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ABSTRACT Airborne Light Detection and Ranging (LiDAR) is a popular active remote sensing technology
that has been developing very rapidly in recent years. To solve the problems of low filtering accuracy of
airborne LiDAR point clouds in complex terrain environments and avoiding too much human intervention,
this paper proposes a point cloud filteringmethod based on active learning. In the proposedmethod, the initial
training samples are acquired and marked automatically by multi-scale morphological operations. In so
doing, no training samples are selected and labeled manually, i.e., the training samples are added gradually
according to the oracle used in active learning. In this paper, the oracle is set to a sigmoid function of residuals
from the points to the fitted surface. Subsequently, the training model is revised progressively using the
updated training samples. Finally, the classification results are further optimized by a slope-based method.
Three datasets with different filtering challenges provided by the International Society for Photogrammetry
and Remote Sensing (ISPRS) were used to test the proposed method. Comparing with the other ten famous
filtering methods, the proposed method can achieve the smallest average total error (5.51%). Thus, it can be
concluded that the proposed method performs very well toward different terrain environments.

INDEX TERMS Active learning, airborne LiDAR, point cloud filtering, oracle, training sample.

I. INTRODUCTION

As an active remote sensing technology, airborne LiDAR
has rapidly developed in recent years. Compared with
traditional passive remote sensing methods, such as pho-
togrammetric mapping, airborne LiDAR can acquire accurate
three-dimensional point clouds data directly to characterize
the topographic profile of the earth surface [1]. Moreover,
LiDAR pulses can penetrate tree canopy to record the terrain
details [2]. Thus, airborne LiDAR has been widely used for
digital terrain model (DTM) generation [3], [4].
DTM generation is a crucial step in LiDAR point cloud

data processing applications, such as road extraction [5], [6],
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object classification [7], [8], and forest parameter
estimation [9], [10]. Therefore, lots of researchers have
been involved in developing algorithms for DTM extrac-
tion from airborne LiDAR point clouds [3], [11], [12].
This process is commonly known as filtering. Nowadays,
many famous filtering algorithms have been put forward.
According to their filtering principles, these meth-
ods can be categorized into seven classes, namely
slope-based, morphology-based, surface-based, triangular-
irregular-network-based (TIN), segmentation-based, statistic-
based and energy-optimization-based.

Vosselman [13] first proposed the slope-based approach.
In the method, the points with slope changes greater than a
predefined threshold are extracted as the non-ground points.
Generally, this method performs well in gentle slope areas but
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cannot achieve satisfactory accuracy in complicated terrain
environments. To solve this problem, some improved meth-
ods have been proposed to enhance the robustness of this kind
of approach bymaking the slope thresholds adaptive to abrupt
terrains [14], [15].
The morphology-based methods filter non-ground points

using a series of morphological operators, such as opening,
top-hat and morphological reconstruction [16]. The key for
achieving a good filtering performance relies on choosing
an appropriate structure element. To remove the objects with
different sizes, Zhang et al. [17] proposed a filtering method
with a progressive strategy and adaptive sizing of the struc-
tural element. Subsequently, many other modified morpho-
logical filtering methods have been developed based on this
pioneering work to improve filtering accuracy and protect
terrain details [18]–[21]. However, most of these morpholog-
ical filters need to predefine the largest size of the structure
element. Aiming to free the limitation of structure element,
Li et al. [1] proposed a novel morphological filter based
on geodesic transformations of mathematical morphology.
Hui et al. [2] applied a series of morphological top-hat
operations to detect the optimal maximum filtering window
automatically. Both of these two methods can enhance the
robustness and automation of the morphological filters for
unknown terrain environments.
The surface-based approaches realize filtering by means

of certain interpolation methods [4], [22]. Kraus and
Pfeifer [23] first generated a surface and then updated
it iteratively with appropriate selection of ground points.
Mongus and Žalik [24] developed a parameter-free algo-
rithm using a Thin Plate Spline (TPS) interpolator, which
was quickly improved by Chen et al. [25] who proposed a
multi-resolution hierarchical classification (MHC) algorithm.
Hu et al. [26] also adopted TPS to interpolate a raster surface.
However, in their method bending energy was calculated
as a byproduct of TPS interpolation, which can be used to
calculated adaptive threshold automatically.
The TIN-based methods are similar to the surface-

based methods. In contrast, the rough surface for the
TIN-based methods is generated by building triangular irreg-
ular network. Axelsson [27] first proposed a progressive
TIN densification (PTD) filtering method, which has been
applied in commercial software named TerraScan. Although
PTD has been proven to be the most effective algorithm
in the experiments tested by Sithole and Vosselman [28],
there are still some unresolved problems, such as deficiencies
in dealing with discontinuities (edges, steep hills, etc.) and
inability to filtering out attached objects (bridge, ramp, etc.).
To improve the filtering accuracy at discontinuities,
Zhang and Lin [29] embedded smoothness-constrained seg-
mentation, whereas Zhao et al. [30] used morphological
opening operation to obtain more potential ground seeds.
The segmentation-based approaches have been proved

to perform better than some other methods such as the
surface-based method and the PTD method, since the seg-
mented results can provide additional geometric, texture and

other features [31]–[33]. Nevertheless, these methods can-
not achieve satisfactory filtering results in forested areas as
little laser pulses can pretreat tree crowns to reach ground.
Moreover, the filtering performance deeply depends on the
segmentation accuracy [3].

The realization of statistic-based approaches is based on
two assumptions. On one hand, the LiDAR ground points
are assumed to be normally distributed under natural con-
ditions. However, the non-ground points disturb the normal
distribution and make it to be a positive skewness distribu-
tion. The basic idea of this kind of approaches is to keep
removing object points until the skewness is balanced [34].
Bartels et al. [35] first developed this unsupervised algorithm
called skewness balancing, which was quickly improved
by Bao et al. [36] to address more complicated scenes.
Bao et al. [37] further developed the statistical approach
incorporating with the measure of kurtosis, and applied the
modified algorithm to LiDAR intensity information to sep-
arate ground points and vegetation points in wooded areas.
Bartels and Wei [38] extended the skewness balancing algo-
rithm to make it adapt to sloped terrains.

Elmqvist [39] first proposed an energy-optimization-based
filtering algorithm in form of active shape model. Energy
of the model is a weighted combination of internal force
and external force. The minimization of the energy function
is processed iteratively until the step size of the model is
less than a threshold. Hu et al. [40] developed a semi-global
filtering (SGF) algorithm by defining a novel energy function
that is composed of a data term and a regularization term.
Ural and Shan [41] presented a Min-cut Based Filtering
(MBF) algorithm on the basis of an energy function, which
considers both local and global features. To minimize the
energy function, a minimum cut optimization algorithm was
applied. The test reveals that an overall filtering accuracy
of 91.3% can be achieved for the ISPRS test areas. Simi-
larly, He et al. [16] also extracted ground points progres-
sively through energy minimization using graph cuts. In this
method, the energy function and graph model encode both
point-wise closeness and pairwise smoothness.

Although the above-mentioned methods perform well in
most terrain environments, most of them need to adjust
several parameters to achieve satisfactory filtering accuracy.
To reduce parameter settings, some researchers try to apply
machine learning or deep learning for filtering. Lu et al. [42]
introduced a novel machine learning method for filtering
by building a hybrid conditional random field model with
both discrete and continuous hidden random variables. The
experiments can achieve 3.46% overall error rate, which
outperforms the previous best systems. Jahromi et al. [43]
proposed a novel filtering algorithm using artificial neu-
ral network (ANN). They trained the ANN in two dif-
ferent strategies including either semiautomatic selection
or manual selection of training data. Experiments demon-
strate that both the two strategies could obtain promising
results. Recently, a new filtering method based on deep learn-
ing using deep convolutional neural networks (CNN) was
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FIGURE 1. The flow chart of the proposed method.

proposed by Hu and Yuan [44] In their method, the clas-
sification of a point was considered as the classification of
an image. By training with over 17 million labeled points,
a deep CNN model with 150 million parameters can be built
for filtering. The experimental results showed that the deep
CNN model outperforms all the state-of-the-art algorithms
in terms of error rate (1.22%). Similarly, Rizaldy et al. [45]
presented a deep learning approach for ground classification.
In their method, the point cloud is initially transformed into
a multi-dimensional image. Then, the fully convolutional
networks (FCN) with dilated kernels are designed to perform
image classification. Experimental results showed that the
FCN-based filtering method performed better than the
CNN-based filtering method in terms of total error and
type I error when only using the ISPRS datasets for training.
Although these machine-learning-based approaches seem to
be an accurate and easy-to-implement way for filtering, they
also have some drawbacks. First of all, these kinds ofmethods
always require lots of labeled points for training, whereas
classifying points as ground and non-ground manually may
be a huge human work. Moreover, some of these meth-
ods cannot achieve good performance in complex terrain
environments.

To address the filtering challenges mentioned above, this
paper presents an active learning filtering method. In the pro-
posed method, the initial training samples can be selected and
labeled automatically using morphological operators. Then,
a support vector machine (SVM) model can be built and
updated iteratively according to the active learning strategy.
The filtering accuracy improved gradually and the filtering
results turned better and better. The remainder of this paper
is organized as follows. Section 2 elaborates the steps of
the proposed method, including removing outliers, obtaining
and labeling the initial training samples, point cloud features
extraction, oracle design and samples selection, and classi-
fication results optimization. In Section 3, the experimental
tests are undertaken to evaluate the proposed method and a
detailed analysis is made towards the experimental results.
Finally, conclusions are drawn at end of this paper.

II. METHODOLOGY

The flow chart of the proposed method is shown in Fig. 1.
The outliers are first detected and removed since their
abnormal elevation values will affect the subsequent extrac-
tion of ground points. To reduce the intervention and
release human resources, this paper applies multi-scale
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morphological operations to extract and label the training
sets automatically. Then, a SVM model is built using several
calculated features. According to the SVM model, the can-
didate points can be classified as ground points and non-
ground points. The key for active learning is to define the
oracle. In this paper, the oracle is set as a sigmoid function
of the residuals from the candidate points to the fitted surface
generated using ground points in the training sets. In the
iteration, some points from the candidate ground points and
non-ground points are selected and labeled as ground points
and non-ground points separately according to the oracle.
Subsequently, the newly added train samples update the train-
ing sets. Meanwhile, these points should be removed from
the candidate points. As a consequence, the SVM model can
be revised iteratively using the updated training sets. The
remaining candidate points are then reclassified using the
updated SVM model. The above-mentioned process is iter-
ated until termination test condition is met. Considering the
errors caused by the point-based classification, the filtering
results are further optimized using a slope based method. The
proposed method is mainly composed of the following five
steps.

A. REMOVING OUTLIERS

The point clouds generally contain noisy points due to the
influence of the instrument itself or the external environ-
ment. These noisy points can be categorized into low and
high outliers as shown in Fig. 2. The low outliers normally
originate from multi-path and errors in the laser range finder
and thus do not belong to the landscape. The high outliers
are always elevated points that are generally generated by
birds and low flying aircraft [4]. The existence of noisy points
will always bring about some negative effects, including the
following: (1) the quality of DTM generation may be affected
by the noisy points, especially the low outliers, since most
of the filtering algorithms always assume that the lowest
points in the local areas must belong to ground; (2) the
rendering of point cloud based on elevation will be influenced
due to the maximal or minimal elevations of outliers; and
(3) mass of noisy point will incur low three-dimensional
model reconstruction quality and decrease the degree
of automation. Hence, outliers should first be
removed.
To remove outliers, this paper proposes a denoising algo-

rithm based on image processing technique. The flow chart
of the proposed method is shown in Tab. 1. Firstly, the three-
dimensional point clouds data (x, y, z) are transformed into
two-dimensional raster grids DSM (i, j). The transforma-
tion mapping relationship R should be preserved. Subse-
quently, mean filtering is applied to the DSM (i, j) to obtain
DSM (i, j). The filtering results are influenced by the window
size. Generally, a large filtering window is easy to flatten
terrain details. In such situations, some LiDAR points are
prone to be misclassified as outliers. On the contrary, a small
filtering window is ineffective to detect outliers. This paper
adopts a 5 × 5 filtering window as the mean filtering by trial

FIGURE 2. Low and high outliers: (a) Low outliers; (b) High outliers.

TABLE 1. Flow chart of the denoising algorithm.

and error. Comparing with the difference of the characteristic
values of each grid between DSM (i, j) and DSM (i, j), the
characteristic value of each grid in DSM (i, j) is replaced by
that of grid in DSM (i, j), if the difference is larger than the
threshold T1, as shown in (1):

DSM (i, j)

=
{

DSM (i, j)
∣

∣abs
(

DSM (i, j) − DSM (i, j)
)

> T1
}

(1)

where abs (·) means the absolute value, T1 is the threshold.
In this paper, T1 is set to 5, since this constant is able
to detect abnormal characteristic values successfully while
protecting details from being flattened effectively. Here, the
recovered point clouds data

(

x, y, ẑ
)

can be obtained by
inverse transformation according to the mapping relation-
ship R. Comparing with the difference between the observed
elevation z and the recovered elevation ẑ, the points with
larger elevation differences are detected as outliers and
removed.
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B. OBTAINING AND LABELING THE INITIAL TRAINING

SAMPLES

Although the traditional supervising learning algorithm can
obtain good filtering performance, they need huge amounts
of labeled training samples. The labeling process is gener-
ally time-consuming and needs much human intervention.
As a result, the automation of these algorithms is low-level.
To solve this problem, this paper adopts multi-scale morpho-
logical operations to obtain and label the initial train samples
automatically.
The morphological filtering generally involves two basic

operations, including morphological dilation and morpho-
logical erosion. The morphological dilation D selects the
highest elevation value of all the points within the filtering
window, while themorphological erosionE selects the lowest
elevation value of all the points within the filtering window,
given as (2) [46]:







D
(

zp
)

= max
(xi,yi)∈W

(zi)

E
(

zp
)

= min
(xi,yi)∈W

(zi)
(2)

where W is the filtering window, (xi, yi, zi) is the point
within the filtering window. The morphological opening
O is achieved by applying morphological erosion followed
by dilation given as (3):

O
(

zp
)

= D
(

E
(

zp
))

(3)

In morphological filtering, the points whose elevation
differences are greater than a threshold before and after
the morphological opening are detected to be non-ground
points. However, adopting different size of filtering window
will produce different filtering outcomes. Fig.3 (a) shows
two-dimensional terrain features, including terrain, buildings
and abrupt terrain. When applying a larger filtering win-
dow to filtering, although large buildings can be removed,
the terrain details cannot be protected (Fig. 3(b)). Conversely,
when using a smaller filtering window, terrain details can
be preserved whereas some buildings cannot be filtered
out (Fig. 3(c)). From another prospective, when adopting a
larger filtering window for filtering, although parts of terrains
will be removed, the non-filtered ground points are accurate,
as the solid part shown in Fig. 3(b). When using a smaller fil-
tering window, although parts of building cannot be removed,
the filtered objects can be seen as accurate non-ground points,
as the dashed parts shown in Fig. 3(c). Therefore, when using
a large filtering window for filtering, the ground points in the
filtering results are selected and labeled as ground training
samples. When adopting a smaller filtering window for filter-
ing, the non-ground points in the filtering results are selected
and labeled as non-ground training samples. The large fil-
tering window should be greater than the largest object in
the test site. Here, a filtering window with 50 × 50 in size
is commonly applicable. However, a larger filtering window
such as 60×60 is also appropriate. It should be noted that the
size of a large filtering window does not have a significant

FIGURE 3. Multi-scale morphological filtering results: (a) Two-
dimensional terrain features, including terrain, building and
abrupt terrain; (b) The filtering results using a larger filtering
window; (c) The filtering results using a smaller filtering
window. The dash lines indicate the filtered parts.

influence on the final filtering results. To obtain more non-
ground training samples, the smallest filtering window with
3 × 3 in size should be selected.

C. POINT CLOUD FEATURES EXTRACTION

This paper extracts geometric features to build a SVMmodel,
since these features are easily accessible [47]. The geometric
features include two parts. One part is calculated based on a
local three-dimensional structure covariance tensor, while the
other part is achieved based on elevation values of neighbor-
ing points.

The raw point clouds are irregularly distributed. To fast
locate one point’s neighbors, this paper adopts k-dimensional
tree to organize the point clouds [48]. To compute the fea-
tures for a point p, its neighboring point sets Kn (p) are
first obtained. Then, the local three-dimensional structure
covariance tensor Covp can be calculated according to (4):

Covp =
1

k

k
∑

i=1

(pi − p̄) (pi − p̄)T (4)

where pi is one point in Kn (p), k is the number of the
neighboring points. k does not have significant influence on
the SVM classification results. In this paper, k is set to 10 as
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suggested by Becker et al. [47]. The p̄ is the medoid ofKn (p),
which can be calculated according to (5):

p̄ = argminp

k
∑

i=1

‖pi − p‖ (5)

According to Covp, three eigenvalues λ0 ≥ λ1 ≥ λ2 ≥ 0
can be calculated. Correspondingly, three eigenvectors e0,
e1 and e2 can also be obtained. Using these three eigenvalues
and three eigenvectors, the features of the first part including
anisotropy, planarity, linearity, scatter and surface variation
can be calculated as (6)-(10):

anisotropy : (λ0 − λ2) /λ0 (6)

planarity : (λ1 − λ2) /λ0 (7)

linearity : (λ0 − λ1) /λ0 (8)

scatter : λ2/λ0 (9)

Surfacevariation : λ2 (10)

The other part of geometric features can be calculated
according to elevations of neighboring points. These features
include vertical range, height below and height above given
as (11-13).

vertical range : Zmax{Kn(p)} − Zmin{Kn(p)} (11)

height below : Zp − Zmin{Kn(p)} (12)

height above : Zmax{Kn(p)} − Zp (13)

where Zp is the height value of point p. Zmax (·) is the
maximum height value of the neighboring point sets Kn (p),
whereas Zmin (·) is the minimum height value.

D. ORACLE DESIGN AND SAMPLES SELECTION

In active learning, the learner should actively query an oracle
outside the learner to get the labels for the samples. Thus,
to obtain a good classification result, it is necessary to set the
oracle correctly and appropriately.
In this paper, the oracle is set to a sigmoid function of the

residual between the point and the fitted surface given as (14)














f (p) = Zp −

n
∑

i=1

λiφ (‖p− pi‖)

S (f ) =
1

1 + e−f

(14)

where p is the candidate point, zp is the observed eleva-

tion value,
n
∑

i=1
λiφ (‖p− pi‖) is to generate a fitted surface

according to the radial basis function (RBF). f (p) is the
residue between the point p and the fitted surface as shown
in Fig. 4.

The flow chart of the active learning is shown in Tab. 2.
In each iteration, q points with smallest S (f ) values are
selected from the candidate ground point sets {G}k and are
added into ground training samples. Meanwhile, q points
with largest S (f ) values are selected from the candidate non-
ground point sets {NG}k and are added into non-ground train-
ing samples. The training model is updated using these new

FIGURE 4. The schematic diagram of oracle setting. The dash line
represents a fitted surface. The red points are ground points while the
blue points are object points.

TABLE 2. Flow chart of the active learning.

training samples. This process is iterated until the number
of points in {G}k and {NG}k is no longer larger than q.
q does not have a strong influence on the performance
of the presented approach. q mainly affects the iteration
times. Considering efficiency, q was set to 1000 in this
paper.

Note that the training samples mentioned in Tab. 2 include
two parts, one is the initial training samples obtained
at subsection B, the other is the added training samples
generated iteratively based on the principles referred to
subsection D. The training sets and the testing sets are two
different components. The training sets do not overlap the
testing sets.
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E. CLASSIFICATION RESULTS OPTIMIZATION

Considering the errors caused by the point-based classifica-
tion, this paper uses a slope-based method to optimize the
classification results. As shown in Fig. 5 (a), it is a digital
terrain model (DTM) generated using the ground points clas-
sified by the SVM model. To fine-tune the filtering results,
this paper first divides the filtering results into grids as shown
in Fig. 5 (b). Subsequently, the lowest point in each grid is
selected to be a ground seed. All the ground seeds are used to
interpolate a fitted surface according to the RBF interpolator
as shown in Fig. 5 (c). Moreover, the fitted elevation ẑi for
each point can be calculated. According to the fitted surface,
the slope gradient in x and y directions

(

sui , s
v
i

)

can also be
obtained. The points that satisfy (15) are determined as non-
ground points and removed.

non_gps

=
{

pi

∣

∣

∣
zi − ẑi > te+

(

(

sui
)2

+
(

svi
)2

)

, i = 1, 2, · · · , n
}

(15)

where zi is the observed elevation, ẑi is the corresponding
fitted elevation, te is a constant that is set to 0.3 in this paper,
since 0.3m is appropriate to discriminate low vegetation from
grounds.

III. EXPERIMENTAL RESULTS AND ANALYSIS

This paper adopts three publicly available datasets pro-
vided by the ISPRS to test the performance of the proposed
method [28]. These three datasets are acquired using
an Optech ALTM laser scanner and the point space
is 1 m- 1.5 m. These three datasets are selected since they
include different terrain features and filtering challenges.
Thus, it is helpful to test the filtering performance in different
terrain environments. As shown in Fig. 6 (a), the terrain slope
varies greatly in the first dataset (sample 1) and there is some
low vegetation on the slope. Moreover, some parts of the
buildings are attached to the terrains. These points are easy to
be misclassified as ground points. In the second dataset (sam-
ple 2), the main filtering challenges are complex buildings as
shown in Fig. 6 (b). How to remove larger objects (such as the
buildings) and smaller objects (such as cars and pedestrians)
simultaneously is a filtering difficulty. In the third dataset
(sample 3), it is difficult for most filtering algorithms to
discriminate the attached objects (such as the bridge in the
Fig. 6 (c)) from the terrains, since their elevations are close to
each other. Thus, these datasets are representative to test the
filtering performance in different terrain environments.
In Figs. 7-9, (a) is the digital surface model (DSM) gener-

ated using point clouds in each sample; (b) is the true digital
terrain model (DTM) generated using accurate ground points
selected manually; (c) is the extracted DTM generated using
the filtered ground points. It can be seen from the comparison
that the filtering results are close to the reference ground
points. The proposed method can achieve good filtering per-
formances in all the three samples. As shown in Fig. 7(a),
there is much low vegetation on the slope. After filtering, both

FIGURE 5. Schematic diagram of optimization principle: (a) Digital terrain
model generated from ground points classified by SVM model; (b) Divides
the filtering results into grids; (c) Interpolate a fitted surface according to
the RBF interpolator.

these vegetation and building roofs are correctly classified
(Figs 7. (b) and (c)). In sample 2, some small objects are
mixed with large buildings as shown in Fig. 8 (a). Comparing
with the true ground points (Fig. 8 (b)), the filtering results
still contains some commission errors as shown in Fig. 8 (c).
These commission errors are mainly caused by cars or pedes-
trians on the street since their elevations are close to the ones
of terrain. In sample 3, the filtering challenge is the attached
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FIGURE 6. Terrain features of the three datasets: (a) Terrain features
of sample 1; (b) Terrain features of sample 2; (c) Terrain features
of sample 3.

object (bridge) as shown in Fig. 9 (a). The filtered DTM is
very close to the reference DTM (Fig. 9 (b) and Fig. 9 (c)).
It can be concluded that the proposed method achieves the
best filtering performance towards sample 3.
This paper adopts three accuracy indexes including type I

error, type II error and total error to access the filtering
effect of the proposed method. Type I error also referred to
as omission error is the percentage of ground points mis-
classified as non-ground points. Type II error also called
as commission error is the percentage of non-ground points
accepted as ground points. Total error is percentage of all the
misclassified points. A confusion matrix towards these three
kinds of errors is tabulated in Tab. 3. Type I, type II and total

FIGURE 7. Filtering performance of sample 1: (a) DSM before filtering;
(b) True DTM generated using reference ground points; (c) Extracted
DTM generated using the filtering results.

FIGURE 8. Filtering performance of sample 2: (a) DSM before filtering;
(b) True DTM generated using reference ground points; (c) Extracted
DTM generated using the filtering results.

FIGURE 9. Filtering performance of sample 3: (a) DSM before filtering;
(b) True DTM generated using reference ground points; (c) Extracted
DTM generated using the filtering results.

errors were calculated using (16)-(18).

T1 = b/(a+ b) (16)

T2 = c/(c+ d) (17)

total = (a+ b)/(a+ b+ c+ d) (18)

Three types of errors in the tested datasets of the pro-
posed method and the ones of some famous filtering algo-
rithms proposed in recent years are shown in Tabs. 4-6.
Jahromi et al. [43] applied artificial neural network (ANN)
to filtering and obtained good filtering performances.
Mongus and Žalik [24] used thin plate spline (TPS) inter-
polator for filtering. Zhang and Lin [29] modified the tradi-
tional PTD filtering method by segmenting the point clouds
firstly. Li et al. [20] proposed an improved top-hat filtering
method to protect terrain details. Hui et al. [21] combined the
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TABLE 3. Confusion matrix of the three types of errors.

TABLE 4. comparison of total errors (%).

TABLE 5. Comparison OF type I errors (%).

traditional surface-based filtering method and the traditional
morphological filtering method to obtain better filtering
results. Zhang et al. [22] proposed an easy-to-use filtering
method based on cloth simulation. Hu and Yuan [44] applied
CNN to filtering and achieved good filtering performances.
Note that the three errors tabulated in Tabs. 4-6 are the
CNN classifier using ten samples for training.When adopting
17 million points for training, the CNN classifier can achieve
much smaller filtering errors (2.26% of type I error, 1.22% of
type II error and 0.67% of total error). Li et al. [1] presented a
filtering method based on geodesic transformations of math-
ematical morphology. Ni et al. [49] adopted graph cuts for
filtering. Rizaldy et al. [45] applied FCN to filtering, in which
good filtering results can be achieved with few training
samples.

TABLE 6. Comparison of type II errors (%).

From Tab.4, it can be found that the proposed method can
obtain the smallest average total error (5.51%) compared to
other ten methods. In the ten methods, the largest average
total error is 11.64% which is twice of that of this method.
Thus, the proposed method can achieve the best filtering
performance. Furthermore, the total errors in three samples
of the proposed method are all smaller except sample 2. It can
be concluded that this method owns strong adaptability to
different terrain environments. From Tabs. 5 and 6, it can
be seen that the average type I error (6.68%) and the aver-
age type II error (4.84%) are close with each other. This
indicates that the proposed method in this paper can not
only effectively remove the ground points but also effectively
protect the terrain details from being destroyed. On the con-
trary, the average type I error of the method proposed by
Jahromi et al. [43] is 14.00% while its average type II error
is 3.87%. Moreover, the average type I error of the method
proposed by Mongus and Žalik [24] is 3.85% while its aver-
age type II error is 10.33%. These twomethods were selected
because Jahromi et al. [43] achieved the smallest average
type II error, while Mongus and Žalik [24] performed the best
in terms of the average type I error. It can be found that these
methods cannot balance these two errors. In other words,
these methods have no capability to preserve the details of
terrains as much as possible while reducing the interferences
from the non-ground points.

Fig. 10 is the type I and type II errors distributions of the
three tested samples. From Fig. 10 (a), it can be found that
both the type I and type II errors in sample 1 are a little larger.
This is because the terrain slope of sample 1 changes greatly
and some parts of the abrupt terrains are rejected as non-
ground points which form the type I error. Moreover, some
roofs of buildings are connected to the terrains making these
points to be easily misclassified as ground points thereby
yielding to larger type II errors. Fig. 10 (b) shows that the
main filtering error in sample 2 is type II error which is caused
by some small objects. In sample 3, the filtering result is very
close to the reference result with only a few points misclas-
sified (Fig. 10 (c)). Thus, the total error of sample 3 is very
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FIGURE 10. Error distributions of the three samples: (a) Error
distributions of sample 1; (b) Error distributions of sample 2; (c) Error
distributions of sample 3. The blue grids represent type I error, while the
red grids are type II error. The light gray grids indicate the points rightly
classified as ground points, while the dark gray grids are the points
rightly classified as non-ground points.

small (1.23% in Tab. 4). From these three filtering results,
it can be seen that the proposed method performs better in
flat terrains. This characteristic is also consistent with most
other filtering methods.

IV. DISCUSSION

The proposed method involves five main steps, includ-
ing removing outliers, obtaining and labeling the initial
training samples, point cloud features extraction, oracle
design and samples selection, and classification results opti-
mization. Among these five steps, obtaining and labeling the
initial training samples and point cloud features extraction
are mandatory steps, whereas the other three steps can be

TABLE 7. Filtering results of ablation study i.

TABLE 8. Filtering results of ablation study ii.

TABLE 9. Filtering results of ablation study iii.

seen as optimization steps. Thus, for analyzing contributions
of different pipeline components, this paper conducted the
following ablation study:

i What will be the filtering results without outliers
removal?

ii What will be the filtering results without oracle design
and samples selection?

iii What will be the filtering results without classification
results optimization?

The filtering results of the above-mentioned three ablation
studies are shown in Tabs. 7-9. Comparing with the three
types of errors listed in Tabs. 4-6, it can be found that
all the errors of the three samples turn larger without the
optimization steps. These include removing outliers, oracle
design and samples selection, and classification results opti-
mization. From Tab. 7, it can be seen that the total errors of
the three samples are slightly larger without outlier removal.
It can be concluded that the outliers indeed have influence
on the filtering results. Therefore, removing outliers first can
improve the filtering performance. The filtering results in
Tab. 8 are obtained using the initial training samples. It can
be found that the proposed method does not perform well
in these samples, especially for sample 1, whose total error
is almost twice of that of using oracle design and samples
selection. In this paper, the step of oracle design and samples
selection is to acquire more labeled samples iteratively. In so
doing, the SVM model can be revised from coarse to better.
Therefore, this step is crucial for the proposed method. From
Tab. 9, it is easy to see that the proposed method is prone to
achieve unbalanced type I and type II errors without the step
of classification results optimization. For instance, the type I
error of sample 2 is 0.1%, while its type II error is 30.65%.
The type II error of sample 3 is 0.03%, whereas its type I error
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FIGURE 11. Topography and landforms of the two datasets used in
practice: (a) dataset 1 from Luoding, China; (b) dataset 2 from Luoding,
China.

FIGURE 12. Error distributions of the two datasets used in practice:
(a) Error distributions of dataset 1; (b) Error distributions of dataset 2.
Note that in these two figures there are some white components that are
generated since these parts are data gaps.

is 16.14%. As a result, all the total errors of the three samples
are larger. This is because the SVM classification used in
this paper is based on the point primitive. It is very error-
prone when calculating geometric features for each point.
Hence, the step of classification results optimization is very
important to achieve good filtering performances.
To better show the generalization of the presented

approach, two different datasets used in practice other than
the widely used ISPRS data [28] were tested. The new
datasets are located within the city of Luoding, China, char-
acterized by modern architecture with low and high-storey
buildings as shown in Fig. 11 (a) and (b). The datasets
were obtained by an ALS50 scanner with an average point
density of 2.76 points/m2. In terms of the first datasets
(Fig. 11a), the type I, type II and total errors are 8.34%,
2.99%, and 4.81%, respectively. In terms of the second
datasets (Fig. 11b), the type I, type II and total errors are
8.76%, 6.19%, and 7.39%, respectively. Graphical illustra-
tions of the type I and type II error distributions of the two
datasets are shown in Fig. 12 (a) and (b). From the error
calculation results and distributions, it can be found that the
proposed method performed well on the airborne LiDAR

datasets (Fig. 11 a and b) even though the datasets contained
a large number of points with high point density.

V. CONCLUSION

Airborne LiDARfiltering is a critical step in point cloud post-
processing applications. To solve the problems of low filter-
ing accuracy in complex terrain environments and excessive
human intervention, this paper proposed a filtering algorithm
based on active learning. In this method, multi-scale mor-
phological filtering methods are adopted to obtain and label
the initial training samples. This paper then applies the active
learning strategy to add training samples gradually and update
the SVM model progressively. Finally, this paper adopts the
slope-basedmethod to optimize the classification results. The
proposed method has been tested using the three datasets pro-
vided by the ISPRS. The experimental results showed that the
total errors of the proposed method were smaller. This indi-
cates that themethod can achieve good filtering performances
in different terrain environments. Moreover, the average total
error of the proposed method is the smallest when comparing
with that of other ten famous filtering methods. In terms
of average type I and type II errors, the proposed method
can balance these two types of errors. Thus, the proposed
method can filter out non-ground points as more as possible
while preserving terrain details. Overall, this paper realizes
the automatic classification of point clouds without manually
selecting training samples and labeling. This feature greatly
reduces the human intervention and improves the degree
of algorithm automation. Furthermore, the proposed method
can adapt to different terrain environments and achieve good
filtering performances.
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