
An Active Object-Oriented Database:
A Multi-Paradigm Approach to Constraint Management

Hiroshi Ishikawa and Kazumi Kubota

Fujitsu Laboratories Ltd., Software Laboratory
1015 Kamikodanaka, Nakahara-Ku, Kawasaki 211, Japan

Abstract

Mb describe the design and implementation of a constraint
management facility for our active object-oriented database

system called Jasmine/A. The facility includes integrity
constraints, events/triggers, and constraint rules. The facility

enables the user to handle both interobject and intraobject

constraints, to define both primitive and composite events,

and to populate databases with values satisfying specified

constraints. We have taken a multi-paradigm approach to

construint management. All the paradigms are integrated into

object-oriented databases. We describe the semantics of the

constraint management facility by extending the conventional
terms of trrnsactions and consistency. Evaluation is done
officiontly using puge buffers for constraints associated with
sot-oriented access and object buffers for those associated with

individual object access. Users are also able to control the

constraint evaluation.

1. Introduction

Ht: developed a prototype object-oriented database system

called Jasmine [ISHI91][ISHI93] for advanced applications such

us engineering design support and structured document
mmagement. Such advanced applications require more active
functions than arc needed by conventional applications. For

example, we must not only model complex structures and

relationships of design objects, but we must also handle design

constraints as design specification and geometric constraints

bctwccn components. Some constraints can be reduced to a

collection of constraints on single object attributes. Other

constraints inherently span several object attributes. Since we

Permission to copy without fee all or part of this material is

granted provided that rk copies are not made or distributed for

direct cummcrcial advantage, tk VLDB copyright notice and

the title of tk publication and its date appear, and notice is

given that copying is by permission of tk Very La&e Data

Base Endowment. To copy otkrwise, or to republish, requires a

fee and/or special permission from tk Endowment.

Proceedlngs of the 19th VLDB Conference,
Dublin, Irelund, 1993.

must represent both types of constraints, we discuss consfraint

managemew as a new database technology to attain this goal.

Constraint management includes integrity constraint

enforcement, an event/trigger mechanism to propagate updates.
and constraint rules to generate values satisfying specified

constraints. We call databases with such constraint

management facilities acfive databases by extending the

original term [MORG83]. There have been attempts to

generalize the event/trigger mechanism such as HiPAC

[MCCA89] and SAMOS [GATZgl]. Systems such as Postgres

[STON90] and Starburst [LOHM91] aim to extend relational
databases by introducing production rules. Works on derived

attributes and integrity constraints in object-oriented databases
include Cactis [HUDS89] and ODE [AGRA89]. We developed a
research system called HyperCAD [ISHI91], which supports
engineering tasks by using Jasmine to implement the

constraint management facilities.

W? propose a general framework for constraint management

based on the experiences of engineering applications. From

this viewpoint, there are some problems with the previous

approaches. First, conventional production rules are weak both

in generating values which satisfy specified constraints such as

design constraints and in describing complex events such as
design processes. Such facilities are essential to improve
reliability and productivity in design. Second, a single-

paradigm approach is not always better than a multi-paradigm

approach for representing a variety of purposes such as

integrity constraints, triggers, and constraint rules. Third, the

semantics of active databases is not so clear in terms of
transactions and consistency. Lastly, functions, in particular,

triggers and constraint rules must be implemented efficiently.

High performance is vital for engineering applications. We

have implemented an active object-oriented database system

called Jasmine/A (Jasmine Active database system) by

extending Jasmine, a kernel object-oriented database system.

In this paper, we describe the constraint management facility of
Jasmine/A and its implementation. The facility includes

integrity constraints, events/triggers, and constraint rules. We

take a multi-paradigm approach to constraint management. We
describe the semantics in terms of transactions and
consistency. Evaluation is done efficiently using page buffers

467

for constraints associated with set-oriented object access and

object buffers for those associated with individual object

access. Users are also able to control the constraint evaluation.
The paper is organized as follows. Section 2 describes active

database issues and compares Jasmine/A with related work.
Section 3 briefly describes Jasmine, Section 4 discusses our
constraint management facility and its semantics, and Section

5 describes its implementation.

2. Requirements and Related Work

2.1 Requirements

Our work aims to satisfy the following requirements. First,

constraints must be maintained for object attributes. Such
constraints include those on single attributes and those which
span multiple attributes of one or more objects, where the latter

cannot be reduced to a collection of the former. Second, the

system must not only provide direct support for generic
integrity constraints, such as mandatory and multiple

constraints, but the system must also allow the user to specify

application-specific constraints. Third, the constraint

management facilities must include check and enforcement of

constraints on attributes associated with value updates as well

as attribute value generation satisfying user-specified

constraints, that is, automatic database population based on
constraint rules. In particular, such automatic database

population is important for engineering applications.
ODE [AGKA89] (GEHAYILJ provides integrity constrsints and
triggers as separate functions of object-oriented databurrs.
Cactis]HUDS89] aims at active object-oricutcd databuscs.

Cactis proposes rule cvuluation schcmcs based on the

dcpcndcncy relationships of method (rule) definitions. ODE
provides composite events, but Cactis doesn’t. ODE and Cactis

provide no direct support for constrsint rules.

Next, we must provide the user with multiple paradigms which

are appropriate for all of these purposes. The appropriate
paradigm must be available for each facility. These paradigms
must be naturally integrated into the object-oriented databases

which we take as a basic framework. The semantics of

constraint management must be described in terms of

transactions and consistency, requiring more generalized

concepts of transactions and consistency. Lastly, we must

efficiently implement the constraint management facilities. In

particular, we must carefully trade off the expressive power of

constraint management against the performance. Since the

system cannot know all the information available for

optimization, the user must also be able to explicitly control

the methods of constraint evaluation, making up for any

limitations in the system. From these points of view, WC

describe Jasmine/A in this paper.

3. Overview of Jasmine

3.1 Functionality

‘lb describe Jasmine’s object model. objects arc a collection of

attributes, which arc catcgorizcd into properlies (enumeralcd

attributes) and method7 (procedural al1ribute.v). Properties are

object structures and methods are operutions on those objects.

Objects are categorized into instances and clusses. Instances
denote individual data and classes denote types (i.e., structures)
and operations applicable to instances of the class. lnstanccs
consist of a collection of attribute names and values. Classes
consist of attribute names, definitions, and associated
information such as demons. Objects are identified by values of

the system-defined attribute object identifier (011)). Therefore.

objects with the same object idcntificr in a consistent database

2.2 Related Work

Systems such as HiPAC [MCCA89] and SAMOS [CATZ91]
attempt to integrate active database concepts into object-

oriented databases. HiPAC introduces the event (E)-condition

(C)-action (A) paradigm. In addition to primitive events, the

user can define time events and composite events. The E-C and

C-A couplings can take immediate. dcferrcd. and scparatc ns

evaluation modes. HiPAC rules mainly provide support for a

trigger mechanism, but unlike Jasmine/A, provides no direct

support for constraint rules to uulomatically l~opulalc

databases. Like HiPAC, SAMOS allows time and composite
events based on the E-C-A paradigm. It provides E-C and C-A

couplings which use the three evaluation modes. SAMOS
focuses on triggers, but not on constraint rules.

Systems such as Postgres [STONYO] and Starhurst]LOllM91]
aim to add production rules to cxtcnd relational databases.

Unlike Jasmine/A. Postgrcs rules provide n unified npproach IO

integrity constraint checks, updato propagation, and view

facilities. Postgres does not, however. provide any facility for

automatic database population based on constraint rules. In
general, there are two methods for rule evaluation: forward and
backward chaining. Postgres uses optimization to choose

bctwccn them. Production rules arc implemented at tuplc arid

query lcvcls. which corrcspond to Jasmine/A’s evaluation of

constraints on object buffers and on page buffers. Postgrcs
does not provide composite events. Examining Starburst, it

also provides for production rules. Events arc insertion.

replacement. and deletion of values. Conditions and actions can
take queries specified in extended SQL and database commands.

Alert, a Starburst subsystem. allows the user to define views as

a kind of production rules. Starburst provides no facility for

composite events or constraint rules.

468

have the same values. On the other hand, while values such as

nunrhcrs and character strings have no OlDs, they do have

system-dcfincd classes. Objects with OlDs arc called reference

o/Jjwi.s untl vulucs with no OlDs are culled immcdiote 0bjcct.r.

Objccta cau include other objects (i.e. 011)s) as attrihutc

v;tlu~s. This cnablcs the user to directly dcfinc complex o6jtx.t~

((~m/~.ri/c* objecrs)] KIMoO].

Classes arc organized into a hierarchy (more strictly, a lattice)

by generalizolion relationships. This hierarchy is called a

c4~s.r hierarchy. A superclass in a class hierarchy is dcnotcd by

the system-defined attribute, Super. Classes (i.e., subclasses)

can inherit atlributc definitions from their superclasses. Unlike

the features provided for in Smalltalk-g0 (GOLD83J. the user

can make instances (i.e.. instunriote) from any class in a class

hicrnrchy. Such instances arc called intrink instances of the

CISSS.

III addition IO defining object types and methods. classes arc

also intcrprctcd as sets of instances. That is. the instances of a

class arc LIIC union of all the intrinsic instances of the class and

alI its SII~~~;ISSCS. This diffcrcntiutus Jasmine from other

(X)Dlts such as GcmStonc] MAIE86] whcrc the user must dcfme

separate classes both as a type and as II set. Objects can have a

set of objects or just a single object as an attribute value. The,

former arc called multiple-valued oftributes and the latter

singleton-valued attributes. Specialized functions, called

dcmon~. can be attached to attributes to enable the user to

flexibly implcmcnt active databases.

III Jasmine. the user manipulates objects by sending messages

IO objects just as in object-oricntcd programming languages.

This is called singleton access. The user can assign values to

attributes and rcfcrcncc attribute values. Jasmine allows sef-

orierited ac~~.r~ in addition to singleton access. Set-oriented

IWCSS is done by object qucrics. The basic unit of an object

cpwry is an object expression. a class name followed by a series

of uttribute names delimited with periods. Object expressions

climinatc most of tile need for equijoin predicates in relational

databnses. The user can also specify methods in object

cxprcssions. An object query consists of a target and a

condition. The target part is a list of object expressions. The

condition part is a logical combination of simple conditions

comparing object expressions by comparison operators. For

exemplc. the following query finds the name of coworkers of

an employee who works in the shoe department and is over 30

ycnrs of age:

EMP.Coworkers.Name where EMP.Dept = “shoe”

and EMP.Age > 30

‘lo make application programs, users can combine singlcton-

access and set-oricntcd access. An elcmcnt of a set of objects is

assigned to an object variable and is manipulated by sending

messages to the object variables. The introduction of object

variables reduces impedance mismufch between a programming

language and a database language [MAIE86]. As users can

specify object queries as well as simple manipulation of

attributes in methods. virtual objects can be defined using

methods. Since a query on a class rctums all the instances of the

class and its subclasses. a single Jasmine query can rctricvc

what would take multiple relational database queries to retrieve.

By specifying methods in a query, users can retrieve and

manipulate objects in a set-oriented manner. If a superclass is

spccificd with a method in a query, methods dedicated to

instances of the class and its subclasses can be invoked

simultaneously. This facilitates polymorphism [STEF86] in a

set-oriented manner. A query can also make new instances from

more hn one class like joins in a relational database.

Application programs written with Jasmine are precompiled

into C programs. During this process, references to attributes

arc statically resolved to reduce the burden of a dynamic search,

allowing the C programs to execute efficiently. A set-oriented

query can also be interpreted interactively. Although objects are

basically persistent. since they exist over program execution,

though users can make temporary objects as in conventional

programming languages. which exist only during program

execution. A Jasmine database usually consists of several

classes and users can access several databases concurrently or

switch among them. Jasmine provides basic database facilities

such as transaction management.

3.2 Implementation

The Jasmine system has a layered architecture consisting of

object management and data management (See Figure 1). The

object management layer allows modeling and manipulation of

objects. In particular, this layer has object buffers that

cfficicntly manage objects in main memory. The data

management layer allows transaction management and page

buffer management as database functions.

Object management

I

Data management

I

Databases

Figure 1. System architecture.

469

The data management layer is a general-purpose database

management system that extends relational databases

(YAMA891. This enables the user to define and access nested

relations [ROTH881 as well as flat reladons. This layer

provides nest and unnest operations for relations, in addition

to reference and update. The system provides sequential, B-tree-

based, and hash-based access to both flat and nested relations.

A clustered index can be implemented by storing whole tuples

into B-tree relations. A nonclustered index can be implemented

by storing only keys and tuple identifiers into B-tree relations.

Objects are mapped into relations as follows. All intrinsic

instances of a class are stored in a relation by having attributes

correspond to fields. Intrinsic instances include inherited and

non-inherited attributes. Multiple values are stored in multiple-

valued fields, the simplest form of nested relations. Classes arc

stored in nested relations because they have nested suuctures.

The user can specify logical page sizes for each relation. Each

class has its own page size. A class normally inherits the page

size of its superclass. If necessary, however, the page size can

be enlarged. There is no limitation to the number and length of

tuples and fields although whole tuples must be contained in

one page. This enables the user to optimally store and access

large-scale data such as images. Operations and tests on fields

of relations are treated as user-defined functions in the data

management layer, called manipulation and predicate

funclions. and compiled into operations on data in page

buffers.

Object queries are translated into relational operations such as

selection and join. During this process, they are optimized.

Object expressions generate several joins whose execution

order is determined dynamically. Joins are usually proccsscd

based on hashing. If an index is attached to fields, it is used for

selection and join.

Page buffers are appropriate for access to homogeneous data.

but inappropriate for access to related heterogeneous data such

as complex objects. Therefore, the object management layer

provides object buffers. Objects, when accessed for the first

time, are fetched from databases in secondary memory to pa8c

buffers in the data management layer. Only the rcquircd data

comes to the object buffers from the page buffers. Object

identifiers are represented as a triplet of database, class, and

instance numbers. The identifiers of objects fetched into object

buffers are translated into addresses in main memory. This

eliminates the need for joins of relations and enables direct

access of complex objects. The objects in object buffers also

have tuple identifiers. If there are any updated objects in the

object buffers, they arc written back to [he page buffers using

the tuple identifiers at the end of the transaction.

associated with the query, that are in the object buffers arc

moved to the page buffers. The query is then evaluated agninst

the page buffers. Unlike Jasmine, Orion [KIM90] evaluates the

same query for both object buffers and page buffers and

integrates the results. Because our approach needs only one

evaluation scheme. the system is more compact.

A query on nonlcaf classes in a class hierarchy is trnnslatcd into

multiple queries on relations. Simple methods specified in a

query, such as manipulation of attributes, are transformed into

operations on fields of relations. These can be excculcd more

efficiently on page buffers because unnecessary daut transfer

between page and object buffers is reduced. On the other hand,

more complex methods, such as manipuladon of heterogeneous

objects of complex objects, are rrlorc cfficicntly cvaluald in

object buffers. Methods appearing in the condition purl arc

similarly processed. Unlike other OODBs. Jasmine efficiently

cxecutcs methods by combining object and page buffers.

4. Constraint Management

4.1 Integrity Constraint

W? now describe integrity constraints supported by Jasmine/A.

Basically, constraint management is modclcd on the E-C-A

paradigm. We realize intcgrhy conslruints by Jasmine demons,

which are essentially the conditions and uctions dcscribcd in

Section 4.2. First. WC provide the system-dcfincd dauons for

properties such as mundakwy and mulliple. They take the

following syntax:

ClassName

PropertyName mandatory

muhiple

If a value is inserted into a mandatory property at instantiation,

that is, if inserl and instantiute events occur at the same time,

then Lhc instantiate event is successful. Otherwise. the

instaniiation is aborted. If a value is dclctcd from a mandatory

property, that is. a delete cvcnt occurs, then an error is induced.

Of course, the rcpluccmcnl of a mandutory properly value. or a

replace event, is possible.

If a new value is added to a multiple-valued property. then the

insertion is successful. The insertion to a single-valued

propercy is prohibilcd when the property already has n value. Of

course, the rcplaccmcnt of a singleton-valued property is

possible. All the cvcnls. conditions. and actions associated

with mandatory and multiple demons are system-dcfincd.

Next we dcscribc constraint dcmens. The demon has IIIC

following syntax:
Before a set-oriented query is evaluated, any updated objects

470

ClussName

PropertyNume constraint (condition)

lf the user-defined condition is true when an insert or a replace

event OCCII~S. the transaction for the cvcnt is committed.

()lhcrwisc, the transaction is aborted. The cvcnt and action in

his case arc system-dcfincd while only the condition is user-

drfincd. The condition is specified by a subset of the query

language. hat is. the condition part of a query. For example,

Wll’

Dcp1 mandatory

C’oworkcrs multiple

Age constraint (Value >= IS)

whcrc the variable V&e is bound to the value being inserted or

rcplaccd. The constraint demon is mainly for expressing user-

dcfincd constraints on single attributes. that is. infroobjecf

wnslrainls. Constraints spanning multiple attributes, that is,

inlerobject conslruinls, arc supported by triggers and

constraint rules as described later.

4.2 ‘Itiggers and Primitive Events

We dcscribc our basic cvcnt and triggering mechanisms called

demons. Jasmine/A allows 111~ user to define demons for

propcrlics as follows:

(.‘lu.ssNumr

I’roperryNum* if-rcfcrcnccd (iJ: re~!reflccd-_d~,t~)tl)

if-inscrlcd { IT-inserted--demon)

if-dclctcd (ij:deleled-demon)

if-rcplaccd (i/-replaced-demon)

Property demons such us if-referenced. if-inscrtcd. if-delctcd,

and if replaced demons modularize user-dcfincd conditions und

arlions ns follows:

if condirion lhen action

clsc if condition then uction

The condition syntax corrcsponds to that of ~hc condition part

of H query. The conditions, howcvcr. can access database

lronsirions as well as database states. The actions include both

SCI oriented and individual object access. If system-dcfincd

cvcnts such as rcfcrcnce. insert, dclctc. or replace occur, the

corresponding user-defined demons are invoked. In general,

production rules consist of conditions and uctions, so demons

can reprcscnt u WI of production rules. Constraint rules for

automatic value gcnerution nrc described in Section 4.4

The systcmdcfined variables Self and Value can bc: us4 in the

demon definitions. The variable Self is bound to the instance

where the event occurs. The variable Value is bound to

refcrenccd. inserted. deleted, or replaced values depending on

the events. An existing value before replacement is bound to

the variable OldValue.

Methods can also take the following demons:

before -demon

melhod

after-demon

Invocation of user-defined methods correspond to user-defined

events. Method demons, that is. before and after demons also

modularize user-defined conditions and actions like property

demons. Before demons are invoked before the main methods;

after demons are invoked after. Usually, before demons are used

to cheek or establish the preconditions of the method

invocation. After demons are used to propagate the effects of

the method invocation.

The integrity constraints and user-defined demons described

above arc specified in the class and are activated on its

instances where associated events occur. Of course, they are

invoked when instances are set-theoretically retrieved,

inserted. deleted, replaced, or accessed with methods

invocation. If there are multiple rules, that is. pairs of

conditions and actions associated with the same event for one

attribute. they are usually prioritized by using if-then-else

constructs within demons. Note that we presently do not

provide support for simultaneous firing of multiple rules.

Objects arc acccsscd through system-defined and user-defined

methods. System-dcfincd methods include start, commit, and

abort of transactions in addition to instance operations such as

refcrencc, insert, delete. replace. In general, method invocation

corresponds to event occurrence, so the system can directly

recognize the event occurrence. Method invocation

corresponds to basic events. The user can combine primitive

cvcnts to define composite events as described in Section 4.3.

W illustrate the demon functionality by taking some examples

used in other work such as Postgres [STON90]. The following

demon defined for the Attribute Salary of the class EMP(loyee)

specifies the rule that if Joe’s salary is updated, the new value is

propagated to Sam’s salary.

EMP

Salary if-replaced

(if Sclf.Name = “Joe” then

EMP.replace (“Salary”, Value) where EMP.Name=“Sam”)

The next demon specifies the rule that every time Joe’s salary is

rcfcrcnced, Rill’s salary is made equal to Joe’s:

471

EMP

Salary if-referenced

(if Self.Name = “Joe” then

EMP.replace(“Salary”. Value) where EMP.Name=“R ill”)

The following demon specifies the rule that Joe is unable to see

Salaries of employees in the shoe department:

EMP

Salary if-referenced

(If Self.Dept = “shoe” and user0 = “Joe” then Value = Null]

Exceptions to rules can be realized by combining if-then-else

constructs within the rules. The following includes an

exception for the above rule for Sam:

EMP

Salary if-referenced

(If Self.Dept = “shoe” and user0 = “Joe” then

(if EMP.Name = “Sam” then Value = 1000

else Value = Null))

The next rule registers security audits every time somebody

references salaries:

EMP

Salary if-referenced

(<AUDIT>.instantiate(“Accessor”:user().

“Object”:Self.Name, “Value”:Value))

Note that rules for handling rules themselves can be realized by

using event objects as &scribed in Section 4.3.

The Postgres rule system can also provide a view facility within

the same mechanism. We realize views as a separate mechanism

in Jasmine/M (Jasmine Multidatabase system) [ISHI92]. That

is, we provide objects for view definition. For example, the

following view class defines TOY-EMP as employees in the

toy department:

TOY-EMP

BaseClass EMP

property
*

Method *

Condition Dept = “toy”

The “*” entries in Property and Method specify that this view

class inherits all the properties and methods of the base class

EMP. Condition specifies the filtering condition against the

base class EMP. Like this, Jasmine takes a multi-paradigm

approach to constraint management because we think there is a

separate paradigm well suited for each purpose. Note that all the

paradigms including integrity constraints, user-defined

demons, and even views are integrated into object-oriented

databases. Demons are inherited through a class hierarchy.

Polymorphism is also avuilablc. If the snme event occurs IO

instances of different classes in a query inchiding muhiplr

classes, each of the demons associated with the same cvcn~ is

invoked. Users can also activate and deactivate demons.

Next WC take some examples of Date’s Hypothetical Integrity

Language [DATEYO].

S
Status if-replaced { if Value c= OldValue then

Self.replace(“Status”, OldVulue))

if-in.serted (if S.Status.avg() <= 25 then

Sclf.dehte (“Status”, Value))

The if-replaced and if-inserted demons defined for Status of

S(upplier) compcnsatc for the effects of the replace and insert

cvcnts. Note that the condition of the if-rcfcrenccd demon is

chcckcd against the database transition rather than the datab:Lsc

stale. Jasmine/A maintains primary key constraints through

OlDs. Foreign key constraints are partially maintained by

validating object rcfcrences on object buffers with object

descriptors. Thus, constraints with fixed semantics can bc

Elegantly supported by system-dcfincd integrity constraints.

The user has only to describe application-specific semantics by

specifying user-dcfincd demons.

4.3 Composite Events

Composite event specification extends triggers by combining

primitive ~lrents described above. The facility enables users to

flexibly describe engineering processes. such as design change

notification and propagation, and design tool invocation.

Composite cvcnts consist 0r one or more primitive events.

Primitive events include reference. insert, dclcte, and replace 01

attribute valncs; start, commit, and abort of transacticms; and

user-defined methods. We provide composing operators such as

conjunction (&). disjunction (I). negation(-), and sequcncc (;).

The composite event cxprcssions have the following syntnx:

event-expression = primitive-even1 1

(event-expression) 1

evenf-expression & evenldexpression 1

evenf-expression I evenf-expression 1

- event-expression 1

event-expression time-spec

time-spec = bd0rc lime 1 a&r time I 84 time I

tdOEc lime after time

time = YMDIIMS

Assume that El. E2. and E3 are primitive events: F1 and F2 arc

composite events; and T1 and T2 arc times. For example.

472

mode attributes denote E-C and C-A coupling modes. The intciprclulion I of event expressions is dcfincd us follows:

Concrete events are instantiated and named in advance. I(P) - 1 P belongs lo it
r

)

Primitive events constituting composite events are rccordcd in

demons or methods by the following query:
f(E1 IE2)-I(El)ll(E2)
1(El&E2)=/(El)&/(E2)

/(-E)=-/(E)
PRIMlTfVE_EVENT.insert(‘Time”. time)

where PRIMJTIVE-EVENT.Name = event-name
I (El ; E2) = I (El) & I (E2) & El .Timc < E2.Timc

For example. to ensure the rule “if Joe’s salary is replaced.

replacing Sam’s salary with the same value is the only way to

4 4
.

ConPtraint HuleP
. .

change Sam’s salary,” the user defines the following composite

events:

CDMF’OSJTE~EVENTl

Event (- EVENT1 & EVENT2)

Condition (True)

Action (Value = PRfMlTJVE~EVENT.Value

where PRfMlTfVE-EVENT.Name =

deactivate-demon;

EMPreplace (“Salary”. Value)

where EMP.Name = “Sam”;

activate-demon)

E-C-mode immediate

C-A-mode immediate

where EVENT1 and EVENT2 arc invoked as follows:

EMP

Salary if-replaced

(if Self.Name = “Joe” then

(EMP.replace (“Salary”, Value) where EMP.Namc=“Sam”

PRJMlTIVE_EVENTinsert(‘Time”, Time)

where PRIMlTIVE~EVENT.Name = “EVENTI”]

else if Self.Name = “Sam” then

(PRIMfllVE_EVENT.insert(“Value”, OldValue)

where PRlMlTJVE-EVENT.Name = “EVENTY ;

PRJMlTJVE~EVENT.insert(‘Timc”. Time)

where PRJMlTJVE~EVENT.Namc = “EVEBTY))

;

Note that deactivate-demon in the composite cvcnt action

suppresses the invocation of EVENT2 to avoid an infinite loop.

Events are first-class objects. The user can USC object-oricntcd

facilities such as inheritance and polymorphism to customize

the event mechanism.

We conclude this subsection by describing the intcrprctation of

event expressions. We assume the following:

TF: Time interval specified for the event E.

J-J,.: History or a set of events during TE

P: Piimilivc event.

E. El, E2: Events

Wh describe constraint rules. II gcnerrlization of the dcsigu

goals whose validity WC have verified in engineering
. .

applrcattons IISHlYlJ. The main objective of’ integrity

constraints and triggers is to check and propagate updates of

properly values while the main objective of constraint rubs is

to gcncralc values satisfying the specified conslraints. In other

words, constraint rules are mainly used to automatically

populvtc databases. Constraint rules enable users to dcscribc

constraint conditions on attributes of objects and methods for

generating candidate solutions to conditions. They help

explicitly describe cnginecring knowledge such as design

constraints. The system determines a collection of database

values satisfying the constraints, based on a network

consisting of constraint rules and dcpcndcncy relationships

among them. Such automatic database population using

constraint rules is vital for establishing high reliability and

productivity in engineering design. To our knowlcdgc. there is

no work on automatic database population based on construint

rules. The constraint rules arc first-class objects with the

following structure:

CONSTKAINT-RULE

STRlNC NUIIC

STRING Parameter multiple

GFNERATE-METHOD generate

CONDITION-CLAUSE condition-action muhiplc

INCKEASE-METtIOD incrcosc

DECRIJASE-.MElHt)D decrcaw

where

GENERATE_METHOD = generate (init. cond. di/‘) 1

calculalc (cxp) 1 rctricvc (db, cod. of&r) 1 ask ()

CONDJTJON~CLAUSE = condilion 1

condilion advice uclions

aclions = acfion 1 aclions I action

INCREASE-METHOD = generate-incr 1 retrieve-incr 1

ask-incr 1 rul.increasc() 1 r&.dccreasc()

DECKEASE-METHOD = generate-.decr 1 retricvc-deer 1

ask-dcrr 1 ruk.incrcase() 1 ruk.dccrcasc()

Name is the rule name denoting the name of the property whose

value this rule aims IO detcrminc. Paramctcr dcnotcs the uamcs

of other rules on which this rule depends. The gcncratc attribute

474

specifics mclhods for gcncrating candidalc values satisfying

the spccificd constraints, which include gcncration based on

initial and tliffcrcncc values, calculation based on other rules,

database rctricval, and user input. Condition-action consists of

xcro or more condition and uction pairs. Actions for failure

advice arc iuvokcd when the preceding condition is not

satisfied by the candidate value. The actions arc invocations of

their own or other rules with an incrcasc or dccrcasc message.

They arc cvaluatcd from left to right. If one action is successful,

the following actions arc not evaluated. The actions correspond

IO user-spccificd backtracking of rules. When there arc multiple

conditions, the rule is only successful if all the conditions arc

satisfied. Otherwise. the rule is aborted.

Events in this cusc arc rule invocations such as gcncratc,

incrcasc, and dccrcasc. Conditions and advice actions

correspond IO ~hc conditions and actions in the E-C-A

paradigm. While events arc system-dcfincd, conditions and

actions arc user-dcfincd. As dcscribcd later. tbc order of rule

invocation is determined by the rule scheduler based on rule

dcpcndcncics. During scheduling, loop detection of rules is

done statically. Loop detection is also done dynamically during

rule execution.

For example,

Name

Parameter

PistonHcadThickncss

ExplosionPower CylindcrDiamctcr

PistonDiameter

gencralc gcncrate (init: 3.7, cond: Value c 3.9, dif: 0.01)

condition-aclion

(I) Value > 0.06+ CylindcrDiametcr advice Sclf.incrcasc()

(2) Vuluc < 0.065* CylinderDiametcr advice Sclf.decrcase()

(3) Power (PistonDiameter, 2) + ExplosionPowcr /

power (Value, 2)< 80.0

advice Self.increase() I PistonDiameter.decrcasc ()

incrcasc generate-incr

decrease generate,deer

This rule dctcrmincs the value of PistonHcadThickness

dependent on other parameters. such as ExplosionPower and

CylindcrDiameter. by using the gcncration method. Three

condition-action pairs are specified. The last condition’s action

for advice in the cvcnt of failure specifics disjunctions of

actions.

Like triggers, our constraint rules are basically set-oriented. In

general, there is more than one combination of parameters

satisfying the same set of constraints. However, we don’t take

the approach where all solutions are automatically generated,

because all of them are not always interesting. It is more

dcsirnble lhat the user can modify the initiul solution to get an

alternative if it is unsatisfactory. In a word, the user must be

able to control the exploration of alternatives in a stepwise

fashion. In Jasmine/A, the user can modify the initial solution

by invoking the constraint rules again with some constraints

changed. The user can specify constraints such as fix, increase,

decrcasc. loose fix, and don’t care for the current values.

4.5 Semantics

Wb describe the semantics of integrity constraints, triggers

including primitive and composite events, and constraint rules

in terms of transactions and consistency. In general, a

transaction causes transition from one consistent database state

to another consistent database state. Transactions under

consideration consist of events, conditions, and actions as

follows:

C (event condition action) C’

where C and C’ denote consistent database states. First, we

consider integrity constraints. such as mandatory, multiple, and

constraint. When the event such as insert or instantiate, occurs,

the transition from C to C’ is committed only if the condition,

system-defined or user-defined, is true. Otherwise, the

transaction including the triggering event is aborted. As a

result, the state C stilj holds. In case of primitive events such

as reference, insert, delete, and replace, the action is invoked

within the associated demons to result in the state C’ if the

condition holds. Otherwise, in case of insert, delete, and

replace events. the action compensating for the effect of the

cvcnt is invoked within the demons. At that time, the resultant

slale C’ is semantically equal to the state C.

Thcsc semantics are also true for constraint rules. If the

conditions of one rule are satisfied, the transaction

establishing the property value as the action of the rule is

committed to reflect the event effect to the database. Otherwise,

the action compensating for the event effect is committed and

another rule is invoked. Note that even then, all the rules are

not aborted.

Until now, we have used the term transaction to mean a

conventional short transaction. The consistency associated

with a short transaction is application-independent, or a local

consistency. In general, an application is a sequence of such

short transactions. Such an application constitutes a long

transaction as a whole. The associated consistency is

application-dependent, or a global consistency. The purpose of

applications is to establish global consistency. Integrity

constraints focus more on local consistency while composite

events and constraint rules focus more on global consistency.

In particular, there are cases where events, conditions, and

actions are separate transactions. That is. there are application-

independent consistent states between C and C’. The coupling

modes of the E-C-A paradigm are used to specify such cases.

475

5. Implementation

5.1 Integrity Constraints and Primitive Events

This section describes the implementation of system-dcfincd

integrity and user-defined demons (primitive events). For
multiple integrity for a property, the following code is

embedded into predicate functions of the insert operation of the

data management subsystem only if multiple is not specified

for the property by the user, that is, only if the property is

singleton-valued:

if the property is empty, then return True
else return False

The insert operation is performed only if the predicate. is true.

The insertion to a mandatory property is needed at instantiation

of the instance with the property. Deletion is prohibited while
replacement is allowed. So the instantiate method checks the

insertion to the mandatory properties. The delete method

checks the deletion of the mandatory propertics. These cheeks

can be done at the object management layer without accessing

actual values. The user-defined constraint is embedded into

predicate functions of the insert and replace operations of the

data management. The insert and replace operations arc
performed only if the predicate is true.

Next we describe the implementation of user-defined demons.
The conditions and actions of demons if-referenced. if-inserted.

if-deleted, and if-replaced are compiled respectively into the

predicate and manipulation functions of the select, insert,

delete, and replace operations in data management. The
predicate and manipulation functions are directly evaluated on

page buffers. This reduces unnecessary data transfer between

application programs and page buffers. This scheme is used for

set-oriented access of objects. For individual access of objects,

the conditions and actions are evaluated on the object buffers.

W. provide separate evaluation schemes appropriate for each of

the two types of access. The demons for the user-defined

methods (events) are also compiled into predicate and

manipulation functions. In this way, the conditions and actions

associated with the events can be efficiently proccsscd. The

detection of events themselves can be also efficiently done.

That is. the system can directly detect the occurrences of

events, system-defined or user-defined, because they are
invoked only through method invocation.

In general, there are two evaluation schemes for triggers or

production rules: forward chaining and backward chaining
[STON90]. Assume that A and B are attributes of objects and

that A is dependent on B. If A is rarely referenced and B is often

updated, the if-referenced demon should be specified for A.
Conversely, if A is often referenced and B is rarely updated. if-

inscrtcd, if-dclctcd. and if-replaced demons should be cpccifiad

for B. l’hc former cast corresponds to brckward chaining and
the latter cast corresponds to forward chaining. Like this,

JasminclA ullows the user to control evaluation because WC:

assume that the user knows access pattcms better than the

system dots.

5.2 Composite Events

W realize composite events by using methods and demons of

objects in a bootstrap manner. To check events for immcdintc

or scparatc evaluation, the PRIMITIVE-EVENT clnss has the
following demon spccilicd for the property Time:

PRIMITIVE-EVENT

Property
TIME Time multiple

if-inserted

(Sclf.Compositc.check_immcdiatc~or_scpllte ()

whcrc Sclf.Compositc.E-C-mode = immediate

or Sclf.ComJxrsite.E-C-mode = separate)

For defcrrcd cvaluution. the system cxccutes the following

query bcforc the end of the transaction:

COMPOSlTE,EVENT.sort(‘Time”. Ascending).chcck-dcfcrrcdo
where COMPOSJTE&‘ENT.E-C-mode = dcfcrred

or COMPOSITE-EVENTC-A-mode = deferred

The expression sorr(‘Time”, Ascendinlp) means that composite

events are evaluated in a first-come-first-served manner. It is
implcmcntcd by cmbcdding the above query in the before

demon of the transaction commit method.

The six combinations of the two coupling modes are intcrprctcd

by the methods check-immediate-or-scparatc and
check-dcfcrrcd of COMPOSITE-EVENT. whcrc 1llC

spawn-transaction operation crcatcs a new transaction whose

execution may bc postponed until the triggering transaction
commit or abort methods arc activated (See Figure 2).

5.3 Constraint Rules

Constraint rule processing is divided into rule analysis,

execution planning, and rule execution. Constraint rules are

used to determine property values of objects satisfying the

specified constraints. Basically, the execution order of rules is
determined by the dependency between rules. that is. between

propertics. The depcndcncy bctwecn rules is called n
dependency network. The uppermost nodes in the dcpendcncy
network arc propertics which arc not dcpcndcnt on other nodes.

476

rl~cck..immetliutc_or~-sep~ratc()

l if Sclf.E-C-mode = immcdiatc then

(if SclfC-A-mode = immediate then

1 if Sclfevcnt-cval() & Sclf.condition-cval()

then Self.action-evaI

else if Sclf.C-A-mode = defcrrcd then

(if Sclf.cvent-eval() & Sclf.condition-cval()

then SelfCondition-value = True

else SclfCondition-value = False)

else if Sc1f.CA-mode = separate then

(if Sclf.evcnt-evul() & SelLcondition-cval()

then spawn-transaction (Self.action-cval())))

else if Se1f.E-Cmode = separate &

SclfC-A-mode = separate then

l if Sclf.cvcnt-eval() then

spuwn-lransaclion

{ if Sclfcondition-eval() then Sclf.action-&I()))

clsc error0)

check-dcfcrrcd()

(if Self.E-C-mode = immcdiatc &’ Sclf.C-A-mode = dcfcrred

then

1 if Self.Condition-value = True then Self.action-eval())

else if Sclf.E-C-mode = deferred & Self.C-A-mode = deferred

then

{ if Self.event-eval() & Self.condition-cval ()

then Self.action-evaI

clsc if SelLE-C-mode = dcferrcd &

Sclf.C-A-mode = separate then

[if Self.evcnt~.eval() & Self.condition-cval()

then spawn-transaction (Sclf.action-cval()))

clsc cnor())

Figure 2. Methods of COMPOSITE-EVENT.

Rasically, rule execution or constraint satisfaction is dorm from

top to bottom in the dependency network. If one rule is

cxccuted successfully, another rule is fired. One rule corrcsponds

IO a short transaction and establishes local consistency. Global

consistency is only established as a whole if all the rules

corresponding to a long transaction urc successful.

Of course, candidate values do not ncccssarily satisfy the

constraint condition initially. That is. the backtracking is

usually needed for constraint sutisfaction. When backtracking

occurs, the effects of unsuccessful rules arc compensated and

ultcrnative rules are invoked. The backtracking method is

specified in the advice part of the constraint rules by the user.

Loop dctcction is done statically during dcpcndency netwnrk

clcvclopment. As is described later, dynamic loop detection is

donr during rule cxccution. For generality, constraint

satisfaction is based on the gcncrate and test scheme.

(1) Rule analysis

The system detcrmincs the level of rules according to the

dependency between rules. Rules at level 1 depend on no other

rules. Rules at level 2 only depend on level 1 rules. In general,

rules at level n depend on at least one rule at level n-l. We can

detect loop dependencies by using developed and undeveloped

rule lists. Initially, the undeveloped rule list contains all rules

at level 1 and the developed rule list contains no rules. The rules

at level 1 are developed into the rules dependent on the rules at

level 1. The developed rules are put in the developed rule list.

The dependent rules are put in the undeveloped rule list.

Similarly, the rules taken from the undeveloped rule list are

developed into the rules dependent on the taken rules. If, during

rule analysis, the same rule appears both in the undeveloped and

developed rule lists at the same time, a loop occurs. This is

brought to the user’s attention for further processing.

(2) Execution planning

After the levels of rules are determined. the rules are grouped

into disjoint sets of related or connected rules. Within one rule

group, the rules are ordered according to increasing level. If

there is more than one rule with the same level, order is

determined based on the number of rules upon which the rules

depend. That is, the smaller the number, the higher the

execution priority. In the final step, the disjoint sets of rule

groups are merged into a linear list.

(3) Rule cxccution

A plan is a list of rules pushed onto the stack. Individual rules

ure popped from the stack. A candidate value is generated

through the generate method of the constraint rule. If a pattern

of partially determined values including the candidate value is

already in the history hash table, a rule execution loop occurs.

That is, the system can detect the loop dynamically In other

words, the system can guarantee the termination of rule

execution. If the pattern is not in the history table, then the

constraint condition is evaluated. If the condition is satisfied,

then all the advice actions associated with this rule are popped

off the stack. Otherwise, the advice action of the condition is

pushed on the stack. If all the conditions are satisfied, the

dependent rules are pushed on and the control is given to the

beginning of this process.

When the user has specified alternative solutions or alternative

sets of values, the system modifies the constraints according to

these specifications. For example. if the user specifies

“Increase the current value”, the condition “Value >

CurrentValue” is inserted to the constraint rules. The execution

of rules is done in the same order as the initial plan.

477

6. Conclusion

Ws have described the design and implementation of the

constraint management facility for our active object-oriented
database system called Jasmine/A. The facility includes
integrity constraints, events/triggers, and constraint rules. The

facility enables the user to handle both interobject and
intraobject constraints, to define both primitive and composite
events, and to populate databases with values satisfying

specified constraints. We have taken a multi-paradigm approach

to constraint management. All the paradigms are integrated
into object-oriented databases. We have described the semantics

of the constraint management facility by extending the

conventional terms of transactions and consistency. Evaluation
is done efficiently using page buffers for constraints associated

with set-oriented object access and object buffers for those
associated with individual object access. Users are also able to

control the constraint evaluation,

We plan to apply Jasmine/A to various practical applications to

verify the validity of our approach and give expcriencc

feedback to the system. We also plan to include cnhanccments

such as extension of composite event specification, extension

of constraint rule description, and the addition of a graphical
user interface.

Acknowledgments

% thank the anonymous referees for their helpful suggestions.

References

[AGRA89] Agrawal, R.. et al.: ODE: The language and the data

model, Proc. the 1989 ACM-SIGMOD Conference, pp.36-

45(1989).

[DATE901 Date, J.C.: An Introduction to Database Systems,
vol. 1. Addison-Wesley, 1990.

[GATZ91] Gatziu, S., et al.: Integrating Active Concepts into

an Object-Oriented Database System, Proc. the 3rd

International Workshop on Database Programming Languages

(1991).
[GEHA92] Gehani. N.H.. et al.: Event Specification in an

Active Object-Oriented Database, Proc. the 1992 ACM-

SIGMOD Conference, pp. 81-90 (1992).

[GOLD83] Goldberg, A., et al.: Smalltalk-80: The Language and

Its Implementation. Addison-Wesley, Reading, MA., 1983.

[HUDS89] Hudson, S.. et al: Cactis: A Self-Adaptive,

Concurrent Implementation of An Object-Oriented Database

Management System, ACM Trans. Database Syst.. vol. 14..

no.3. pp.291-321(1989).
[ISHI90] Ishikawa. H.: An Object-Oriented Knowledge Base

Approach to a Next Generation of Hypermedia System, Proc.

IEEE COMPCON Spring 90 Conference, pp. 520-527 (1990).

[ISH191] Ishikawa, H.. et al.: An Object-Oriented Database:

System and Applications, Proc. the IEEE Pacific Rim

Confercncc on Communications, Computers. and Signal

Processing, pp.288-291 (1991).

(ISHI Ishikawa, H.. ct al.: An Object-Oriented Dntabasc
System and its View Mechanism for Schema integration, Proc.
the 2nd Far-East Workshop on Future Database Systems,

pp.l94-200 (1992).
[ISH193] Ishikawa, H., et al.: The Model, Ltmguagc. and
Implementation of an Object-Oriented Multimodia Knowlcdgc

Base Management System, ACM Trans. Dutahase Syst..

vo1.18. no.1. pp.l-50 (March 1993).

[KIM901 Kim, W.. et al.: Architecture of the ORION Next-
Generation Database, IEEE Trans. Knowlcdgc and Data

Engineering, vol. 2. no.1. pp. 109-124 (1990).

[LGHM91] Lohman, G.. et al.: Extensions to Starburst:

Objects. Types, Functions, and Rules. Comm. ACM, ~01.34.

no.10. pp.94-109 (1991).

[MAIE86] Maier, D.. CL al.: Dcvclopment of an object-oriented

DBMS, Proc. the 1st OOPSLA Confcrencc, pp. 472-482
(1986).

[MCCASY) McCarthy, D.. et al.: The Architecture of An Active.

Object-Oriented Database System, Proc. the 1989 ACM-

SIGMOD Conference. pp.215-224 (1989).

[MORG83] Morgcnstcm. M.: Active Databases as II paradigm
for Enhanced Computing Environments. I’roc. IIIC 9th VLDR
Confcrcnce, pp. 34-42 (1983).

IROTH Roth, M. A., et al.: Extended Algebra and Calculus

for Nested Relational Databases. ACM Trans. Database Syst..

~01.13, no.4, pp.389-417 (Dec. 1988).

(STEF86] Stefik, M., et al: Object-Oriented Programming:

Themes and Variations, AI MAGA7JNE. ~01.6, no.4. pp.40.62

(winter 1986).

[STON90] Stoncbraker, M., et al.: On Kules. proccdurcs.

caching and views in database systems, Proc. the 1990 ACM-

SIGMOD Confcrcncc. pp.281-290 (1990).

(YAMA Yamane, Y., ct al.: Design and Evaluation of a

High-Speed Extcndcd Relational Dutabase Engine XRDB.

Proc. Intcmational Symposium on Database Systems for
Advanced Applications, pp.52-60 (1989).

478

