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ABSTRACT Estimation of black-box functions often requires evaluating an extensive number of expensive

noisy points. Learning algorithms can actively compare the similarity between the evaluated and unevaluated

points to determine the most informative subsequent points for efficient estimation of expensive functions in

a sequential procedure. In this paper, we propose an active learning methodology based on the integration of

Laplacian regularization and active learning - Cohn (ALC)measure for identification of the most informative

points for efficient estimation of noisy black-box functions using Gaussian processes. We propose two

simple greedy search algorithms for sequential optimization of the tuning parameters and determination

of subsequent points based on the information from the previously evaluated points. We also enhance the

graph Laplacian with the information of both the predictor and response variables to capture the similarity

between the points more effectively. The proposed methodology is particularly suited for problems involving

estimation of expensive black-box functions with a high level of noise and plenty of unevaluated points.

Using a case study for analysis of the kinematics of pitching in baseball as well as simulation experiments,

we demonstrate the performance of the proposed methodology against existing methods in the literature in

terms of estimation error.

INDEX TERMS Active learning, Gaussian process regression, kernel ridge regression, Laplacian

regularization.

I. INTRODUCTION

In many real-world problems, we encounter situations involv-

ing estimation of expensive noisy black-box functions. These

problems typically require a large number of evaluations that

could take hours or days for evaluating one single point

[1], [2]. Traditional response surface methods [3], which

are based on simple parametric models, may not properly

approximate these expensive black-box functions. Surrogate

modeling based on Gaussian process (GP), which can be

viewed as an extension of standard regression models, is one

of the most popular non-parametric probabilistic models for

estimating black-box functions [4]. GP has key advantages

The associate editor coordinating the review of this manuscript and

approving it for publication was Yuan Zhuang .

over most estimation methods, which includes: (1) ability

to fit highly nonlinear functions with minimal risk of over-

fitting, (2) built-in capability for uncertainty estimation and

quantification, and (3) small estimation bias [5], [6]. GP is

widely used in a variety of fields. It was first used for

time series analysis in the 1880s by astronomer Thiele [7]

and then in 1940s in Wiener-Kolmogorov prediction theory

[8], [9]. The use of GP in geo-statistics where it is referred to

as Kriging dates back to 1960s, where it is used to approx-

imate the function to determine the optimum location for

mining exploration [10]. Since then, it has been applied to

address statistical problems and widely being used in spatial

statistics. In statistics, it is one of the well-known approaches

for modeling and optimization of expensive functions like

complex computer models or codes [11]. In the machine
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learning community, the usage of GP is first explained by

Williams and Rasmussen [4]. Neal [12], shows that the neural

networks with infinite hidden units converge to GP. Various

aspects of GP, including model selection and adaptation of

hyperparameters, applications in regression and classification

problems, and relationship with other estimation models are

extensively discussed in the literature [13], [14].

A common application of GP is to emulate a physical sys-

tem when experiments are too costly to perform or infeasible,

i.e. wind tunnel testing [11], [15]. For such applications with

high experimentation cost generally the labeled/evaluated

data is very scarce. GP is typically built in a sequential

process, starting with a small number of initial points based

on a space-filling design, such as Latin hypercube design

(LHD) [16], sphere packing [17], uniform designs [18], and

then using a strategy to select the most promising points for

the next iteration, until some convergence criterion is met.

The selection of points should be in a way that additional

points shall improve the information content of the data that

describe the design space. Semi supervised learning approach

is one area of research that seeks to exploit the information

from both labeled and unlabeled data to improve the estima-

tion of the underlying function [19]. This approach assumes

the labeled data is given and fixed [20]. Then, active learning,

a subsection of semi supervised learning came into play to

use in conjunction with semi supervised learning to pick the

next evaluation point that augments the evaluated data. Active

learning, which uses both labeled data (evaluated points) and

unlabeled data (unevaluated points) for efficient estimation

of statistical models have been successfully applied to many

problems and received a lot of attention in machine learning

community during last few years [21]–[23]. Using the active

learning scenario with GP, the selection process of evaluation

point is such that it incorporates as much new information

into the model as possible, after seeing the training data [24].

Assuming that the given model is correct, active learning -

Mckay (ALM) and active learning - Cohn (ALC) are two pop-

ular algorithms for selecting the next evaluation points. ALM

measure is based on entropy (or cross entropy) for selecting

a point that maximizes the expected information gain [25].

It is similar to maximum entropy measure that is based on

selecting the points with highest uncertainty. The entropy

criterion tends to pick the points near to the boundary of the

area of interest as the high uncertainty points are the ones that

are far away from each other [26]. ALC on the other hand,

tries to minimize the generalization error. It selects a point

that reduces the average predictive variance at unevaluated

points [24]. Seo et al. [27] show that Cohn’s criterion of min-

imizing the average variance performs well with GP. Pasolli

and Melgani [28] propose two active learning strategies for

GP regression, one based on the distances in kernel space

from samples in the training set and the other one is based on

the variance. There are several other methods based on max-

imum entropy [29], integrated mean square error, maximum

mean square error [11] that guide in selecting the promising

subsequent evaluation point. Wu et al. discuss two active

learning based greedy sampling approaches, greedy sampling

on the output (GSy) that selects samples to increase the diver-

sity of output space and improved greedy sampling approach

(iGS) that selects sample to increase the diversity in both

input and output spaces [30]. To our knowledge, GSy and

iGS are the only approaches that consider the output space

information in selecting the next evaluation point. However

as the name suggests, these two approaches do not consider

the model uncertainty and only select the samples greedily,

which may result in high predictive variance (discussed in

Section IV). Recently, Zhang et al. propose a graph based

active learning (GBAL) approach to select the next evaluation

point based on the uncertainty information using L1 measure,

which enables it to use any surrogate model [31].

Apart from estimation of expensive black-box functions,

the sequential approach using GP is similar for optimization

of the black-box functions as well. For optimization, although

the objective is to find the global minimum or maximum of

the function, after each functional evaluation the GP model

is updated to improve the estimate of the underlying black-

box function. One of the popular global optimization algo-

rithms is efficient global optimization algorithm (EGO) that

uses expected improvement (EI) acquisition function to effi-

ciently explore and exploit the design space and find global

optimization point of expensive black-box functions [32].

Similar to EI, there are several other acquisition functions

to find the global optimum point by estimating the black-

box function using GP [33]–[37]. GP is generally used as

it represents the prediction and uncertainty of true function

which is utilized in building the strategy for selection of

subsequent evaluation point. Chen et al. [38] propose an over-

complete basis surrogate method (OBSM) which uses linear

combinations of over-complete bases to globally approximate

the surface. Chen et al. [39] also develop a stochastic search

variable selection (SSVS) method to derive the prediction

uncertainty by specifying some priors on the coefficients of

OBSM and generating the posterior samples followed by

an algorithm similar to EGO for selecting the subsequent

points. Vu et al. [1] discuss iterative construction of the

surrogate models to reach the global solution of expensive

black-box functions. There also exist a group of algorithms

in sequential decision making for multi-armed bandit prob-

lem. Thompson sampling (TS) [40] and upper confidence

bound (UCB) [41] algorithms are popular algorithms in solv-

ing exploration versus exploitation problems. Given a multi-

armed bandit problem, TS selects an arm randomly according

to its probability of being optimal [42], [43]. Kullback -

Leibler upper confidence bound is one of the UCBmethods in

which informational upper confidence bounds are computed

using Kullback-Leibler (KL) divergence [44]. Other popular

bandit strategies and their empirical evaluation can be found

in [45]. While TS and UCB methods provide considerable

performance for problems with simple information struc-

tures, information direct sampling (IDS) is another approach

to address complex information structure problems using

mutual information measure [46]. Krause et al. [47] propose
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various algorithms based on mutual information criterion to

actively select best possible locations over the design space

that is modeled as GP. When the hyperparameters of the

covariance of the model are approximately known, the algo-

rithm selects the set of locations, whichmaximizes themutual

information between evaluated points and unevaluated points.

Ben-Gal and Caramanis propose a sequential design of exper-

iments via dynamic programming that also uses the mutual

information measure to optimize the location and the number

of points to evaluate [48].

Later, semi supervised learning algorithms based on man-

ifold regularization have been widely utilized to effectively

exploit the information from unevaluated points [49]–[53].

Laplacian regularization is one of the popular manifold regu-

larization techniques that uses graph Laplacian to determine

the information of underlying manifold [54]–[57]. Laplacian

regularization has been successfully applied to many clas-

sification and regression problems [58]–[61]. Specifically,

Laplacian regularized optimal design of experiments has been

successfully used for image retrieval and interactive video

indexing [21], [22], [62]. The graph Laplacian uses similar-

ity matrix for constructing the Laplacian matrix. Recently,

Liu et al. [63] has proposed a structured optimal graph based

sparse feature extraction method in which they replace the

similarity matrix used in constructing the Laplacian matrix

with structured optimal graph, to capture the local manifold

information by adaptively modifying the graph. When the

labeled data is scarce, Zhu et al. [20] proposes combining

the semi supervised and active learning methodologies using

Gaussian fields and harmonic functions. Later, they show

how the Gaussian random fields and harmonic energy min-

imizing framework can be viewed as GP with covariance

matrix derived from graph Laplacian [64]. Alaeddini et al. [2]

propose an active learning methodology based on sequential

Laplacian regularized V-optimal design of experiments for

efficient estimation of the black box functions.

All the Laplacian regularized methods discussed above use

classical graph Laplacian that only considers the informa-

tion from input space. In our study, we propose to extend

classical graph Laplacian to incorporate the information of

both input and output space. We expect the proposed graph

Laplacian to be suitable for most of semi-supervised graph-

based learning algorithms that use classical graph Laplacian.

We provide a sample result of comparing the classical graph

Laplacian with the proposed graph Laplacian measure in the

Appendix. The main goal of this study is to develop an active

learning methodology based on sequential Laplacian regular-

ized Gaussian process (SLRGP) for efficient estimation of

expensive noisy black-box functions, which uses the infor-

mation from not only evaluated points but also (abundant)

cheap unevaluated points to determine the most informative

settings to evaluate subsequently. The proposed methodology

has two major contributions. First, it considers the intrinsic

manifold structure of evaluated and unevaluated points based

on a novel similarity measure which considers both predictor

and response variables. Second, it provides a unified active

learning framework for identification of the most informative

points for the construction of GP in a principled manner.

In many applications, the resources are usually limited, or the

cost of evaluating the points is very high. Thus, the selection

of informative points is very crucial for training a good

statistical model. This framework increases the efficiency of

the learning process which consequently reduces the number

of required points and improves the estimation accuracy. The

proposed methodology is most suited for applications involv-

ing efficient estimation of expensive black-box functionswith

a high level of noise and plenty of unevaluated points.

The organization of this paper is as follows. Section II

presents the related works and preliminaries to the proposed

methodology. Section III explains the proposed SLRGP for

efficient estimation of expensive noisy black-box function

and its core components. Section IV discusses a case study

for analysis of the kinematics of pitching in baseball as

well as simulated experiments evaluating the performance

of SLRGP in comparison to some of the existing methods

in the literature. Finally, Section V provides a summary and

concluding remarks.

II. RELATED WORKS

In this paper, we develop an active learning methodology

for identification of the most informative points for GP

regression [4]. The proposed algorithm is based on the inte-

gration of several components: (1) space-filling design of

experiments [65] for identifying the initial set of points,

(2) an extension of active learning - Cohn (ALC) [24] cri-

terion for identification of the subsequent points to evaluate,

(3) active learning [24] regularization for leveraging the infor-

mation of unevaluated points (4) GP regression for fitting the

evaluated data, and (5) an extension of bilateral kernel for

formulating the similarity between evaluated and unevaluated

points. In this section, we provide a brief description of the

major components of the proposed algorithm. Throughout

the paper, we use z to denote the design vector of evaluated

points, and x to denote the design vector of any (either

evaluated or unevaluated) point. We also use m to denote

the number of evaluated points, q to denote the number of

unevaluated points, n to denote the number of all (evaluated

and unevaluated) points, and d to denote the dimensionality

of predictor variables (X ).

A. SPACE-FILLING DESIGN OF EXPERIMENTS

Space-filling designs are often used in computer experiments

because there is no cost for changing the factor levels and

the focus can be on good coverage of the region instead

of the number of levels it might produce [65]. Space-filling

designs may also help to avoid the localized effects as they

sample throughout the design space [66]. Latin hypercube

design (LHD) is one of the most popular space filling designs

first introduced by [67]. For creating a m point LHD, each

of the d dimension in the design space D is divided into

m equal intervals such that the design space consists of md

identical cells. Then, the m points are assigned to the centers
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of md cells [1]. Some of the other popular space filling

designs include maximin distance design [17], and uniform

design [18].

B. ACTIVE LEARNING PROBLEM

The generic problem of active learning is the following:

Given a set of points X = (x1, x2, . . . , xn) in R
d , we would

like to find a subset of points Z = (z1, z2, . . . , zm) ⊂

X which contains the most information about the response

variable. In other words, the points zi(i = 1, . . . ,m) can

improve the estimation the most, if they are evaluated and

used as training points [22]. In the remainder of the paper

we consider Z to represent the set of evaluated points, U to

represent the set of unevaluated points, and X to represent the

set of all points including evaluated and unevaluated points

(X = Z + U ).

C. GAUSSIAN PROCESS REGRESSION

Having some observed input-output pairs ( zi, yi ) where yi
might be corrupted by some noise ǫi, GP defines a prior over

an unknown link function f , and gives the posterior after

seeing some data [14]. More specifically, the GP regression

is defined as yi = f ( zi ) + ǫi for i = 1, ..,m, where ǫ is the

additive independent identically distributed Gaussian noise

with variance σ 2
m. The functional evaluation at the test point

x ⊂ U is denoted as f∗. Y = (y1, y2, .., ym)
T is the observed

outputs at training points Z = ( z1, z2, . . . , zm ). According

to the joint distribution of observed outputs and test output

we have:

[

Y

f∗

]

∼ N

(

0 ,

[

K (Z ,Z )+ σ 2
m I K (Z , x)

K (x,Z ) K (x, x)

])

(1)

where K (Z ,Z ),K (Z , x),K (x,Z ),K (x, x) are the covariance

between the training and training points, training and test

points, test and training points, test and test points respec-

tively, andK (., .) is an appropriate kernel function to evaluate

the covariance. Here, we consider the squared exponential

kernel K ( zi, zj) = σ 2
f exp(−

‖ zi− zj‖
2

2l2
) where σ 2

f the signal

variance, and l the characteristic length scale are two hyper-

parameters of the kernel. Let, K (Z ,Z ) = KZZ , K (Z , x) =

KZx , K (x,Z ) = KxZ , K (x, x ) = Kxx , and by conditional

distribution, we get:

E(f∗) = KxZ a, where a = (KZZ + σ 2
mI )
−1y (2)

cov(f∗) = Kxx − KxZ [KZZ + σ 2
mI ]
−1KZx (3)

The predicted variance σ 2(f (U )) of all unevaluated points

U is the diagonal of cov(f (U )) calculated from (3) using the

measured data Z .

D. ACTIVE LEARNING - COHN (ALC)

Active learning - Cohn (ALC) algorithm selects the next

evaluation point that maximizes the expected reduction in the

squared error averaged over input space for each xi ∈ U

added to the training set (Z ) [27], [68]:

argmaxxi∈U

∑q−1
j=1 (σ

2
Z f (xj)− σ 2

Z+xi
f (xj))

q− 1
(4)

where σ 2
Z f (xj) = Kxjxj − KxjZ [KZZ + σ 2

m I ]−1KZxj ,

σ 2
Z+xi

f (xj) = Kxjxj − Kxj,Z+xi [KZ+xi,Z+xi + σ 2
m I ]
−1KZ+xi,xj ,

and q is the number of unevaluated points (q = n− m).

III. PROPOSED ACTIVE LEARNING CRITERIA FOR

SELECTING THE MOST INFORMATIVE POINTS

We begin with extending the ALC measure by adding a

penalty term to integrate the information of both evaluated

and unevaluated points. This penalty term is regularized to

achieve the right balance for selecting the most informa-

tive point without increasing the uncertainty of the model.

We then propose a novel formulation for calculating the

similarity between evaluated and unevaluated points to fur-

ther improve the proposed method. Finally, we discuss the

relationship between the proposed measure and the Laplacian

regularized Kernel ridge regression.

A. LAPLACIAN REGULARIZED ACTIVE LEARNING (LR-AL)

Different from the classical criteria for selecting the next most

informative points which makes use of only evaluated points,

i.e. classical ALC, the Laplacian regularized active learning

(LR-AL) makes use of both evaluated and unevaluated points

to learn the underlying geometrical structure in the data. It is

assumed that if two points (xi, xj), are sufficiently close to

each other, then their responses (f (xi), f (xj)) are close as well.

Assuming there is a set of pre-specified unevaluated points

(U ) from which the next evaluation point should be selected

from, we introduce a graph Laplacian penalty term to the

ALC measure to incorporate the information of unevaluated

points as well as evaluated points to identify the points with

most information content. Specifically, the proposed LR-AL

measure selects the next point that minimizes the regularized

predicted variance that is averaged over all unevaluated points

U − xi, when xi ∈ U is added to the training set (Z ). The

selection of points follows (4) where

σ 2
Z f (xj) = Kxjxj − KxjZ [σ

2
mI + KZZ

+ λK(ZX )LK(XZ )]
−1KZxj (5)

σ 2
Z+xi

f (xj) = Kxjxj − Kxj,Z+xi [σ
2
mI + KZ+xi,Z+xi

+ λK(Z+xi,X )LK(X ,Z+xi)]
−1KZ+xi,xj (6)

where K(Z ,X )LK(X ,Z ) is the graph Laplacian penalty for (5),

K(Z+xi,X )LK(X ,Z+xi) is the graph Laplacian penalty for (6),

and λ ≥ 0 is the tuning parameter which should be set to a

small number. Thematrix L is called graph Laplacian in spec-

tral graph theory [69] and is calculated as L = D− S, where

D is a diagonal matrix withDii =
∑

j Sij, and S is a similarity

to quantify the similarity between points (X ). An appropriate

choice of similarity matrix should contain symmetric weights

Sij(Sij = Sji) which imposes a heavy penalty if neighboring

points xi and xj are mapped far apart, i.e. nearest neighbour
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(Alaeddini, Craft et al. 2019). In Section III-B we propose

a novel formulation for constructing graph Laplacian which

considers similarity of both predictor and response variable

spaces. For the tuning parameter, we propose to set λ =

λ∗σ
2
m K−1(Z ,Z ) for (5), and λ = λ∗σ

2
m K−1(Z+xi,Z+xi)

for (6) to

automatically adjust the significance of the graph Laplacian

penalty with respect to the other components of the inverse

term, namely K and σ 2
m I , as well as the hyperparameter λ∗.

Therefore, whenever there is an update in the variance of

the Gaussian noise (σ 2
m), or the covariance between the set

of points (K ), the tuning parameter will be automatically

updated. Such formulation has an intuitive relation with the

tuning parameter of the Laplacian regularized ridge regres-

sion which is briefly discussed in Section III-C. Setting

λ∗ = 0, simplifies the equations (5) and (6) to the variance

of regular GP using training set Z and Z + xi respectively.

We propose to select the λ∗ value such that it maximizes the

expected reduction in squared error averaged over the input

space. In Section III-D we provide a simple greedy algorithm

for optimizing λ∗ ≥ 0 parameter.

B. PROPOSED GRAPH LAPLACIAN

Let SX and SY denote the similarity matrices of the data

points in the predictor variables (input) space (X ) and the

response variable (output) space (Y ), where SXij and SYij are

measured using squared Euclidean distance, namely SXij =
∥

∥(xi − xj)
∥

∥

2
, and SYij =

∥

∥(yi − yj)
∥

∥

2
. We propose to define

the graph Laplacian as

L =
LY

LX
=
DY − SY

DX − SX
(7)

where DXii =
∑

j SXij , DYii =
∑

j SYij . The proposed graph

Laplacian utilizes the information of both the predictor and

response variables over the hypothetical line between each

pair of points. Using extensive simulation studies, we found

the proposed graph Laplacian in (7) outperforms the classical

graph Laplacian, where S is defined as

Sij =











1 if [i, j] are among p nearest

neighbors of each other

0 otherwise,

where p can be set using cross-validation, and D is the

degree matix with diagonal elements as Dii =
∑

j Sij
[70], [71]. We provide a sample result of comparing the

classical graph Laplacian with the proposed graph Laplacian

in the Appendix. We also compared the performance of the

proposed Laplacian with other intuitive forms including LX ,

LY ,
√

LY
LX

,
√

LX
LY

, LX
LY

and LXLY and found the proposed mea-

sure has the most competitive performance.

Fig. 1 provides a graphical representation of the proposed

graph Laplacian measure over the contour plot of a nonlinear

function with three evaluated and three unevaluated points.

In the space of predictor variables, we can see that x4 and x6
are the two points that are almost equidistant from the eval-

uated point x3. By using the kernels without the information

FIGURE 1. Graphical representation of the proposed graph Laplacian
measure.

from responses, we tend to pick either x4 or x6 as our next

evaluation point. However, by incorporating the information

from the responses, we can see that the unevaluated point x4
is more similar to x3 (compared to x6). Thus, it helps picking

x6 which provides more information.

C. RELATIONSHIP WITH LAPLACIAN REGULARIZED

KERNEL RIDGE REGRESSION

Suppose there are a total of n possible points out of which m

points are already evaluated. Also, let S be a similarity matrix.

Then, the Laplacian regularized ridge regression solves the

following optimization problem:

J [f ] =
λ1

2
‖f ‖2

H
+

λ2

2

n
∑

i,j=1

(f (xi)− f (xj))
2Sij

+
1

σ 2
m

m
∑

i=1

(yi − f (zi))
2 (8)

where the first term is the ridge penalty in the form of squared

Euclidean norm of the vector of regression coefficients in

Hilbert space with λ1 denoting the weight of ridge regu-

larization term, the second term is the Laplacian penalty

with λ2 denoting the weight of the Laplacian regularization

term, and the third term is the standard least square loss

function. Substituting f (x) =
∑m

i=1 aik(x, zi) and using

〈 k(·, xi), k(·, xj)〉H = k(xi, xj), and setting λ1 = 1, result

in the following kernel Laplacian regularized least squared

problem.

J [a] =
1

2
aTKZZa+

λ2

2
aTKZXLXXKXZa

+
1

2σ 2
m

|y− KZZa|
2 (9)

The Laplacian regularized least squaredmodel in (9) can be

minimized by solving the system of equations resulting from

differentiating J with respect to the vector of coefficients a

∂J

∂a
=

∂

∂a
(
1

2
aT (KZZ +

1

σ 2
m

K 2
ZZ + λ2KZXLXXKXZ )a

−
1

σ 2
m

yTKZZa+
1

2σ 2
m

yT y) = 0 (10)

a = (σ 2
mI + KZZ + σ 2

mλ2K
−1
ZZ KZXLXXKXZ )

−1y (11)
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The inverse term in (11) is very similar to the one in (5).

In fact, setting λ = λ2σ
2
m K
−1
ZZ in (5), makes the inverse terms

identical in both equations.

D. PROPOSED ALGORITHMS

In this section, we provide the pseudo codes of the proposed

sequential Laplacian regularized Gaussian process (SLRGP)

algorithm and the sequential algorithm for optimizing the

tuning parameter of graph Laplacian used in SLRGP. The

implementation of the proposed algorithms can be found in

https://github.com/rajithameka/SLRGP.

Algorithm 1 Sequential Laplacian Regularized Gaussian

Process (SLRGP)

Input: Set of n pre-specified points (X )

Output: Design vector for the

m evaluated points (Z )

Estimated GP (f (x))

Step 1. Determine Z by selecting m points from X

using a space filling design

Step 2. Until satisfying some desired stopping criteria

Step 2.1 Optimize the tuning parameter using

Algorithm 2

Step 2.2 For each xi ∈ U select x∗ such that

argmaxxi∈U

∑q−1
j=1 (σ

2
Z f (xj)−σ 2

Z+xi
f (xj))

q−1
using (5) and (6)

Step 2.3 Z ← Z + x∗

Step 2.4 f (x) = KxZ (σ
2
n I + KZZ )

−1y

Calculate MSE

Go to Step 2.1

1) SEQUENTIAL LAPLACIAN REGULARIZED GAUSSIAN

PROCESS (SLRGP)

Algorithm 1 illustrates the proposed sequential Laplacian reg-

ularized Gaussian process (SLRGP). The algorithm essential

input includes a set of pre-specified settings (X ) from which

the evaluation points should be selected. The outputs of the

algorithm include the matrix of design vector for the selected

points (Z ), and the estimated GP (f (x)). The algorithm begins

with determining a set of m points (Z ) from all feasible

settings (X ) using a space filling design such as LHD and

obtaining their response values (y) (Step 1). Next, it optimizes

the tuning parameter of the proposed sequential Laplacian

regularized Gaussian process (SLRGP) using Algorithm 2

(Step 2.1), and uses (4) to sequentially identify the most

informative unevaluated points to be evaluated until a desired

stopping criterion is met (Step 2.2). Each selected setting

(x∗) is then evaluated and moved to the evaluated points (Z )

before checking the stopping criterion for initiating another

iteration (Step 2.3). The stopping criterion can be based on

a pre-specified number of design points, reduction in MSE,

etc. After each evaluation, the set of evaluated points (Z ),

which are expected to have themost information content of all

settings (X ), are used to update the GPmodel fit and calculate

the associated error (Step 2.4).

2) OPTIMIZATION OF THE TUNING PARAMETER

Algorithm 2 demonstrates the proposed sequential algorithm

for optimizing the tuning parameter of the graph Laplacian

regularization. The algorithm input includes the set of m

existing evaluated (Z ) and q unevaluated points (U = X−Z ),

and a set of candidate values (λc) for the tuning parameter

λ. We consider a prespecified finite set of candidate val-

ues of the tuning parameter λ to reduce the computational

complexity of the optimization algorithm. The output of the

algorithm is the optimal value of the tuning parameter, λ∗.

The algorithm begins with initializing the vectorP to store the

LR-AL values for different choices of the tuning parameter,

i.e. λc = 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 102 (Step 1).

Next, for each choice of the tuning parameter in λc, it uses

(4) to select the most informative point from the unevaluated

set (Step 2.1). Adding the selected point for each λc to

the set of evaluated points, it then calculates the maximum

variance of the remaining unevaluated points using (3) and

store it in vector P (Step 2.2). Finally, it selects the optimal

tuning parameter λ∗ which corresponds to the minimum of

the maximum variances stored in P (Step 3).

Algorithm 2 Optimization of the Tuning Parameter of the

Laplacian Regularization Penalty (λ∗)

Input: Set of m evaluated points (Z ),

Set of q unevaluated points (X − Z ),

Set of candidate values for

tuning parameters (λc)

Output: Optimized value of the tuning parameter (λ∗)

Step 1. Initialize, P[i] = 0, i = 1, .., size(λc)

Step 2. For each λ ∈ λc , select x
* such that

Step 2.1

x∗ = argmaxxi∈U [max[K(U−xi,U−xi)

− K(U−xi,Z+xi)[σ
2
m I + K(Z+xi,Z+xi)

+ λK(Z+xi,X )LK(X ,Z+xi)]
−1

× K(Z+xi,U−xi)]]

Step 2.2 P[i] =

∑q−1
j=1 (σ

2
Z f (xj)− σ 2

Z+x∗ f (xj))

q− 1
where,

σ 2
Z f (xj) = Kxjxj − KxjZ [KZZ + σ 2

m I ]
−1KZxj

σ 2
Z+x∗ f (xj) = Kxjxj − Kxj,Z+x*

[K
Z+x*,Z+x*

+ σ 2
m I ]
−1K

Z+x*,xj
i← i+ 1

Step 3 λ∗ = argmaxλ∈λc (P)

IV. CASE STUDY AND SIMULATED EXPERIMENTS

In this section, we validate the performance of the proposed

methodology along with a number of existing methods in

the literature including expected improvement (EI), maxi-

mum entropy (ME), integrated mean square error (IMSE),
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maximum mean square error (MMSE), Gaussian random

field (GRF), active learning - Cohn (ALC), sequential Lapla-

cian regularized V-optimal (SLRV), improved greedy sam-

pling (iGS) and graph based active learning (GBAL) methods

using both case study and simulated experiments. In our

paper, we use MATLAB for coding and GPML library [72]

for optimizing the hyperparameters of the GP model. While

there are several possible choices of kernel functions to

build the GP model, i.e. squared exponential, Matern, etc.

we consider the squared exponential kernel for all of our

experiments, as it is widely used and has the capacity to learn

any well behaved function with infinite data [4]. We begin

with a brief discussion of each of the comparing methods and

the performance metric chosen for the analysis of the results.

Next, we illustrate the result of a case study on kinematics

of pitching in baseball. Finally, we describe the result of a

simulation study based on eight nonlinear response models

of 2 to 10 dimensions with different levels of noise.

A. COMPARING METHODS

Here we provide a brief discussion of the comparingmethods,

except ALC which has been presented earlier in Section II.

1) EXPECTED IMPROVEMENT (EI)

EI selects the next evaluation point xi ∈ U that maximizes

the expected improvement given the training set (Z ) [32]:

argmaxxi∈UE(I (xi)) = (fmin − ŷ)8(
fmin − ŷ

s
)

+ sφ(
fmin − ŷ

s
) (12)

where fmin is the current best value of the estimated function,

φ(.) is the standard normal density function, and 8(.) is the

standard normal distribution functions. Here, ŷ = f∗ is the

predicted value at xi ∈ U given Z .

2) MAXIMUM ENTROPY (ME)

ME selects the next evaluation point xi ∈ U that maximizes

the entropy given the training set (Z ) [47]:

argmaxxi∈U [
1

2
logσ 2

xi | Z
+

1

2
(log(2π)+ 1)] (13)

3) INTEGRATED MEAN SQUARE ERROR (IMSE)

IMSE selects the next evaluation point that minimizes the

trace of thematrix of the predicted variance of the (remaining)

unevaluated points U − xi, when xi ∈ U is added to the

training set (Z ) [11]:

argminxi∈U [

q
∑

j=1

[K(xjxj) − K(xj,Z+xi)

× [σ 2
mI + K(Z+xi,Z+xi)]

−1K(Z+xi,xj)]] (14)

4) MAXIMUM MEAN SQUARE ERROR (MMSE)

MMSE selects the next evaluation point that minimizes the

maximum predicted variance of the (remaining) unevaluated

points U − xi, when xi ∈ U is added to the training

set (Z ) [11]:

argminxi∈U [maxxj∈U−xi [K(xjxj) − K(xj,Z+xi)

× [σ 2
mI + K(Z+xi,Z+xi)]

−1K(Z+xi,xj)]] (15)

5) GAUSSIAN RANDOM FIELDS (GRF)

GRF is a semi-supervised learning method which represents

evaluated (labeled) and unevaluated (unlabeled) data points

using a weighted graph, where the graph weights are calcu-

lated based on a similarity function like radial basis func-

tion (RBF) [73]. As the Gaussian field conditioned on the

evaluated data points is a multivariate normal distribution

y ∼ N (0, 1−1), it can be seen as GP, where 1 is the

Laplacian matrix calculated as 1 = D − W . W is an edge

matrix calculated using any kernel function K , and D is a

diagonal matrix with entriesDii =
∑

jWij. Here, we consider

yu ∼ N (0, (β(1+ 1
σ 2 )
−1) for construction of the GRF, where

β controls the sharpness of the distribution, and σ 2 controls

the amount of regularization as described in [64].

6) SEQUENTIAL LAPLACIAN REGULARIZED

V-OPTIMAL (SLRV)

SLRV selects the next evaluation point that minimizes the

Laplacian regularized V-optimality criterion based on the

locally weighted regression (LOESS) using both evaluated

and unevaluated points [2]:

argminxi∈U [

q
∑

j=1

avg(XT∗ (Z∗(xi)
TW (xi)Z∗(xi)

+ λ1X
TLX + λ2I )

−1X∗)] (16)

where

Z∗(xi) =







1 (x1 − xi)
T

...
...

1 (xm − xi)
T







is the transform matrix of evaluated points,

X∗ =







1 (x1)
T

...
...

1 (xn)
T







is the transform matrix of all points, W (xi) is a weight

matrix based on the scaled distances between the target

point xi and the evaluated points xj, j = 1, . . . ,m,

namely W (xi) = diag(Kh(xi, x1), . . . ,Kh(xi, xm)). While

there are several choices for calculating the scaled distances,

the tricube weight function is usually used in practice, with

Kh(xi, xj) =



















(1−

∣

∣

∣

∣

xi − xj

h

∣

∣

∣

∣

3

)3 if

∣

∣

∣

∣

xi − xj

h

∣

∣

∣

∣

< 1

0 if

∣

∣

∣

∣

xi − xj

h

∣

∣

∣

∣

≥ 1.
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The Laplacian matrix is calculated as L = Dx − Sx , where

SXij =

{

SXij = 1 if i, j are among p nearest neighbors

SXij = 0 otherwise,

and DXii =
∑

j SXij . As opposed to the proposed Laplacian

matrix in (7), the Laplacian matrix of SLRV is developed

using only the information from the input variables.

7) IMPROVED GREEDY SAMPLING (IGS)

IGS initially calculates dxUZ =
∥

∥xi − xj
∥

∥

2
and d

y
UZ =

∥

∥f (xi)− yj
∥

∥

2
for each xi ∈ U and xj ∈ Z , then selects

the next evaluation point that maximizes d
xy
U which is calcu-

lated as [30]:

d
xy
U = min(dxUZ d

y
UZ ) (17)

8) GRAPH BASED ACTIVE LEARNING (GBAL)

GBAL calculates the measure of uncertainty for each uneval-

uated point xi ∈ U as θ (xi) = minxz∈ZL1(xi, xz), then selects

the next evaluation point that maximizes Q(xi) when xi ∈ U

is added to the training set (Z) [31]:

Q(xi) =
∑

i∈U

θ (xi)−
∑

j∈U−xi

θxi (xj) (18)

B. PERFORMANCE METRIC

Since the main objective of the proposed SLRGP algorithm is

efficient estimation of expensive noisy black-box functions,

we choose to use the root mean squared error (RMSE) of

the estimated and true models for performance evaluation.

We also study the average predicted variance (APV) at test

points, as another performance metric, which shows simi-

lar general trend as RMSE and hence not reported in the

manuscript for the economy of space, except for one case

which is discussed in Section IV-D. To calculate the RMSE,

we use a randomly selected out-of-sample of size t = 1000

from the true response models and compare their associated

response values (yTrui , i = 1, . . . , t) against those provided by

the estimated model (yEsti ) using the RMSE metric, RMSE =
√

∑t
i=1(y

Est
i −y

Tru
i )2

t
. In order to achieve a high level of confi-

dence over the results, all simulated experiments are repeated

hundred times and the average result is reported.

C. CASE STUDY

In this section, we illustrate the results of a case study for

analysis of the kinematics of pitching in baseball comparing

the proposed methodology with expected improvement (EI),

maximum entropy (ME), integrated mean square error

(IMSE), maximum mean square error (MMSE), Gaussian

randomfield (GRF), active learning - Cohn (ALC), sequential

Laplacian regularized V-optimal (SLRV), improved greedy

sampling (iGS) and graph based active learning (GBAL)

methods. The study is based on a secondary analysis of

the effect of 5 kinematic (explanatory) variables, includ-

ing (1) maximum axial shoulder external rotation angles,

(2) trunk forward flexion angle at ball release, (3) stride

FIGURE 2. Kinematic variables associated with ball velocity.

length, (4) release height, and (5) release distance, on the

velocity (response variable) of the baseball for 73 pitchers.

Fig. 2 gives the graphical representation of the kinematic vari-

ables. Ball velocity is one of the key performance measures

for baseball pitchers. The maximum axial shoulder external

rotation angle and trunk forward flexion angle at ball release

have been linked to ball velocity in studies using regression

analyses. Stride length and the position of the hand at ball

release are also considered to affect ball velocity, and thus

often evaluated by coaches.

To construct the design matrix of the comparing methods

from the available 73 data points (pitchers), we begin with

randomly selecting 15 points for testing. Next, from the

remaining 58 points, we randomly select 20 points for train-

ing the initial surrogate model. Finally, from the remaining

38 points, we select 10 augmenting points one-at-a-time using

each of the comparing methods. To increase the confidence

we repeat the procedure 100 times and report the the average

result.

FIGURE 3. RMSE performance of the EI, ME, IMSE, MMSE, ALC, SLRV, IGS,
GBAL and SLRGP - pitching case study.

Fig. 3 illustrates the performance of the comparing meth-

ods based on the RMSE of estimated and true response

model parameters using 100 replications of the procedure.

As shown in Fig. 3, the proposed SLRGP method outper-

forms all other methods by a significant margin across all
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TABLE 1. P-values of the Wilcoxon rank test - Case study.

FIGURE 4. Box plot of RMSE performance of the EI, ME, IMSE, MMSE,
ALC, SLRV, IGS, GBAL and SLRGP - pitching case study.

data points. The performance patterns also show the proposed

method improves the RMSE much quicker than the other

methods for the first few additional points before stabiliz-

ing. This can be attributed to the proposed graph Laplacian

measure and the sequential algorithm for selection of new

experiments. After the proposed method, SLRV and ALC

provide the best performance, followed by the MMSE and

iGS methods. Table 1 verifies the observation by providing

the result of the Wilcoxon rank test for the significance of

the difference between the RMSE of the comparing methods

(See also Fig. 4).

D. SIMULATED EXPERIMENTS: NONLINEAR

RESPONSE MODELS

In this section, we evaluate the performance of the pro-

posed SLRGP method along with EI, ME, IMSE, MMSE,

GRF, ALC, SLRV, iGS and GBAL methods over nonlinear

response models of two, three, six and ten variables at differ-

ent levels of noise including 1%, 3% and 5% of the mean

value of the response models. These response models are

presented in Table 2. All simulated experiments are repeated

hundred times and the average results are reported.

For each of the comparingmethods, we begin with creating

a LHD of 200 points for all the functions and then randomly

select 4d number of points as the initial set of evaluated

points. This gives 8, 12, 24 and 40 initial points for each of the

2, 3, 6 and 10 variable functions respectively. Next, each of

the comparing methods is used to select 40 additional points

to improve the initial prediction.

Fig. 5 illustrates the root mean squared error (RMSE) of

the estimated responses from each of the comparing methods

after adding each point at 1%, 3% and 5% noise levels.

As shown in the Fig. 5, the SLRGP method outperforms

almost all other methods in terms of RMSE performance.

Apart from few exceptions, the improvement made by the

proposed method is generally more evident in cases with

larger standard deviation of errors. Also, the performance of

the SLRGP for high dimensional response models improves

compared to lower dimensional models, indicating its robust-

ness towards increasing the number of variables. In addi-

tion, as the number of points increases, the proposed method

generally maintains or increases its advantage over other

methods, which demonstrates the effectiveness of both the

proposed LR-ALmeasure and SLRGP algorithm. Among the

other comparing methods, the result is mixed but IMSE and

SLRV provide relatively better performance for lower and

higher dimension functions respectively.

For low dimensional functions, most of the comparing

methods provide competitive performance, especially for the

initial set and the first few additional points. Meanwhile, for

some of the response models, i.e. 2.2, the proposed method

starts with a higher RMSE compared to other leading meth-

ods, i.e. IMSE and ALC, though it catches up after few

additional points. This may be attributed to requiring addi-

tional points for better prediction of unevaluated points in the

Laplacian matrix, and optimizing the tuning parameter. For

the higher dimensional functions, SLRGP method provides

a significant improvement over the comparing methods. Our

conjecture is that as the complexity of the response model

increases, the information of the unevaluated points provide

more contribution compared to lower dimension functions.

After SLRGP, SLRV is the next best performing methods

especially for higher dimensional functions, namely 6D and

10D, and low noise, namely 1%, 3%. We think this because

SLRV also utilized the information of the unevaluated points.

Among comparing methods, the iGS is the only method

that does not use the uncertainty information for selecting the

next evaluation point. iGS shows competitive performance

for almost all low dimensional functions, namely 2.1, 2.2,

3.1 and 3.2. Specifically, for the response model 3.2, the iGS

method provides even better RMSE performance compared

to the proposed method. However, while iGS method pro-

vides competitive performance in terms of RMSE, there is

a good chance that the selected point might increase the

uncertainty of the updated/augmented model, which can be

shown using average predicted variance at test points.

Fig. 6 compares the RMSE and APV of the response

model 3.2. As shown in the Fig. 6, the average predicted vari-

ance of iGS is considerably larger than the proposed method,

even though their RMSE’s are comparable. The result shows

that SLRGP is overall a better performing method compared

to iGS, as the point selection process should not only improve

the performance of the model in terms of RMSE, but also it
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FIGURE 5. RMSE performance of the EI, ME, IMSE, MMSE, GRF, ALC, SLRV, IGS, GBAL and SLRGP.
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TABLE 2. Non-linear response models considered for the comparisons.

FIGURE 6. RMSE and APV of the EI, ME, IMSE, MMSE, GRF, ALC, SLRV, IGS, GBAL and SLRGP of response model 3.2.

should decrease or maintain the uncertainty of the model as

new information is added.

Fig. 7 complements the results of the earlier analysis by

providing the box plot of the RMSE performance of each of

the comparing methods for each of the response models over

all of their selected points (initial + 40 additional points).

As shown in the Fig. 7 the proposed SLRGP method gen-

erally provides the lowest quantiles, i.e. 25th, 50th, and 75th

compared to the others which demonstrate its superior perfor-

mance. Also, for most cases, SLRGP shows a larger variance

in the boxplot, which can be attributed to the greater RMSE

reduction over the selected points in comparison to the other

methods. This is due to the selection of more informative

points by the proposed SLRGP algorithm using the LR-AL

criteria. For high dimension models, with better quality of

prediction information, the proposed method converged very

fast compared to other models and due to the more evalua-

tions needed before next good approximation of the function,

the variance of the proposed method is small. Meanwhile,

other than few exceptions, the box plots show EI and GRF

provide the smallest changes in the RMSE performance from

the initial set of points.

Finally, Table 3 provides the result of the Wilcoxon rank

test for the significance of the difference between the RMSE

performance of the proposed method against other meth-

ods, where lower values show an increased probability of
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FIGURE 7. Box plot of RMSE of the EI, ME, IMSE, MMSE, GRF, ALC, SLRV, IGS, GBAL and SLRGP.
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FIGURE 8. Comparison between the classical and the proposed graph Laplacian based on response model 2.1 using
MMSE and ALC.

TABLE 3. P-values of the Wilcoxon rank test - simulated experiments.

difference in the RMSE performance. As shown in the

Table 3, the Wilcoxon rank test also signifies the improve-

ment by the proposed method which further validates the

earlier results.

V. CONCLUSION

We proposed an integratedmethodology for active learning in

Gaussian process regression to estimate black-box functions

with a fewer number of points. For this purpose, we intro-

duced a Laplacian regularization term to the popular active

learning - Cohn (ALC) criteria to explore the transfer of

information among evaluated and unevaluated points as well

as predictor variables in a dynamic setting. We also devel-

oped two simple greedy algorithms for optimizing the tuning

parameter, and sequential selection of the most informative

subsequent points to evaluate. In addition, we extended the

classical graph Laplacian matrix to consider the similar-

ity between points in both predictor variables (input), and

response variable (output) spaces to better capture the rela-

tionship between the points. For the development of the pro-

posed SLRGP method, we considered a common scenario,

in which evaluation points are to be selected from a set of

pre-specified points. We used a case study for analysis of the

kinematics of pitching in baseball and conducted a simulation

study to evaluate the performance of the proposed method-

ology against popular methods in the literature in terms of

root mean squared error (RMSE). The simulation results

suggest the SLRGP algorithm provides better performance

when there are plenty of unevaluated points available and the

standard deviation of error is large. The models developed

through this study can be used to reduce the number of points

for estimating expensive noisy black-box functions.

APPENDIX

COMPARISON BETWEEN CLASSICAL AND

PROPOSED GRAPH LAPLACIAN

In our study, we propose a sequential Laplacian regularized

Gaussian process (SLRGP) algorithm based on Laplacian

regularized active learning (LR-AL) by extending the active

learning - Cohn (ALC) measure. Meanwhile, the proposed

Laplacian penalty can be used to extend any measure that

111472 VOLUME 8, 2020



R. Meka et al.: Active Learning Methodology for Efficient Estimation of Expensive Noisy Black-Box Functions

selects the next evaluation point based on the uncertainty

information, i.e. MMSE, maximum entropy, etc. We conduct

several simulation studies to test different forms of graph

Laplacian against classical graph Laplacian. Here, we provide

a sample result based on response model 2.1 to compare

the proposed graph Laplacian with the classical Laplacian

based on ALC and also MMSE measures. Figure 8 illustrates

the RMSE of the classical and proposed Laplacian using a

set of 8 initial points augmented with 100 additional points.

As shown in the Figure 8, the proposed graph Laplacian

generally provides a better performance compared to the

classical Laplacian for both MMSE and ALC measures and

across different levels of noise. For the MMSE, even though

the result is not as good as ALC, the proposed graph Lapla-

cian is outperforming the classical Laplacian after as little

as 20 additional points. For the ALC, when the number of

evaluated points and the noise level are both small, there is not

much difference between the classical and proposed Lapla-

cian. However, as the number of evaluated points and the

level of noise increase the proposed graph Laplacian performs

better. Meanwhile, it should be noted that the remarkable

performance of the proposed SLRGP is based on the com-

bination of the proposed LR-AL measure and the proposed

graph Laplacian.
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