈F, State, State〉 → Result)
is established, for all the recursive subcomputations of F that have the form
(〈F, State, State′〉 → Result) it is also true that (〈F, State′, State′〉 → Result)
can be considered to hold.

The development of UMC is still in progress and a prototypical version is be-
ing used internally at ISTI–CNR for academic and experimental purposes. Until
now, the focus of the development has been on the design of the kind of qualita-
tive features one would desire for such a tool, experimenting with various logics,
system modelling languages and user interfaces. So far there has been no official
public release of the tool, even if the current prototype can be experimented via
a web interface at the address http://fmt.isti.cnr.it/umc/.

UMC verifies properties defined over a set of communicating UML state ma-
chines [22,20]. We used UML as particular formal method since it has become
the de facto industrial standard for modelling and documenting software sys-
tems. The UML semantics associates a state machine to each object in a system
design, while the system’s behaviour is defined by the possible evolutions of the
resulting set of state machines that may communicate by exchanging signals.
All these possible system evolutions are formally represented as an L2TS, in
which the states represent the various system configurations and the transitions
represent the possible evolutions of a system configuration. In this L2TS, states
are labelled with the observed structural properties of the system configurations
(e.g. active substates of objects, values of object attributes, etc.), while tran-
sitions are labelled with the observed properties of the system evolutions (e.g.
which is the evolving object, which are the executed acions, etc.).

5 aSOAP: A Case Study

The particular case study we describe here has as main objective to define a
variant of SOAP [26] supporting asynchronous communications, driven step-by-
step by the results of a formal analysis. This approach thus contrasts with the
usual approach of performing analysis on an already specified protocol to verify
its correctness. The development of aSOAP is ongoing joint work with Telecom
Italia. Some initial modelling and verification results have been presented in [1].

The domain of the case study is the definition of a SOAP-based protocol
supporting asynchronous interactions, i.e. interactions different from the usual

5 In [1,13,14], a less restricted logic (μ-UCTL) was defined and used in previous ver-
sions of UMC. Essentially based on the full μ-calculus, μ-UCTL was still defined
over doubly labelled structures, but in that case the system transitions were labelled
with sequences of events rather than with sets. Moreover, since the model-checking
algorithm lacked the necessary optimizations, the complexity of the evaluation of
alternation-free formulae still had a quadratic complexity.
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synchronous “request-response” interactions supported by the available SOAP
implementations based on HTTP. For the following reasons, asynchronous inter-
actions are highly relevant in the delivery of telecommunication services:

– a service logic is triggered/activated by events produced, in an asynchronous
way, by the network/special resources, or must react to such events during
the execution of a service instance;

– requests produced by a service logic to a network/special resource may result
in long computations (e.g. the set-up of a call), which might also require the
involvement of end users;

– some service logic components may not be reachable (e.g. the ones deployed
on mobile terminals), e.g. due to the temporary absence of communication.

The final objective is thus to formally define aSOAP as a protocol that is able
to address most of these situations. We consider the following requirements.

Backward compatibility
– aSOAP must be compatible with SOAP v1.2 on HTTP;
– aSOAP must have limited impact on clients, i.e. clients that need no sup-

port for asynchronous interactions must be usual SOAP clients, working
in request-response mode, while clients that do need such support should
introduce only very limited variations w.r.t. normal SOAP requests.

Reachability
– aSOAP must be able to deal with the unreachability of the servers (e.g.

due to the lack of connectivity);
– aSOAP must be able to deal with the case in which a server cannot

return a (provisional or final) response due to the lack of connectivity;
– aSOAP must be able to deal with the case in which a (provisional or final)

response cannot be returned to a client due to the lack of connectivity.
Message Exchange Patterns

– aSOAP must be able to deal with requests that require the servers to per-
form some long-running computation (longer than the HTTP timeout)
before producing any results;

– aSOAP must be able to deal with requests with multiple responses.

We envision aSOAP to operate in a Client-Server architecture with an addi-
tional web service Proxy placed in between the Client and Server side. This Proxy
must guarantee that various attempts to contact either side are made in case
of temporary unavailability of the respective side. Moreover, aSOAP requires
that a Client, whenever it is willing to accept the possibility of an asynchronous
response to its request, sends to the Proxy not only its request but also the URL
at which it would like to receive the response. We consider this URL to be the
address of a generic “SOAP listener” and we assume the application level to be
equipped with a mechanism capable of receiving SOAP messages at this URL.

Before discussing some aspects of our formal specification of aSOAP, we first
list the assumptions that are part of the design of aSOAP.
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– The Proxy is always reachable by both the Client and the Server, whenever
they have an active connection;

– If the Client is willing to accept an asynchronous response to its SOAP
invocation, then it inserts in the SOAP header the URL of the SOAP listener
where it wants to receive the response;

– The URL in the header of an asynchronous SOAP invocation is the address
of a generic SOAP listener and the application level is equipped with a
mechanism for receiving SOAP messages at this URL;

– Upon receiving an asynchronous SOAP invocation from the Client, the Proxy
generates a request identifier ReqId that uniquely identifies the Client’s
SOAP invocation in further communications.

During several sessions between ISTI–CNR and Telecom Italia we discussed
our design and developed our formalisation of aSOAP in detail. In order to
facilitate the discussions about the behaviour of the various use case scenarios
of aSOAP, we decided upon a separate message sequence chart for each such a
scenario. Finally, all these scenarios were translated into an operational model,
in which the following concrete modelling choices were adopted:

– All SOAP invocations are asynchronous, i.e. we abstract from the syn-
chronous SOAP invocations that only serve to guarantee backward com-
patibility with SOAP v1.2;

– The URL in the header of a SOAP message is identified with the Client, i.e.
each Client is seen as just a listener of asynchronous SOAP invocations;

– A system model is constituted by a Server (and its subthreads), a Proxy
(and its subthreads) and a fixed (configurable) number of Clients;

– The Proxy and the Server may activate at most a fixed (configurable) number
of parallel subthreads;

– With the Client or the Server unreachable, the Proxy attempts to contact
them up to a configurable number of times;

– The Client issues a single SOAP invocation and then terminates.6

For a complete discussion on these modelling choices, we refer the reader to [1].
Specifying the formal model of aSOAP as a set of communicating UML state

machines has allowed us to express behavioural properties of our aSOAP model
in UCTL and to verify them with UMC. The reader can consult the full speci-
fication online [23]. In Figure 1, the activity of a Client, a Server thread and a
Proxy thread are depicted.

The full specification contains also the definition of the statecharts for the
classes Server and Proxy. Objects of these classes are very simple (they have
just one state) and their role is simply to forward any incoming request to
some available subthread, which will then perform all the relevant activities.
The actual complexity of the systems which can be built with these components
clearly depends on the number of Clients, Servers and Proxies that one wants

6 In the future we do intend to consider Clients that perform a loop of SOAP invoca-
tions or issue several SOAP invocations before awaiting the deferred SOAP results.
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to deploy, on the number of subthreads one assigns to each Server or Proxy and
on the maximum number of times a Proxy thread may retry to contact a Server
or a Client before it must give up.

send
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accept
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Response

accept
 Deferred

Notification

accept
 Client 

Response

Client Activity

send
Server Response

accept
Server Request /

send
Deferred Notification
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Server Request /

send
Server Response

Server Thread Activity handling service requests

Fig. 1. Activity of a Client, a Server thread and a Proxy thread
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The minimal system composed of 1 Client, 1 Proxy and 1 Server (the latter
two both with only 1 subthread) and 1 as maximum number of retries, clearly is
an example of a small system with only 118 states and 245 transitions. A more
complex system can be deployed by using 2 Clients, 1 Server and 1 Proxy (the
latter two with 2 subthreads each), and with up to 2 communication attempts.
Such a system contains 96, 481 states and 367, 172 transitions. Finally, a system
composed of 3 Clients, 1 Server and 1 Proxy (the latter two with 3 subthreads
each) instead is too complex to be able to explicitly measure its size (far more
than 600, 000 states and well over 1, 000, 000 transitions).

5.1 Verification of UCTL Formulae with UMC

In this section, we show the verification with UMC of several behavioural proper-
ties expressed in UCTL over our model of the aSOAP protocol. These properties
demonstrate the logic’s flexibility in dealing with both action- and state-based
properties. A different set of behavioural properties is verified in [1]. Property 1:

From every system state a Proxy thread can reach its initial state ‘Ready’

can be shown to hold by using UMC to verify the state-based UCTL formula

AG EF PT1.state = Ready,

in which PT1 is a Proxy Thread. This is different for Clients, since Property 2:

A Client C1 may reach a deadlock, i.e.
there exists a system state from which C1 cannot evolve

can be shown to hold by using UMC to verify the action-based UCTL formula

EF (¬EF < C1 : > true),

in which C1 : is satisfied by any system evolution in which object C1 is the one
that evolves. This outcome is not so bad as it might seem, because Property 3:

Whenever a Client C1 reaches a deadlock,
then C1 is either in state ‘Wait’ or in state ‘Deferred’

can be shown to hold by using UMC to verify the action/state-based UCTL
formula

AG ( (¬EF < C1 : > true) ⇒ (C1.state = Wait ∨C1.state = Deferred) ).

The time needed to verify any of the above formulae in the minimal system
mentioned above (with 118 states and 245 transitions) is negligible. The situation
is different for the system with 2 Clients specified above (with 96, 481 states and
367, 172 transitions). In spite of its higher complexity, the evaluation of the
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formula EF (¬EF < C1 : > true) (corresponding to Property 2) is still almost
immediate, since it requires the analysis of only 1998 states, while the remaining
formulae require the analysis of all system states and therefore their evaluation
requires about one minute (using a state of the art portable computer).

Finally, none of the above formulae can be verified over more complex systems.
However, formulae whose evaluation require the analysis of just a small fraction
of all the system states can be evaluated also for such complex systems. Consider,
e.g., the formula

EF EG ((PT1.state = ClientLoop2) ∧ < PT1 : > (PT1.state = Ready)),

which states that there exists an infinite path along which object PT1 always
remains in the ClientLoop2 state, although the object itself always has the possi-
bility of immediately returning to the state Ready in just one step. This formula
can be proved to hold also in case of a complex system composed of 3 Clients,
1 Server and 1 Proxy (but each with 3 subthreads), which has more than 600, 000
states and over 1, 000, 000 transitions. It takes just a few seconds, during which
only 92, 536 system states are analysed. Clearly it is simply a form of unfairness
in the scheduling that prevents the Proxy thread to complete its execution cycle.

6 Conclusions

In this paper, we have presented the action/state-based temporal logic UCTL
and its on-the-fly model checker UMC. The need to define an action/state-based
logic stems from the fact that in order to verify concurrent (software) systems,
it is quite often necessary to specify both state information and the evolution in
time by actions (events). As a result, semantic models should take both views
into account. The L2TSs that are at the basis of UCTL are one such semantic
model. Given a state of an L2TS, UMC evaluates the validity of a UCTL formula
on that state on the fly by analyzing the transitions allowed in that state, and
by analyzing the validity of some subformula in only some of the next reach-
able states, all this in a recursive way. Some clever “archiving” of performed
computations allows UMC to evaluate UCTL formulae in linear time.

UML is a graphical modelling language for object-oriented software (sys-
tems). UML models can be used to visualize, specify, build and document several
aspects—or views—of such systems. The UML semantics associates to each ac-
tive object a state machine, and the system’s behaviour is defined by the possible
evolutions of these communicating state machines. All possible system evolutions
can be formally represented as an L2TS in which the states represent the system
configurations and the transitions represent the possible evolutions of a system
configuration. As a result, UCTL can be used to express properties of the dy-
namic behaviour of complex systems described as UML state diagrams. The
ability to state structural properties of system configurations (state attributes
and predicates) and not just actions (events), opens the door to the modelling
and verification of structural properties of parallel systems. Examples include
topological issues, state invariants and mobility issues.
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