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An active bacterial community linked to high chl-a
concentrations in Antarctic winter-pack ice and
evidence for the development of an anaerobic sea-ice
bacterial community
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Antarctic sea-ice bacterial community composition and dynamics in various developmental stages
were investigated during the austral winter in 2013. Thick snow cover likely insulated the ice, leading
to high (o4 μg l–1) chlorophyll-a (chl-a) concentrations and consequent bacterial production. Typical
sea-ice bacterial genera, for example, Octadecabacter, Polaribacter and Glaciecola, often abundant in
spring and summer during the sea-ice algal bloom, predominated in the communities. The variability
in bacterial community composition in the different ice types was mainly explained by the chl-a
concentrations, suggesting that as in spring and summer sea ice, the sea-ice bacteria and algae may
also be coupled during the Antarctic winter. Coupling between the bacterial community and sea-ice
algae was further supported by significant correlations between bacterial abundance and production
with chl-a. In addition, sulphate-reducing bacteria (for example, Desulforhopalus) together with odour
of H2S were observed in thick, apparently anoxic ice, suggesting that the development of the
anaerobic bacterial community may occur in sea ice under suitable conditions. In all, the results show
that bacterial community in Antarctic sea ice can stay active throughout the winter period and thus
possible future warming of sea ice and consequent increase in bacterial production may lead to
changes in bacteria-mediated processes in the Antarctic sea-ice zone.
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Introduction

Antarctic sea ice is an important component of the
Southern Ocean ecosystem from both the geophysi-
cal and biogeochemical standpoints. It covers vast
areas from 3×106 km2 during the sea-ice minimum
in February up to 18.3 × 106 km2 in the September
maximum (Comiso, 2010). In contrast to the dimin-
ishing sea ice extent in the Arctic (Perovich et al.,
2014), Antarctic sea ice is globally expanding (IPCC,
2013). However, this encompasses a large spatial
heterogeneity meaning that there are indeed areas

(for example, the Antarctic Peninsula) in which the
surface ice temperatures are increasing and ice
extent decreasing (Stammerjohn et al., 2008;
Comiso, 2010). Also, the inter-annual variation in
sea ice is high: for example, in 2017 during February
minimum sea ice extent was 2.35 ×106 km2, which
was 24.4%, below the 1981–2010 average (NOAA,
2017).

In the Southern Ocean, dynamic sea-ice growth
through the pancake ice (PCI) cycle and deformed
growth (for example, rafting) is common (Lange
et al., 1989; Haas, 2010; Petrich and Eicken, 2010).
In addition, the thick snow cover and dynamic
growth cause flooding, which introduces additional
nutrients from seawater to the surface and internal
ice horizons (Lange et al., 1990; Eicken et al., 1994;
Fritsen et al., 1994). These physical events induce a
more distributed algal biomass than in the Arctic,
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that is, with chlorophyll-a (chl-a) peaks in the upper
and middle horizons of the sea-ice cover, in addition
to the more prevalent bottom-ice maxima (Meiners
et al., 2012; Arrigo, 2014). The highest chl-a
concentrations in Antarctic sea ice occur during
spring and summer. However, unlike in the Arctic,
peaks in chl-a are also observed in autumn (Fritsen
et al., 1994; Delille et al., 2002; Meiners et al., 2012).

Sea-ice algae, together with sea-ice bacteria are the
most productive and abundant organisms in ice. As
in the water column, bacteria in sea ice drive an
active microbial loop, in which dissolved organic
matter is recycled back to the upper trophic levels as
bacterial biomass (Kottmeier et al., 1987; Smith and
Clement, 1990; Laurion et al., 1995; Kaartokallio,
2004; Cowie et al., 2014). In addition, bacteria
decompose particulate organic matter and reminer-
alize nutrients (Sullivan and Palmisano, 1984;
Deming, 2010). Sea-ice bacteria and their community
structure are governed by abiotic and biotic factors
such as temperature, salinity, light, substrate and
nutrient availability, as well as grazing and viral lysis
(Kaartokallio, 2004; Mock and Thomas, 2005; Kuosa
and Kaartokallio, 2006; Riedel et al., 2007; Collins
et al., 2008, 2010; Piiparinen and Kuosa, 2011;
Collins, 2015). As the fluctuation of these factors is
highly seasonal, they also induce the seasonal
dynamics of bacterial abundance and community
composition in sea ice.

Most sea-ice bacterial community studies have
been conducted during spring and summer, when
the sea-ice algal mass growth provides ample

autochthonous substrate for bacteria. During the
spring and summer seasons, copiotrophic (that is,
bacteria adapted to growing best in nutrient-rich
environments) Gammaproteobacteria (for example,
genera Glaciecola and Colwellia) dominate the
bacterial communities, together with copiotrophic
Flavobacteriia (for example, genera Polaribacter and
Flavobacterium) and Alphaproteobacteria (for exam-
ple, genus Octadecabacter) both in first-year ice
(FYI) and multiyear ice (Bowman et al., 1997, 2012;
Brown and Bowman, 2001; Junge et al., 2002;
Brinkmeyer et al., 2003; Kaartokallio et al., 2008;
Deming, 2010; Hatam et al., 2014, 2016; Eronen-
Rasimus et al., 2015).

In contrast to spring and summer, bacterial
communities during winter are poorly known.
Members of the oligotrophic Alphaproteobacteria
of the SAR11 clade dominate the sea-ice bacterial
communities in the upper ice column during the
Arctic winter and remain nearly unchanged until the
algal mass accumulation in spring (Collins et al.,
2010). In newly formed Antarctic sea ice, bacterial
activity is temporarily suppressed and later restored
after consolidation of the sea ice (Grossmann and
Dieckmann, 1994; Helmke and Weyland, 1995).
With the consolidation of ice, psychrophilic
(that is, bacteria that grow best at temperatures
close to freezing point) predominante over psychro-
tolerant (that is, bacteria that tolerate cold tempera-
tures) bacteria, which indicates change in
community structure during winter (Helmke and
Weyland, 1995). However, the Antarctic wintertime
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Figure 1 Map of the study area in the Weddell Sea, showing the sampling stations during the Antarctic Winter Ecosystem Climate Study
(AWECS, leg ANT-XXIX/6) expedition. The map was generated with Ocean Data View (https://odv.awi.de; Schlitzer, 2016).
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bacterial community structure has not been
described to date, because the available information
is limited to isolated bacterial strains (Brinkmeyer
et al., 2003).

In this study, we describe the bacterial community
dynamics in the different developmental stages of
winter-pack ice in Antarctica. Understanding the
community dynamics allows us to assess the
biogeochemical role played by bacteria during
periods of ice cover and provide insights on the
potential consequences of climate change on the
biogeochemical cycles and food webs of ice-
covered seas.

Materials and methods

Study site, sampling and environmental variables
The samples were collected from 10 pack-ice
stations along the Weddell and Lazarev Seas during
the Antarctic Winter Ecosystem Climate Study
(AWECS, leg ANT-XXIX/6)-expedition aboard the
R/V Polarstern during the austral winter in June–July
2013 (Figure 1, Supplementary Table 1). The
samples included different sea ice developmental
stages: PCI, FYI and older fast ice/second-year ice
(hereafter called SYI, Tison et al., 2014). Based on
the preliminary interpretation of physical properties
(Tison et al., 2014), in the Eastern Weddell Sea the
ice was mostly frazil, deformed FYI with indication
of rafting and signs of flooding (for example, station
500). At stations 515 and 517 close to the Antarctic
Peninsula, the ice was predominantly columnar;
however, 515 was SYI whereas 517 was FYI (Tison
et al., 2014). All FYI and SYI stations were covered
with a thick snow cover (mean 22.1 cm, range 14.5–
35.6 cm), Tison et al., 2014) with generally increas-
ing snow cover along the developmental stages of
the ice (PCIoFYIoSYI), as previously described
(Supplementary Table 1, Haas, 2010). At station 515,
three sibling ice cores were collected two of which
were SYI and one was 3m long, from which only the
middle horizons were sampled. The middle section
had strong odour of H2S, suggesting anoxic condi-
tions (hereafter called ANOX).

The ice cores were drilled with a trace-metal-clean
(electropolished steel) ice auger (Lannuzel et al.,
2006, 2007), 14 cm in diameter. Two ice cores were
collected and pooled at each FYI station for the
microbiological analyses. We emphasised careful
sampling and subsequent sample processing to avoid
contamination. The ice cores collected were cut with
an ethanol-wiped handsaw into two to seven pieces,
depending on the ice thickness (each horizon
10–30 cm), crushed and placed in sterile plastic
containers at 4 °C over night in darkness after which
the rest of the ice was quickly melted in a water bath
with constant stirring. The melted samples were
immediately filtered after becoming fully melted. For
the ANOX, only ice sections from 130 to 160 cm
were sampled. Before melting, part of the ice core

was taken for the bacterial production measure-
ments. For the bacterial diversity analyses, direct
melting (Helmke and Weyland, 1995; Kaartokallio,
2004) was used to avoid external DNA or nutrient
contamination of the samples.

Bacterial abundance (flow cytometer)
The samples for bacterial abundance were fixed with
paraformaldehyde (final concentration 1%). The
cells were stained with SYBR Green I (Sigma-Aldrich
Inc, St Louis, MO, USA) at a final dilution of 1:10 000
for 15min in the dark and analysed with a CyFlow
Cube8 flow cytometer (Partek GmbH, Münster,
Germany) using a 488-nm laser (Gasol and Del
Giorgio, 2000) within 30min of staining.

Bacterial production
Bacterial production was measured as the incorpora-
tion of 3H-labelled thymidine (Fuhrman and Azam,
1982) immediately after sampling, following the
protocol described by Kaartokallio (2004). The ice
sections were crushed, and from each section two
aliquots and a formaldehyde-killed absorption blank
(final conc. 1.85%) of approximately 7.5 g of crushed
ice were taken. The samples were incubated in the
dark at approximately –0.8 °C for 18 h with 2ml of
0.2-μm-filtered and autoclaved seawater (salinity
33.9‰, measured on a unitless practical salinity
scale; however, as it is essentially equal to ‰, it is
used here; UNESCO, 1981), amended with
[methyl-3H]-thymidine (specific activity 20 Ci
mmol− 1; PerkinElmer Inc, Waltham, MA, USA) at a
final concentration of 20 nM. The incubations were
stopped by adding formaldehyde (final conc. of
1.85%). The unincorporated 3H-thymidine was
removed with the standard cold-trichloroacetic acid
extraction method (Fuhrman and Azam, 1980,1982).
The samples were filtered onto 0.2-μm mixed
cellulose ester filters (Advantec Mfs Inc, Dublin,
CA, USA), the filters dissolved in Insta-Gel
Plus scintillation cocktail (PerkinElmer) and the
radioactivity measured with a Tri-Carb 2900TR
scintillation counter (PerkinElmer) aboard the R/V
Polarstern.

DNA extraction
For the DNA extractions, approximately 500ml of
the melted sea-ice were filtered onto sterile 0.22-μm
membrane filters (Ø 47mm; Whatman GE Health-
care, Little Chalfont, Kent, UK) and frozen in liquid
nitrogen and later transferred to –80 °C.

The bacterial community DNA was extracted from
the filters with a PowerSoil DNA Isolation Kit (Mo
Bio Laboratories Inc, Carlsbad, CA, USA), as
described by Eronen-Rasimus et al. (2014), 6 months
after the cruise. In addition to the samples, negative
controls without the sample were extracted.
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Bacterial community analysis
For MiSeq sequencing, the 16S ribosomal RNA gene
region from V1 to part of the V3 was amplified with a
polymerase chain reaction, using the universal
bacterial primers F8 (Chung et al., 2004) and R492
(Edwards et al., 1989). A two-step polymerase chain
reaction and Illumina MiSeq (Illumina Inc, San
Diego, CA, USA) paired-end multiplex sequencing
were performed at the Institute of Biotechnology,
University of Helsinki, Finland.

Bioinformatics for the MiSeq data
In all, approximately 6.2 million raw reads covering
the V1–V3 region of the 16S ribosomal RNA gene
were obtained with the Illumina MiSeq platform.
Primer removal was done with Cutadapt (v. 1.7.1;
Martin, 2011). The paired-end reads were merged
with Paired-End reAd mergeR (Pear, v. 0.9.6; Zhang
et al., 2014). Quality filtering (4 400 bp, maximum
expected error 2), chimera checking (UCHIME; Edgar
et al., 2011) and operational taxonomic unit cluster-
ing (Edgar, 2013) were done according to the
UPARSE pipeline (Edgar, 2013). After quality filter-
ing, a total of 1 298 455 sequences remained for
further analyses. Taxonomic classification of the
operational taxonomic units was done with Silva
(v. 119, 60% confidence threshold; Quast et al.,
2013) in Mothur (v. 1.36.1; Schloss et al., 2009).
Before the statistical analyses, chloroplasts, mito-
chondria and singletons were removed based on the
phylogenetic classification with Silva, and the
libraries were normalised with metagenomeSeq
(Paulson et al., 2013) in R (v. 3.2.4)
(R Development Core Team, 2011). In all, 1273
operational taxonomic units including 717 232
sequences were obtained. Raw reads were deposited
into the Sequence Read Archive of National Center
for Biotechnology Information under study accession
number SRP094398.

Statistical analysis
All multivariate analyses were performed on the
Bray–Curtis dissimilarity matrix derived from
square-root-transformed, normalised values.
Square-root transformation was applied to reduce
the contribution of dominant species, because the
Bray–Curtis resemblance measure does not scale
individual sequences by the total values throughout
all samples, and our samples showed large differ-
ences in abundance.

The bacterial community dynamics among all
samples (n=50) was visualised with non-metric
multidimensional scaling (50 iterations). To deter-
mine whether the sea-ice bacterial communities
differed significantly between different ice types
(fixed factor; PCI = 7, FYI: n=29, SYI: n=9, ANOX:
n=5), a permutational multivariate analyses of
variance (PERMANOVA) with pairwise comparisons
(Anderson, 2001; McArdle and Anderson, 2001) was

performed. As the data were unbalanced, all the tests
were performed using type III sums of squares.
A total of 9999 permutations, using unrestricted
permutation of raw data (Manly, 1997) were per-
formed, which is recommended for one-way designs
(Anderson et al., 2008). The homogeneity of disper-
sion was tested with permutational multivariate
analysis of dispersion (Anderson, 2006), using the
distance to the centroids. Homogeneity of dispersion
(that is, homogeneity of variance) is an assumption
in PERMANOVA and thus needed to discriminate
whether the location, dispersion or both explains the
variation in the bacterial communities.

To determine the association between the chl-a
and bacterial community composition, canonical
analysis of principal coordinates (canonical correla-
tion analysis; Anderson and Willis, 2003) based
on the Bray–Curtis dissimilarity matrix derived
from square-root-transformed, normalised values
of the bacterial 16S ribosomal RNA gene
sequences was performed (test statistics with 9999
permutations).

The correlation between chl-a and bacterial pro-
duction (measured as thymidine incorporation) and
abundance were calculated with two-way Spear-
man’s rank-sum rho with a base package of R
software (v. 3.2.4; R Development Core Team, 2011).

For the multivariate analyses, Plymouth Routines
In Multivariate Ecological Research (PRIMER) v. 6
software (Clarke and Gorley, 2006) with the add-on
package permutational ANOVA/MANOVA+ (PER-
MANOVA+) (Anderson et al., 2008) were used.

Results and discussion

The bacterial communities in the different develop-
mental stages of sea ice, that is, PCI, FYI, SYI and
ANOX, were significantly different. Bacterial com-
munity dynamics was linked with the age of the ice
and increasing chl-a concentrations, suggesting that
as in spring and summer sea ice, the sea-ice bacteria
and algae may be also coupled during the Antarctic
winter. In addition, predominance of sulphate-
reducing bacteria together with the odour of H2S
suggests that under suitable conditions reduction of
sulphur compounds may occur in sea ice.

Based on the preliminary interpretation of physi-
cal properties (Tison et al., 2014), all FYI and SYI
stations were covered with a thick snow layer (mean
22.1 cm, range 14.5–35.6 cm), efficiently insulating
the ice from cold air leading to warmer ice (Tison
et al., 2014). The ice was, in most cases, permeable
(relative brine volume above 5%, calculated as a
function of temperature and salinity—equation 2.6 of
Petrich and Eicken (2010); Golden et al. (1998);
Tison et al. (2014)). Ice permeability allows brine
transport and therefore potentially favourable con-
ditions for the sea-ice bacteria and algae.

The maximum chl-a concentrations, that is, a
proxy for algal biomass, globally increased along
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with the age of ice from young PCI to thick SYI
(Figure 2). The variation in chl-a concentrations in
FYI was wide, ranging from stations with low
(o4 μg l−1) chl-a concentrations to stations (493,
496, 498, 500 and 506b) that showed chl-a concen-
trations up to 18.1 μg l− 1 (Tison et al., 2014). The
highest chl-a (113.15 μg l−1) concentrations were
observed in the middle of the SYI (110–120 cm),
suggesting that it originated from the sea-ice-algal
bottom ‘bloom’ from the previous summer. Unlike
the typical bottom-ice-dominated chl-a peaks in the
Weddell Sea (Meiners et al., 2012), the chl-a peaks in

our study were vertically distributed along the ice
cores. This was the likely result of flooding, rafting
and the predominance of frazil ice (preliminary ice-
type observations from Tison et al., 2014), which
enhance scavenging of algae (Garrison et al., 1983;
Arrigo et al., 2010). High chl-a concentrations in FYI
were arguably preserved from the autumnal growth
of sea-ice algae as the day length was very short and
solar angle and light levels low. Low incident
irradiation combined with thick snow cover likely
prevented any noticeable photosynthetic activity. In
addition, high cell-specific chl-a content because of
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Figure 2 Bacterial production (measured as thymidine incorporation), bacterial abundance and chl-a concentrations in the sea-ice
samples, Weddell Sea, Antarctica. Chl-a results are redrawn from Tison et al. (2014). Note the different scales.
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the low-light adaptation may have contributed to the
high chl-a concentrations. However, at the early-
winter PCI stations with thin or no snow cover in the
Eastern Weddell Sea, the growth of sea-ice algae
could have been possible, as reported also earlier
(Melnikov et al., 1998).

Strong association between the bacterial commu-
nity composition and chl-a was observed in canoni-
cal correlation analysis (canonical analysis of
principal: 0.92, P=0.0001; Anderson and Willis,
2003), indicating that the development of the
bacterial community was associated with the avail-
ability of the algal-derived substrate (Figure 3). In
addition, both the bacterial production and abun-
dance correlated with the chl-a concentrations
(Spearman’s ρ: 0.63, P: 2.291 ×10−6, ρ: 0.83,
P: 1.51 × 10−11), further supporting the coupling
between the algal and bacterial communities. The
coupling of the sea-ice bacterial community compo-
sition and chl-a has been also previously reported in
early spring and summer sea ice (Cowie et al., 2014;
Eronen-Rasimus et al., 2016). However, a previous
mid-winter study showed no correlation between
chl-a and bacterial biomass likely because of the low
chl-a concentrations in the ice (Stewart and Fritsen,
2004). Our results suggest that warmer winter ice
temperatures and associated high algal biomass in
the ice may also sustain bacterial activity during the
winter months, which may affect the bacteria-
mediated biogeochemical processes in the ice. Mid-
winter algal peaks and associated bacterial activity
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Figure 3 Canonical analysis of principal coordinates
(CAP canonical correlation analysis; Anderson and Willis,
2003) based on the square-root transformed Bray–Curtis dissim-
ilarity matrix of the bacterial 16S ribosomal RNA (rRNA)
gene sequences. In total, CAP analysis explained 95% of the
variation in the bacterial communities (choice of m=19,
P=0.0001), with very high canonical correlation between the
bacteria community composition and chl-a concentration (0.92,
P=0.0001).
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have also been described in warm and nutrient-rich
Baltic Sea ice (Kaartokallio, 2004).

The bacterial communities differed significantly
among the ice types (PERMANOVA: pseudo-F
12.124, P=0.0001; pairwise tests: PCI vs FYI, PCI
vs ANOX, FYI vs ANOX, FYI vs MYI and MYI vs
ANOX P: 0.0001, PCI vs SYI 0.0002, Figure 4). As the
differences in dispersion (that is, assumption of the
homogeneity of variance is violated, permutational
multivariate analysis of dispersion; Po0.05) were
detected in comparison with the PCI and other ice
types, the differences were explained by both
location (that is, ice type) and dispersion (that is,
differences between group variances). The disper-
sion effect was visualised in the non-metric multi-
dimensional scaling (Figure 4), because the PCI
station formed a tighter group than did the other
ice types. However, despite the dispersion effect, the
development of the communities along with the age
of the ice was evident according to non-metric
multidimensional scaling (Figure 4), supporting the

view that there were real differences in bacterial
communities between the ice types.

Alphaproteobacteria, Gammaproteobacteria and
Flavobacteriia dominated the bacterial communities
in all ice types (PCI, FYI, SYI, ANOX; Figure 5).
Alphaproteobacteria decreased along with the age of
the ice (PCI: 48.8%; FYI: 40.0%; SYI: 31.2%)
whereas Gammaproteobacteria and Flavobacteriia
increased (PCI: 12.7 and 19.8%; FYI: 19.7 and
30.5%; SYI: 23.2 and 32.9%). The predominant
bacterial groups in FYI and SYI were mostly
common sea-ice bacteria such as Rhodobacteraceae
(for example, genera Octadecabacter and Lokta-
nella), Alteromonadaceae (for example, genera Gla-
ciecola and Candidatus Endobugula) and the BD7-8
marine group (belonging to Gammaproteobacteria),
as well as Flavobacteriaceae (for example, genus
Polaribacter; Figure 5). However, the prevalence of
the most abundant genera in PCI, FYI and SYI varied
among the ice types, for example, showing a shift
from predominance of common open-water SAR11
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representing 40.1% of all normalised operational taxonomic units (OTUs) derived from the Weddell Sea ice. T= top ice, U=upper
intermediate ice, M=middle ice, L = lower intermediate ice and B=bottom ice. Plot created with ggplot2 (v. 2.1.0.; Wickham, 2009).
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clade bacteria (Morris et al., 2002) in PCI to the more
typical sea-ice bacteria, such as Polaribacter
(Figures 5 and 6). The predominance of Gammapro-
teobacteria and Flavobacteriia has been reported
especially in spring/summer during the sea-ice algal
‘bloom’ (Brown and Bowman, 2001; Brinkmeyer
et al., 2003; Bowman et al., 2012; Torstensson
et al., 2015). However, they can also be predominant
at other times of the year, for example, the Austral
autumn, if algal-derived substrate is available
(Brinkmeyer et al., 2003; Eronen-Rasimus et al.,
2014). Thus, it is likely that these copiotrophic
bacteria are present in Antarctic sea ice throughout
the winter and able to maintain their activity, if the
chl-a concentrations are high enough and physical
conditions favourable. This is in line with an earlier
culture-based study in the Weddell Sea ice (Helmke
and Weyland, 1995), which showed the proportion
of psychrophiles in bacterial community increasing
with the age of the ice. The results also show that the
wintertime bacterial community dynamics in Ant-
arctic sea ice differ from those of the oligotrophic
Alphaproteobacteria (SAR11 clade)-dominated win-
ter Arctic sea ice (Collins et al., 2010).

In addition to these common sea-ice bacterial
classes, the ANOX ice samples also showed a
predominance of atypical sea-ice bacterial classes,
such as Deltaproteobacteria (for example, genera
Desulforhopalus and Desulfofrigus), Epsilonproteo-
bacteria (for example, genera Sulfurospirillum and
Arcobacter) and Bacteroidia (for example, genus
Marinifilum; Figure 5). ANOX likely formed because
of the entrapment of dense algal accumulations
between rafted ice floes, where subsequent bacterial
activity may have caused oxygen depletion and the
establishment of anaerobic bacterial communities
including potential sulphate-reducing bacteria.
Based on the detected odour of H2S, the bacteria
had been actively growing and reducing sulphur
compounds in the ice. There is also previous
evidence of transient anoxic conditions and anaero-
bic reactions such, as denitrification, in the ice
(Kaartokallio, 2001; Rysgaard and Glud, 2004;
Rysgaard et al., 2008). Based on our data, we cannot
conclude how commonly anaerobic bacteria occur in
the Antarctic winter-pack ice or deduce the origin of
the anaerobic bacterial community. However,
the presented data suggest that, under specific
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Figure 6 Ternary diagram (ggtern, v2.1.1; Hamilton, 2016) of 16S ribosomal RNA (rRNA) gene sequences (~450 bp) representing
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conditions, anaerobic bacteria may become locally
predominant in sea ice.

Conclusions

Our study is the first of its kind to describe the
wintertime bacterial community dynamics in Ant-
arctic sea ice and show that under suitable condi-
tions anaerobic bacteria may become predominant in
the sea-ice bacterial community. The thick insulating
snow cover warmed the ice sustaining high chl-a
concentrations. In general, common sea-ice bacterial
genera, for example, Octadecabacter (Alphaproteo-
bacteria), Polaribacter (Flavobacteriia) and Glacie-
cola (Gammaproteobacteria), usually common in
spring and summer sea ice, predominated in the
communities. The bacterial community structure,
abundance and activity were driven by chl-a,
suggesting that permeable ice with associated high
algal biomass sustain bacterial activity during the
Antarctic winter. In addition, to the common sea-ice
bacterial classes, predominance of sulphate-reducing
bacteria (for example, Desulforhopalus, Desulfofri-
gus and Sulfurospirillum) was observed in the
ANOX together with the odour of H2S suggesting
that under suitable conditions sulphur compounds
may be reduced in sea ice. In all, the results suggest
that sea-ice bacterial communities can remain
dynamic throughout the winter if physical condi-
tions are favourable and the chl-a concentrations
high enough. Thus, the possible future warming of
sea ice and consequent increase in bacterial produc-
tion may induce changes in major bacteria-mediated
biogeochemical processes in the Antarctic sea-
ice zone.
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