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Abstract—Obtaining training data for land cover classification
using remotely sensed data is time consuming and expensive es-
pecially for relatively inaccessible locations. Therefore, designing
classifiers that use as few labeled data points as possible is highly
desirable. Existing approaches typically make use of small-sample
techniques and semisupervision to deal with the lack of labeled
data. In this paper, we propose an active learning technique
that efficiently updates existing classifiers by using fewer labeled
data points than semisupervised methods. Further, unlike semi-
supervised methods, our proposed technique is well suited for
learning or adapting classifiers when there is substantial change
in the spectral signatures between labeled and unlabeled data.
Thus, our active learning approach is also useful for classify-
ing a series of spatially/temporally related images, wherein the
spectral signatures vary across the images. Our interleaved semi-
supervised active learning method was tested on both single and
spatially/temporally related hyperspectral data sets. We present
empirical results that establish the superior performance of our
proposed approach versus other active learning and semisuper-
vised methods.

Index Terms—Active learning, hierarchical classifier, multi-
temporal data, semisupervised classifiers, spatially separate data.

I. INTRODUCTION

R
ECENT advances in remote sensing technology have

made hyperspectral data with hundreds of narrow con-

tiguous bands more widely available. The hyperspectral data

can therefore reveal subtle differences in the spectral signatures

of land cover classes that appear similar when viewed by

multispectral sensors [1]. If successfully exploited, the hyper-

spectral data can yield higher classification accuracies and more

detailed class taxonomies. However, the task of classifying

hyperspectral data also has unique challenges.

Supervised statistical methods require labeled training data

to estimate parameters. It is expensive and time consuming to

obtain labeled data, but the very high dimensionality of the

hyperspectral data makes it difficult to design classifiers using

only a few labeled data points.

The task of classifying hyperspectral images obtained over

different geographic locations or multiple times proportionately
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becomes more complex as factors such as atmospheric and

light conditions, topographic variations, etc., alter the spectral

signatures corresponding to the same land cover type across

different images. Rather than acquiring labeled data from each

of the spatially/temporally related images, it would be very

desirable to acquire labeled data from a single image and

exploit that knowledge for constructing a new classifier for a

new but related image. We refer to this concept of exploiting

labeled data from related images as the knowledge transfer

scenario [2].

The focus of this paper is on hyperspectral image clas-

sification using very few labeled data points. Two popular

machine learning approaches for dealing with this problem are

semisupervised learning and active learning. Semisupervised

algorithms incorporate the unlabeled data into the classifier

training phase to obtain better decision boundaries. Some of

the more popular semisupervised classification algorithms are

techniques based on Expectation Maximization (EM) [3] and

transductive support vector machines [4]. An overview of the

semisupervised classification techniques can be found in [5].

In contrast, active learning [6] assumes the existence of a

rudimentary learner trained with a small amount of labeled

data. The learner has access to both the unlabeled data and

a “teacher.” The learner then selects an unlabeled data point

and obtains its label from the teacher. The goal of the active

learner is to select the most “informative” data points so as to

accurately learn from the fewest such additionally labeled data

points. Several active learning algorithms have been proposed,

which differ in the way the unlabeled data points are chosen.

In this paper, we explore the efficacy of combining semi-

supervision with a new active learning technique in building

hyperspectral classifiers using very little labeled data. Our tech-

nique is applicable to both tasks of single-image classification

and knowledge transfer. For single-image classification, we

assume that we have very little labeled data from the image.

We then use active learning to select unlabeled data points from

the same image for retraining the classifier. In the knowledge

transfer scenario, we assume that we have several temporally

or spatially related images. The labeled data from one such

image are used to build the initial classifier. The unlabeled

data points are then selected from the temporally or spatially

separate image to efficiently update the existing classifier for

this separate image.

Our proposed method works with any generative classifier.

In this paper, we evaluate our technique using two such clas-

sifiers, namely the Maximum-Likelihood (ML) classifier and

the Binary Hierarchical Classifier (BHC). We present results on

several isolated and spatially/temporally related hyperspectral
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images. In all cases, our method of incorporating semisuper-

vision with active learning is found to perform better than other

active learning approaches (also interleaved with semisuper-

vision) and classical semisupervised methods.

II. RELATED WORK

The classification of hyperspectral data using labeled data,

including specialized techniques for dealing with small sample

sizes [7], [8], has been well studied in the remote sensing

community, so we do not review this literature but refer to the

special issue [9]. Rather, since the focus of this paper is on

learning classifiers when only a portion of the data is labeled,

we focus on the existing literature on semisupervised learning

and knowledge transfer for remotely sensed data. To our knowl-

edge, there has been very little work in using active learning for

the classification of remotely sensed data. Hence, our review of

active learning concentrates on the general theoretical frame-

works developed in the machine learning community.

A. Semisupervised Learning for Single-Image Classification

Given a mixture of labeled and unlabeled data, semisuper-

vised classification algorithms [5] try to improve the classifi-

cation accuracy by making use of the unlabeled data to obtain

better classification boundaries. Semisupervised methods that

make use of EM have had considerable success in a number

of domains, especially that of text data analysis and remote

sensing.

The advantages of using unlabeled data to aid the classifi-

cation process in the domain of remote sensing data were first

identified and exploited in [7]. In this paper, the authors made

use of unlabeled data via EM to obtain better estimates of the

class-specific parameters. It was shown that using unlabeled

data enhanced the performance of the maximum a posteriori

probability classifiers, especially when the dimensionality of

the data approached the number of training samples. Sub-

sequent extensions to the EM approach include using “semi-

labeled” data in the EM iterations [10], [11]. In these methods,

the available labeled data are first used to train a supervised

classifier to obtain tentative labels for the unlabeled data. The

semilabeled data thus obtained are then used to retrain the

existing classifier, and the process is iterated until convergence.

In addition to the typical semisupervised setting, unlabeled

data have also been utilized for “partially supervised classifica-

tion” [12], [13]. In partially supervised classification problems,

training samples are provided only for a specific class of in-

terest, and the classifier must determine whether the unlabeled

data belong to the class of interest. While Mantero et al. [13]

attempt to model the distribution of the class of interest and

automatically determine a suitable “acceptance probability,”

Jeon and Landgrebe [12] make use of the unlabeled data while

learning an ML classifier to determine whether a data point is

of interest or not.

B. Semisupervised Learning for Multi-Image Classification

The possibility that the class label of a pixel could change

with time was first explored in [14]. In this paper, the joint

probabilities of all the possible combinations of classes be-

tween the multitemporal images were estimated and used in

the classification rule. However, the proposed “multitemporal

cascade classifier” requires labeled data from all the images

of interest. More recently, unsupervised algorithms have been

proposed whereby changes in the label of a particular pixel

in a multitemporal sequence are automatically detected [15].

Supervised methods that automatically try to model the class

transitions in multitemporal images have also been investigated

[16]. Another supervised approach involves building a local

classifier for each image in the sequence and combining the

decisions, either via a joint-likelihood-based rule or a weighted

majority decision rule based on the reliabilities of the data sets

and that of the individual classes, to yield a “global” decision

rule for the unlabeled data [17]. Still other spatial–temporal

methods utilize the temporal correlation of the classes between

images to help improve the classification accuracy [18], [19].

It is important to note that the standard formulation for

semisupervised classification techniques assumes that both

labeled and unlabeled data have the same class-conditional

distributions. This assumption is violated for the knowledge

transfer scenario considered in this paper. While applying a

classifier learned on a particular image to a spatially/temporally

separated image, it is likely that the statistics of the data from

the new images significantly differ from the original image. The

standard semisupervised approach may not be the best option.

C. Knowledge Transfer for Classification of Related Images

A pioneering attempt at unsupervised knowledge transfer

for multitemporal remote sensing images was made in [20].

In this paper, the authors consider a fixed set of land cover

classes whose spectral signatures vary over time. Given an

image t1 of a certain land area with a labeled training set, the

problem is to classify pixels of another image t2 of the same

land area obtained at a different time. An ML classifier is first

trained on the labeled data from t1 assuming that the class-

conditional density functions are Gaussian. The mean vector

and the covariance matrix of the classes from t1 are used

as initial approximations to the parameter values of the same

classes from t2. These initial estimates to the classes from t2 are

then improved via EM using the corresponding unlabeled data.

A recent work exploited the “contextual” properties of a

classifier trained using data acquired from one area to help

classify the data obtained from spatially and temporally dif-

ferent areas [2]. A multiclassifier system called the BHC [21]

was used for this purpose. The BHC automatically derives a

hierarchy of the target classes based on their mutual affinities.

This hierarchy, along with the features extracted at each node

of the BHC tree, is used to transfer the knowledge from an

existing classification task to another related task. The available

unlabeled data are then used to update the existing BHC via

semisupervised learning techniques to better reflect the statis-

tics of the data from new areas. It was shown that exploiting

contextual information yielded better classification accuracies

than other powerful multiclassifier systems, such as the error-

correcting output code [22], for the purposes of knowledge

transfer in hyperspectral data.
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D. Active Learning

In a typical active learning setting, a classifier is first trained

from a small amount of labeled data. The classifier also has

access to the set of unlabeled data as well as a “teacher.” The

classifier then selects a data point from the set of unlabeled data

points and obtains the corresponding label from the teacher.

The goal of the algorithm is to choose data points such that

a more accurate classification boundary is learned using as few

additional labeled data points as possible. Stated formally, let

X ∈ ℜ(n×m) be a random vector following a certain probability

distribution, for example, PX . Assume that the learner has

access to a set of random instances D = {xi}
n
i=1 drawn from

PX . Let DL ⊂ D be the subset for which the true target value

{yi}
n
i=1 has been provided to train a classifier. Active learning

algorithms then select x̂ from DUL = D\DL and retrain the

classifier with the appended training set D+
L = DL ∪ (x̂, ŷ).

Note that the learner does not have access to the label ŷ prior

to committing to a specific x̂. The process of identifying x̂

and adding it to DL is repeated for a user-specified number of

iterations. The different active learning methods differ in the

criteria used to select x̂.

The only work that applies active learning for the classifica-

tion of remotely sensed data that we are aware of at this time

is that of Mitra et al. [23], which restricts itself to multispectral

images. In [23], Mitra et al. make use of active learning while

training support vector machines, and identify x̂ from DUL

based on the distance of the unlabeled data points from the

existing hyperplane. The dependence of the selection criterion

for x̂ on the hyperplane limits the approach to Support Vector

Machine (SVM) type classifiers.

A statistical approach to active learning for regression prob-

lems was proposed by Cohn et al. [24], where bias-variance

decomposition of the squared error function is used to select

x̂. Assuming an unbiased learner, x̂ is selected such that the

resulting D+
L minimizes the expected variance in the output of

the learner measured over X , where the expectation is taken

over P (Y |x̂).
In a related work, MacKay [6] proposed an information-

based objective function for active learning. In this setting,

the true target function is characterized by a parameter vector

w over which a probability distribution P (W |D) is defined.

Defining S as the entropy of P (W |DL) and S+ as the entropy

with P (W |D+
L ), the goal is to select x̂ such that the expected

change in entropy of the distribution (S − S+) is maximum.

The authors also show that maximizing the expected change in

entropy is the same as maximizing the Kullback–Leibler (KL)

divergence between P (W |D+
L ) and P (W |DL) [25]. Under the

regression setting, it is shown that choosing x̂ as the point for

which the estimated target value (based on w) has the maximum

variance causes the maximum increase in mutual information

of the parameter vector. The authors also present a closed-

form solution in the regression setting for identifying x̂ with

the maximum information gain.

An active learning approach that makes use of the

a posteriori probability density function (pdf) (P (Y |X)) was

proposed in [26]. Assuming there exists a true probability

distribution (Ptrue(Y |X)), a user-defined loss function L, and

the a posteriori probability distribution estimated from the

training set (PDL
(Y |X)), the expected loss of the learner is

defined as

EDL
(L) =

∫

x

L (Ptrue(Y |x), PDL
(Y |x)) P (x)dx. (1)

Active learning proceeds by selecting a data point such that the

expected error using the appended training set D+
L is the least

over all the possible x̂ ∈ DUL. However, since Ptrue(Y |X) is

unknown, the authors propose using PDL
(Y |X) itself as an

estimate for the unknown true distribution. This substitution

renders the expected loss function meaningless when L is cho-

sen to be the Euclidean distance. When using the KL divergence

as the loss function, the equation reduces to the negative entropy

of PDL
(Y |X) [26].

Given a probabilistic binary classifier, the uncertainty sam-

pling technique proposed by Lewis and Gale [27] chooses the

data point whose a posteriori estimates PDL
(y|x̂) are closest

to 0.5. Since the method focuses on examples closer to the

decision boundaries, it is not clear whether this method will be

of much use for data sets with considerable overlap between

classes as data points close to the decision boundary will

always be chosen for labeling, which results in skewed class-

conditional probability estimates.

Committee-based learners comprise another popular class of

“multihypothesis” active learning algorithms. Of these meth-

ods, the “query by committee” (QBC) approach in [28] is a

general active learning algorithm that has theoretical guarantees

on the reduction in prediction error with the number of queries.

Given an infinite stream of unlabeled examples, the QBC picks

the data point on which instances of the Gibbs algorithm, which

are drawn according to a probability distribution defined over

the version space, disagree. However, the algorithm assumes

the existence of a Gibbs algorithm and noise-free data. Several

variations of the original QBC algorithm have been proposed,

such as the Query by Bagging and Query by Boosting algo-

rithms [29] and the adaptive resampling approach [30].

Saar-Tsechansky and Provost apply active learning principles

to obtain better class (a posteriori) probability estimates [31].

Given a probabilistic classifier, the Bootstrap-LV attempts to

select x̂ with the highest “local variance” assuming that the

example that has a high variance in its class probability estimate

is more difficult to learn and hence should be queried. An

extension of the Bootstrap-LV algorithm to the multiclass case

[32] makes use of the Jensen–Shannon divergence to measure

the uncertainty in the class probability estimates.

McCallum and Nigam [33] combine EM and active learn-

ing for text classification. Based on the QBC approach, the

“density-weighted pool-based sampling” uses the average KL

divergence between the a posteriori class distribution of each

classifier and the mean a posteriori class distribution (i.e.,

the Jensen–Shannon divergence with equal weights) to assign

a disagreement score to each x in DUL. The disagreement

measure is then combined with a density metric that ensures

that the algorithm chooses an x̂ that is similar to many other

data points in D. Thus, each x̂ is not only representative of other
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data points but also causes significant disagreement among the

committee members.

Active learning has also been applied in the multiview setting

[34]. In the multiview problem, the features are partitioned into

subsets, each of which is sufficient for learning an estimate

of the target function. In the co-testing family of algorithms,

classifiers are constructed for each view of the data. Pro-

vided the views are “compatible” and “uncorrelated,” the data

points on which the classifiers disagree are likely to be most

informative.

III. PROPOSED APPROACH

We propose a new active learning technique that can be used

in conjunction with any classifier that determines the decision

boundary via (an estimate of) a posteriori class probabilities,

i.e., classifiers that are probabilistic/generative rather than dis-

criminative [35].

Our approach strikes a middle ground between the methods

proposed in [6] and that in [26]. As in [26], we make use

of the a posteriori probability distribution function P (Y |X)
to guide our active learning process. The loss function we

propose is similar to that in [6] in that we attempt to increase

the information gain between P
D

+

L

(Y |X) and PDL
(Y |X), i.e.,

the a posteriori pdfs estimated from D+
L and DL, respectively.

Maximizing the expected information gain between P+
DL

(Y |X)
and PDL

(Y |X) is equivalent to selecting the data point x̂

from DUL such that the expected KL divergence between

P+
DL

(Y |X) and PDL
(Y |X) is maximized. That is, we try to

select those data points that change the current belief in the

posterior probability distribution the most.

Since the true label of x̂ is initially unknown, we follow the

methodology in [24] and [26] and estimate the expected KL

distance between P+
DL

(Y |X) and PDL
(Y |X) by first selecting

x̃ ∈ DUL and assuming ỹ to be its label. Let D+
UL = DUL\x̃,

D+
L = DL ∪ (x̃, ỹ), and |D+

UL| be the number of data points

in the set D+
UL. Estimating via sampling, the proposed KLmax

function can be written in terms of (x̃, ỹ) as

KLmax
D

+

L

(x̃, ỹ)=
1

∣

∣D+
UL

∣

∣

∑

x∈D
+

UL

KL
(

P+
DL

(Y |x)‖PDL
(Y |x)

)

.

(2)

The KL divergence between the two probability distributions is

defined as

KL
(

P+
DL

(Y |x)‖PDL
(Y |x)

)

=
∑

x∈D
+

UL

P+
DL

(Y |x) log

(

P+
DL

(Y |x)

PDL
(Y |x)

)

. (3)

Note that simply assigning a wrong class label to ỹ for x̃ can

result in a large value of the corresponding KLmax
D

+

L

. Hence,

as in [24] and [26], we use the expected KL distance from

P+
DL

(Y |x) and PDL
(Y |x), with the expectation estimated over

PDL
(Y |x), and then select the x̂ that maximizes this dis-

tance as

x̂ = argmax
x̃∈DUL

∑

ỹ∈Y

KLmax
D

+

L

(x̃, ỹ)PDL
(ỹ|x̃). (4)

The efficacy of our method strongly depends on the cor-

rectness of the posterior probability estimates. The very high

dimensionality (>100 features) of the hyperspectral data cou-

pled with the lack of sufficient quantities of labeled data could

result in skewed estimates of the parameters of the probability

distributions. The dimensionality of the data is reduced via

feature selection/extraction techniques [36], and the EM algo-

rithm is utilized with the active learning process to improve the

estimates.

The following subsections describe our method in more de-

tail for the two different application scenarios, i.e., classifying

a single hyperspectral image and knowledge transfer between

multiple temporally/spatially related images. We use an ML

classifier and our own BHC, in which each class is modeled

by a multivariate Gaussian. However, it should be clear that

our technique can be used with any classifier that can produce

estimates of a posteriori class probabilities.

A. Active Learning for Classifying a Single Image

Let us assume that we have a small amount of labeled

data from the hyperspectral image to be classified. The high-

dimensional data are first projected into a reduced space using

feature selection/extraction techniques. We choose the Fisher-m

feature extractor [37] for the following reasons: 1) the Fisher

extractor produces a feature space that is most suitable for

discriminating the different land cover classes; and 2) the Fisher

discriminant makes use of the estimates of the class distribu-

tions to determine the reduced space and can be continually

updated to reflect the changes in the estimates as the learning

proceeds.

When using the ML classifier with multivariate Gaussians

to model the class-conditional probability distributions, the

initial parameters of the Gaussians are estimated using the

available labeled data. The E-step of the algorithm determines

the posterior probabilities of the unlabeled data based on the

Gaussians. The probabilities thus estimated are then used to

update the parameters of the Gaussians (M-step). EM itera-

tions are performed until the average change in the posterior

probabilities between two iterations is smaller than a specified

threshold [20]. A new Fisher feature extractor is computed for

each EM iteration based on the statistics of the classes at that

iteration. The updated extractor can then be used to project the

data into the corresponding Fisher space prior to the estimation

of the class-conditional pdfs.

Setting PDL
(Y |X) as the posterior probability of the unla-

beled data DUL, which is obtained at the end of the EM iter-

ations, (x̂, ŷ) is selected from DUL such that the expected KL

divergence between P+
DL

(Y |X) and PDL
(Y |X) is maximized,

where D+
L = DUL ∪ (x̂, ŷ). For reasons of computational ef-

ficiency, (x̂, ŷ) is selected from a randomly sampled subset of

DUL. A data point x̃ is selected from the subset of DUL, and
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the label ỹ is assigned to it. This new data point (x̃, ỹ) is then

used to update the existing class parameter estimates, and a new

posterior probability distribution P+
DL

(Y |X) is obtained. Using

(2) and (4), the expected value of KLmax
D

+

L

(x̃, ỹ) is computed

over D+
UL = DUL\x̃ for all possible ỹ. The data point (x̂, ŷ)

from DUL with the maximum expected KL divergence is then

added to the set of labeled data points, where ŷ is hereafter

assumed to be the true label of x̂.

For the next iteration of active learning, the EM process is

repeated but with two differences: 1) the Gaussian parameter

estimates from the previous iteration are used to initialize the

EM process, and 2) constrained EM is employed, wherein the

E-step only updates the posterior probabilities for the unlabeled

data while fixing the memberships of the labeled instances

according to the known class assignments.

B. Active Learning for Knowledge Transfer

Assume that the hyperspectral data are available from two

spatially (or temporally) different areas, i.e., Areas 1 and 2, and

that there is an adequate amount of labeled data from Area 1 to

build a supervised classifier. The Fisher-m feature extractor is

computed from the Area 1 data to determine a low-dimensional

discriminatory feature space.

The one difference between active learning for the single-

image case and that of the knowledge transfer scenario is

that in the latter the unlabeled data are drawn from spatially/

temporally removed data. While the labeled data from Area 1

are only used to initialize the very first EM iteration, subsequent

EM iterations are guided by the posterior probabilities assigned

to the unlabeled Area 2 data. Active learning proceeds as

before with the posterior probability distributions of the Area 2

data determining PDL
(Y |X) and guiding the active learning

process. Thus, we ensure that we select “informative” Area 2

data points that change the existing belief in the distributions of

the Area 2 classes the most. Selecting such data points should

result in better learning curves than if the data are selected

at random. Constrained EM is then performed between active

learning iterations by using the estimates from the previous EM

iteration for initialization and holding the known memberships

of the Area 2 data points as fixed.

IV. EXPERIMENTAL EVALUATION

Results were obtained to investigate the performance of our

proposed method. We compared the learning rates with those of

other classifiers that select data points either at random or via

another related active learning method.

A. Data Sets

The active learning approaches described above were tested

on hyperspectral data sets obtained from two sites: the John F.

Kennedy Space Center (KSC), National Aeronautics and Space

Administration (NASA), Florida [38], and the Okavango Delta,

Botswana [39]. The images of the data sets along with the

TABLE I
CLASS NAMES AND NUMBER OF DATA POINTS FOR THE KSC DATA SET

spatial regions from which the labeled data were obtained are

shown in [40].

1) KSC: The NASA Airborne Visible/Infrared Imaging

Spectrometer acquired data at 18-m spatial resolution over the

KSC on March 23, 1996. The bands that were noisy or impacted

by water absorption were removed, which leaves 176 candidate

features for the study. The training data were selected using

land cover maps derived by the KSC staff from color infrared

photography, Landsat Thematic Mapper (TM) imagery, and

field checks. The discrimination of land cover types for this

environment is difficult due to the similarity of the spectral

signatures for certain vegetation types and the existence of

mixed classes. The 512 × 614 spatially removed data set is

located on a different portion of the flight line and exhibits

somewhat different characteristics [40]. While the number of

classes in the two regions differs, we restrict the study to those

classes that are present in both regions. Details of the ten land

cover classes considered in the KSC area are shown in Table I.

2) Botswana: Hyperion data were acquired over a 1476 ×
256 pixel study area located in the Okavango Delta, Botswana.

Fourteen different land cover types consisting of seasonal

swamps, occasional swamps, and drier woodlands located in

the distal portion of the delta were identified for the study,

which focused on the impact of flooding on vegetation. Un-

calibrated and noisy bands that cover water absorption features

were removed, which results in 145 features. The training

data were manually selected using a combination of vegeta-

tion surveys located by the Global Positioning System, aerial

photography from the Aquarap (2000) project, and a 2.6-m res-

olution IKONOS multispectral imagery. The spatially removed

test data for the May 31, 2001 acquisition were sampled from

spatially contiguous clusters of pixels that were within the same

scene but disjoint from those used for the training data [40].

Table II contains a list of classes and the number of class-

specific labeled data.

Multitemporal data: To test the efficacy of the knowledge

transfer framework for multitemporal images, data were also

obtained from the Okavango region in June and July 2001. The

May data are characterized by the onset of the annual flooding

cycle and some newly burned areas. The flood progressed in

June and July, and the burned vegetation recovered. It should

also be noted that only nine classes were identified in the June

and July images as the data were acquired over a slightly differ-

ent area due to a change in the satellite pointing. Additionally,

some classes identified in the May 2001 image were excessively

fine grained for this sequence, so the data in some classes were
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TABLE II
CLASS NAMES AND NUMBER OF DATA POINTS

FOR THE BOTSWANA DATA SET

TABLE III
CLASS NAMES AND NUMBER OF DATA POINTS FOR

THE MULTITEMPORAL BOTSWANA DATA SET

aggregated. The classes representing the various land cover

types that occur in this environment are listed in Table III.

B. Experimental Methodology

For the single-image scenario, the initial labeled data (ten

randomly chosen data points from each class) and the unlabeled

data were extracted from the same image. For the knowledge

transfer case, the labeled data are selected from a particular

image subset (referred to as Area 1), and the unlabeled data are

chosen from spatially or temporally distinct image data

(referred to as Area 2). In this case, 75% of the Area 1 data

were used for building the initial classifier, and the remaining

25% were used as the validation set. All the experiments were

repeated over five different samplings of the initial labeled set.

Prior to active learning, the dimensionality of the input data

was reduced using a best bases feature extractor, which reduces

the feature space by recursively combining highly correlated

adjacent bands. The method has been shown to be better suited

for feature extraction in hyperspectral data than other meth-

ods such as Segmented Principal Components Transformation

(SPCT) [36]. For the single-image scenario, the number of best

bases was fixed such that there are at least five times as many

initial labeled samples as the number of extracted features. In

the knowledge transfer scenario, because of the availability of

sufficient quantities of labeled data, from Area 1, the number

of best bases was determined using a validation set. The best

bases method was used as a preprocessing technique as our

experiments showed this method to be less sensitive to the

effect of ill-conditioned covariance matrices than the Fisher-m

extractor. As detailed in Section III, the Fisher-m feature ex-

tractor was then used to obtain a discriminatory feature space

from the more “stable” feature set produced by the best bases

method.

The proposed active learning technique can be implemented

with any classifier that makes use of estimates of a posteriori

class probabilities for determining the decision boundaries. In

our experiments, we used the ML classifier and the BHC. The

ML classifier was implemented as detailed in Section III. The

BHC is a multiclassifier system that was primarily developed

to deal with multiclass hyperspectral data [21]. It recursively

decomposes a multiclass (C-classes) problem into (C − 1)
binary metaclass problems, which results in (C − 1) classifiers

arranged as a binary tree. The partitioning of a parent set of

classes into metaclasses is obtained through a deterministic

annealing process that encourages similar classes to remain in

the same partition. The metaclasses at each node of the BHC

are modeled using mixtures of Gaussians, with the number of

Gaussians corresponding to the number of classes at that node.

Each node also has a corresponding Fisher feature extractor.

The proposed active learning method (KL-Max) detailed

in Section III was implemented. Our approach was evaluated

against two baseline methods, i.e., Random and Entropy. The

first method chooses the data points at random, one at a time,

from the unlabeled set and uses constrained EM to update the

estimates of the class parameters. The entropy-based active

learning approach of Roy and McCallum [26] is one of the more

popular methods of active learning that make use of a posteriori

class probabilities. As mentioned in Section II-D, this entropy-

based method chooses the data points that result in an increase

in the future expected entropy. Following the notation from (2)

and (4), x̂ is selected using the following equations:

E
D

+

L

(x̃, ỹ)=
1

|D+
UL|

∑

x∈D
+

UL

∑

y∈Y

P
D

+

L

(y|x) log P
D

+

L

(y|x). (5)

The x̂ ∈ DUL with the lowest expected loss is then selected for

querying and is added to DL as

x̂ = argmin
x̃∈DUL

∑

ỹ∈Y

E
D

+

L

(x̃, ỹ)PDL
(ỹ|x̃). (6)

To have a fair comparison, as in our proposed method, semi-

supervised EM was used to estimate the parameters of the class-

conditional pdfs. For reasons of computational efficiency, the

new data point x̂ was chosen from a randomly chosen subset

(30 data points) of the unlabeled data for both the KL-Max and

the entropy method.

V. RESULTS AND DISCUSSION

Figs. 1–4 show the learning rates of the different active

learning methods. Each point on the x-axis represents the

number of additional labeled samples used to train the classifier,

while the y-axis represents the classification accuracies. The
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Fig. 1. Classification accuracy versus active learning iterations on a single image with the ML + EM classifier. (a) KSC. (b) Botswana. (c) May. (d) June.
(e) July.

Fig. 2. Classification accuracy versus active learning iterations on a single image with the BHC + EM classifier. (a) KSC. (b) Botswana. (c) May. (d) June.
(e) July.

error bars for classification accuracies were obtained using the

five different samplings of the initial labeled data set, as detailed

in Section IV-B.

A. Single-Image Classification

Figs. 1 and 2 show the learning rate curves for single-image

classification over 100 active learning iterations for the different
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Fig. 3. Classification accuracy versus active learning iterations on spatially/temporally separate images with the ML + EM classifier. (a) Spatial KSC. (b) Spatial
Botswana. (c) May to June. (d) May to July. (e) June to July. (f) May + June to July.

Fig. 4. Classification accuracy versus active learning iterations on spatially/temporally separate images with the BHC + EM classifier. (a) Spatial KSC.
(b) Spatial Botswana. (c) May to June. (d) May to July. (e) June to July. (f) May + June to July.

data sets using the ML and BHC methods, respectively. All the

active learning methods, for single-image classification, make

use of an initial classifier trained using ten randomly chosen

data points from each class. Thus, the x-axis for the KSC data

starts at 100, the Botswana at 140, and the remaining data sets

at 90. For the ML classifier, the proposed KL-Max method

performs much better than the other methods on the KSC and

Botswana data sets, whereas the learning rates are comparable
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Fig. 5. Likelihood of classes being chosen by the active learning methods for the May-to-June knowledge transfer problem. (a) Per-class confusion.
(b) ML entropy. (c) BHC entropy. (d) ML KL-Max. (e) BHC KL-Max.

to those of the entropy-based approach on the May, June, and

July data sets. On data sets with a larger number of classes,

the entropy-based method performs worse than even random

selection. The poor performance of the entropy-based method

could be attributed to the fact that focusing on data points that

increase the future expected entropy results in skewed estimates

of the class distributions.

Similar trends can be observed for the BHC method. When

the proposed active learning approach was applied, both BHC

and ML classifiers exhibited comparable learning behavior.

However, the entropy-based method performed even worse with

the BHC technique for these data sets. A possible reason for

this behavior is the greater dependence of the BHC on the

adequacy of the estimated class distributions. Each node in the

BHC hierarchy makes use of class distribution estimates for

determining the corresponding Fisher-m extractor and learning

decision boundaries. Hence, skewed class distribution estimates

would have an increasingly adverse effect on classification

accuracies while traversing down the tree, which results in poor

overall classification accuracies.

B. Knowledge Transfer

The proposed approach seems to be particularly well suited

to the problem of knowledge transfer. Fig. 3 shows the learn-

ing rates for the spatially/temporally separated data sets over

the active learning iterations. Note that unlike the single-image

case, the x-axis for all the data sets in this case starts at

zero. The KL-Max method yields higher overall classifica-

tion accuracies than the other approaches. The results for the
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TABLE IV
CONFUSION MATRIX FOR THE MAY-TO-JUNE KNOWLEDGE TRANSFER PROBLEM USING SEMISUPERVISED BHC

TABLE V
CONFUSION MATRIX FOR THE MAY-TO-JUNE KNOWLEDGE TRANSFER PROBLEM USING BHC KL-MAX AFTER 180 ACTIVE LEARNING ITERATIONS

entropy-based method are similar to those of the single-image

scenario.

A comparison of the classification accuracies between the

BHC using KL-Max for the single image and the knowledge

transfer scenario shows that for the same amounts of available

labeled data, the knowledge transfer method has higher classi-

fication accuracies than learning a classifier from scratch on the

new image. For example, consider the July data set. Fig. 2(e)

shows the classification accuracy when both the initial labeled

data set and the unlabeled data are drawn from these data.

Fig. 4(d)–(f) shows the classification accuracies for the same

data set when the initial labeled data are selected from related

multitemporal images, namely May and June. Fig. 2(e) shows

that using 140 labeled data points from the July data results

in a classification accuracy of approximately 94%. In compar-

ison, using the knowledge in the existing June and May +
June classifiers achieves the same accuracy with only about 50

data points [Fig. 4(e) and (f)]. However, classifying the July

data set using the classifier trained on May data [Fig. 4(d)]

requires about 120 labeled data points from the July data set

to obtain the same accuracy. This is because the July data

represent changes that have occurred over a two-month interval.

Additionally, training data for some classes were necessarily

extracted from different geographic locations in June and July

due to the change in pointing angle and the advance of the

flood.

A better understanding of the efficacy of the KL-Max

method, for knowledge transfer, compared to the entropy-based

approach, can be obtained by comparing the likelihood of the

class labels chosen by these methods to the per-class confusion.

In the following analysis, we measure the per-class confusion

by two quantities, namely (1-precision) and (1-recall) [37]. A

class with unit precision and recall values has no confusion.

Hence, in our analysis, classes with high values of (1-precision)

and/or (1-recall) exhibit substantial confusion, and active learn-

ing methods should be able to focus on such classes.

In the following discussion, we make use of the May-to-June

knowledge transfer scenario as an illustrative example. This

data set combination is representative of the remaining data sets

as it exhibits the spatial and temporal variations between the

May and June images. Fig. 5(a) shows the per-class confusion

in classifying the June data, via semisupervision, using a BHC

classifier trained on the May data. Note that this is the very first

step of the active learning process. The classifier was trained

using five different samplings of the May data, and the obtained

results were averaged. The actual averaged confusion matrix

is shown in Table IV. It can be seen that the two woodland

classes, i.e., Riparian (Class 3) and Woodlands (Class 6),

exhibit significant confusion. The Primary Floodplain (Class 2)

class is sometimes classified as either the Island Interior

(Class 5) or the Exposed Soils (Class 9) class. The Savanna

(Class 7) and Exposed Soils (Class 9) land cover types also

show some confusion.

Fig. 5(b)–(e) shows the lift in selecting 180 data points from

each class. For each class, the lift is measured as the ratio of the

number of data points chosen by the active learning method to

the number of data points that would have been chosen from

it by random selection. Those classes with a higher lift are

more likely to have data points chosen than classes with a lower

value of lift. Thus, a good active learning method should have

a strong correlation between the per-class lift and the per-class

confusion. It can be seen that the KL-Max method [Fig. 5(d)

and (e)] has a better correlation with the per-class confusion

than the entropy-based method [Fig. 5(b) and (c)]. Note that

the overall best correlation is obtained with the BHC KL-Max

method [Fig. 5(e)].

In addition to showing that the proposed method not only

identifies the “correct” problem classes, we also show that it
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Fig. 6. Number of data points chosen from each class at different active
learning iterations for the May-to-June knowledge transfer problem.

selects the most informative data points from these classes.

Table V shows the averaged confusion matrix obtained by the

BHC KL-Max method after 180 active learning iterations. The

KL-Max method eliminates the confusion among all classes ex-

cept that of Riparian (Class 3) and Woodlands (Class 6), which

are both tree classes. Fig. 5(e) shows that while the KL-Max

method is more likely to select data points from classes 3 and

6, the two classes continue to exhibit some confusion. To un-

derstand this behavior, consider Fig. 6 showing the distribution

of class labels selected after 33, 66, and 100 iterations of a

single active learning run. Note that for classes 2 and 7, the

increase in the number of additional labeled data points, i.e.,

between 33 and 100 iterations, is far less than that of classes 3

and 6. Thus, one may conclude that for classes 2 and 7, the

most informative data points are chosen early on in the active

learning process, which probably is the case for classes 3 and

6 as well. However, as we force active learning to proceed,

regardless of whether the estimates of class distributions change

across subsequent iterations, the algorithm continues to select

data points from the “more confusing” classes 3 and 6.

VI. CONCLUSION

We have proposed a new active learning approach for ef-

ficiently updating classifiers built from small quantities of

labeled data. The principle of selecting data points that mostly

change the existing belief in class distributions seems to be

particularly well suited to the scenario in which the distributions

of the classes show spatial (or temporal) variations. The pro-

posed method is empirically shown to have better learning rates

than choosing data points at random and an entropy-based ac-

tive learning method regardless of the underlying probabilistic

classifier. This paper can be expanded when more hyperspectral

data are available, especially to determine the effectiveness of

the active learning-based knowledge transfer framework when

the spatial/temporal separation of the data sets is systematically

increased.
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