
An Active Search Strategy for Efficient Object Class Detection

Abel Gonzalez-Garcia

a.gonzalez-garcia@sms.ed.ac.uk

Alexander Vezhnevets

avezhnev@inf.ed.ac.uk

Vittorio Ferrari

vferrari@staffmail.ed.ac.uk

University of Edinburgh

Abstract

Object class detectors typically apply a window classi-

fier to all the windows in a large set, either in a sliding win-

dow manner or using object proposals. In this paper, we

develop an active search strategy that sequentially chooses

the next window to evaluate based on all the information

gathered before. This results in a substantial reduction in

the number of classifier evaluations and in a more elegant

approach in general. Our search strategy is guided by two

forces. First, we exploit context as the statistical relation

between the appearance of a window and its location rel-

ative to the object, as observed in the training set. This

enables to jump across distant regions in the image (e.g.

observing a sky region suggests that cars might be far be-

low) and is done efficiently in a Random Forest framework.

Second, we exploit the score of the classifier to attract the

search to promising areas surrounding a highly scored win-

dow, and to keep away from areas near low scored ones.

Our search strategy can be applied on top of any classifier

as it treats it as a black-box. In experiments with R-CNN

on the challenging SUN2012 dataset, our method matches

the detection accuracy of evaluating all windows indepen-

dently, while evaluating 9× fewer windows.

1. Introduction

Given an image, the goal of object class detection is to

place a bounding-box around every instance of a given ob-

ject class. Modern object detectors [8, 10, 19, 22, 26, 35,

49, 53] partition the image into a set of windows and then

score each window with a classifier to determine whether it

contains an instance of the object class. The detector finally

outputs the windows with the locally highest scores.

In the classical sliding window approach [10, 19, 26, 35],

the window set is very large, containing hundred of thou-

sands of windows on a regular grid at multiple scales.

This approach is prohibitively expensive for slow, pow-

erful window classifiers which are state-of-the-art nowa-

days [8, 15, 22, 49, 53] such as Convolutional Neural Net-

works (CNN) [22]. For this reason, these detectors are

Figure 1: Example of a car search using our method.

based instead on object proposal generators [2, 36, 49],

which provide a smaller set of a few thousand windows

likely to cover all objects. Hence, this reduces the number

of window classifier evaluations required. However, in both

approaches the window classifier evaluates all windows in

the set, effectively assuming that they are independent.

In this work, we propose an active search strategy that

sequentially chooses the next window to evaluate based on

previously observed windows, rather than going through the

whole window set in an arbitrary order. Observing a win-

dow not only provides information about the presence of the

object in that particular window, but also about its surround-

ings and even distant areas of the image. Our search method

extracts this information and integrates it into the search,

effectively guiding future observations to interesting areas,

likely to contain objects. Thereby, our method explores the

window space in an intelligent fashion, where future ob-

servations depend on all the information gathered so far.

This results in a more natural and elegant way of search-

ing, avoiding wasteful computation in uninteresting areas

and focusing on the promising ones. As a consequence, our

method is able to find the objects while evaluating much

fewer windows, typically only a few hundreds (sec. 7.1).

We use two guiding forces in our method: context and

window classifier score. Context exploits the statistical re-

lation between the appearance and location of a window and

its location relative to the objects, as observed in the train-

ing set. For example, the method can learn that cars tend to

be on roads below the sky. Therefore, observing a window

in the sky in a test image suggests the car is likely to be

far below, whereas a window on the road suggests making

a smaller horizontal move. We learn the context force, in

a Random Forest framework that provides great computa-

tional efficiency as well as accurate results. The classifier

score of an observed window provides information about

the score of nearby windows, due to the smoothness of the

classifier function. It guides the search to areas where we

have observed a window with high score, while pushing

away from windows with low score. Observing a window

with part of a car, for example, will attract the search to its

surroundings.

Our method effectively combines these two forces.

Fig. 1 shows the intuition of our method on detecting cars. It

starts at window w0 and it moves away immediately, since

w0 contains a piece of building, not a car. Context deter-

mines the direction of the move, as cars tend to be on streets

below buildings. Hence, the next visited location is on the

road. After observing w1, the method continues searching

along the road, as indicated by context. For window w2,

however, the score of the classifier is rather high, as it con-

tains a piece of car. Therefore, the search focuses around

this area until it finds a tight window on the car.

Experiments on the challenging SUN2012 dataset [55]

and PASCAL VOC10 [16] demonstrate that our method ex-

plores the image in an intelligent way, effectively detecting

objects in only a few hundred iterations. As window classi-

fiers we use the state-of-the-art R-CNN [22] and the popu-

lar UvA Bag-of-Words model of [49], both on top of object

proposals [49]. For R-CNN on SUN2012, our search strat-

egy matches the detection accuracy of evaluating all pro-

posals independently, while evaluating 9× fewer proposals.

As our method adds little overhead, this translates into an

actual wall-clock speedup. When computing CNN features

on the CPU [29], the processing time for one test image

reduces from 320s to 36s (9× speed-up). When using a

GPU, it reduces from 14.4s to 2.5s (6× speed-up). Hence,

our method opens the door to using expensive classifiers

by considerably reducing the number of evaluations while

adding little overhead. For the UvA window classifier, our

search strategy only needs 35 proposals to match the perfor-

mance of evaluating all of them (a reduction of 85×). By

letting the search run for longer, we even improve accuracy

while evaluating 30× fewer proposals, as it avoids evaluat-

ing some cluttered image areas that lead to false-positives.

2. Related Work

Object proposals. Recent, highly accurate window

classifiers like high-dimensional Bag-of-Words [49] or

CNN [15, 22, 30] are too expensive to evaluate in a sliding

window fashion. For this reason, recent detectors [8, 22,

49, 53] evaluate only a few thousands windows produced

by object proposals generators [2, 36, 49]. The state-of-

the-art detector [22] follows this approach, using CNN fea-

tures [30] with Selective Search proposals [49]. Although

proposals already reduce the number of window classifier

evaluations, our work brings even further reductions.

Improving sliding window. Some works reduce the

number of window classifier evaluations. Lampert et

al. [31] use a branch-and-bound scheme to efficiently find

the maximum of the classifier over all windows. However,

it is limited to classifiers for which tight bounds on the high-

est score in a subset of windows can be derived. Lehman et

al. [33] extend [31] to some more classifiers. Sznitman et

al. [46] avoid exhaustive evaluation for face detection by

using a hierarchical model and pruning heuristics.

An alternative approach is to reduce the cost of evaluat-

ing the classifier on a window. For example, [26, 51] first

run a linear classifier over all windows and then evaluate

a complex non-linear kernel only on a few highly scored

windows. Several techniques are specific to certain types

of window classifiers and achieve a speedup by exploit-

ing their internal structure (e.g. DPM [18, 43, 57], CNN-

based [27], additive scoring functions [54], cascaded boost-

ing on Haar features [45, 52]. Our work instead can be used

with any window classifier as it treats it as a black-box.

A few works develop techniques that make sequen-

tial fixations inspired by human perception for tracking in

video [4], image classification [12, 32, 37] and face de-

tection [6, 47]. However, they only use the score of a

(foveated) window classifier, not exploiting the valuable in-

formation given by context. Moreover, they experiment on

simple datasets, far less challenging than SUN2012 [55]

(MNIST digits, faces).

Context. Many works use context as an additional cue

on top of object detectors, complementing the informa-

tion provided by the window classifier, but without alter-

ing the search process. Several works [19, 26, 41, 48, 49]

predict the presence of object classes based on global im-

age descriptors, and use it to remove out-of-context false-

positive detections. The response of detectors for multiple

object classes also provides context, as it enables to rea-

son about co-occurrence [44] and spatial relations between

classes [7, 13, 21, 28]. Other works incorporate regions out-

side the object into the window classifier [11, 34, 40, 49]

Divvala et al. [14] analyze several context sources and their

impact on object detection.

The most related work to ours is [3], which proposes a

search strategy driven by context. Here we go beyond in

several ways: (1) They used context in an inefficient way,

involving a nearest-neighbour search over all windows in all

training images. This caused a large overhead that compro-

mised the actual wall-clock speedup they made over evalu-

...
...

Features

Context

Random Forest

0.026

Classifier Score

Final Detections

Input Image

ForceForce

Classifier

Appearance Location

[x,y,w,h]

Figure 2: Search model. The next observed window ot is the maximum of the current belief map bt−1. The method extracts appearance

and location features for ot, and uses them to compute its context C and window classifier S outputs. Then, it combines these outputs with

the current belief map bt−1 into the next iteration’s belief map bt. The final belief map bF combines all the performed observations. The

output detections are the observed windows with highest scores.

ating all windows in the test image. In contrast, we present

a very efficient technique based on Random Forests, which

has little overhead (sec. 7.2). (2) While [3] uses only con-

text, we guide the search also by the classifier score, and

learn an optimal combination of the two forces (sec. 3).

(3) They perform single-view and single-instance detection,

whereas we detect multiple views and multiple instances

in the same image. (4) We adopt the state-of-the-art R-

CNN [22] as the reference detector and compare to it, as

opposed to the weaker DPM detector [19]. (5) While [3]

performs experiments only on PASCAL VOC10, we also

use SUN2012 [55], which has more cluttered images with

smaller objects.

3. Search model

Let I be a test image represented by a set of object pro-

posals [49], I = {oi}
N
i=1. The goal of our method is to

efficiently detect objects in I , by evaluating the window

classifier on only a subset of the proposals. Our method is

a class-specific iterative procedure that evaluates one win-

dow at a time. At every iteration t, it selects the next win-

dow ot+1 according to all the observations {ok}tk=1 per-

formed so far.1 We assign a belief value bt(oi, {o
k}tk=1; Θ)

to each object proposal oi and update it after every itera-

tion. This belief indicates how likely it is that oi contains

the object, given all previously observed windows {ok}tk=1.

Here Θ = {λ, σS , σC} are hyperparameters and t indexes

the iteration.

The method starts with the belief map b0(oi) = 0
∀oi, representing complete uncertainty. At iteration t, the

1
oi indexes through the input set of proposals I , whereas ot is the pro-

posal actively chosen by our strategy in the t-th iteration.

method selects the window with the highest belief

ot = argmax
oi∈I\{ok}t−1

k=1

bt−1(oi, {o
k}t−1

k=1; Θ) (1)

We avoid repetition by imposing ot 6= ok, ∀k < t. The

starting window o1 is the average of all the ground-truth

bounding-boxes in the training set.

At each iteration t, the method obtains information from

the new observation ot and it updates the belief values of all

windows as follows

bt(oi, {o
k}tk=1; Θ) = bt−1(oi, {o

k}t−1
k=1; Θ)

+ λ · S(oi, o
t;σS) + (1− λ) · C(oi, o

t;σC) (2)

The observation ot provides two kind of information:

the context C and the classifier score S (explained be-

low). These are linearly combined with a mixing parameter

λ ∈ [0, 1]. Fig. 2 illustrates our pipeline.

Context force C points to areas of the image likely to con-

tain the object, relative to the observation ot. It uses the

statistical relation between the appearance and location of

training windows and their position relative to the objects.

The context force may point to any area of the image, even

those distant from ot. For the car detection example, if ot

contains a patch of building, C will point to windows far be-

low it, as cars are below buildings (fig. 1, 6). If ot contains

a patch of road, C will propose instead windows next to ot,
as cars tend to be on roads (fig. 1).

The heart of the force C is a context extractor Γ. Given

the appearance and location of ot, Γ returns a set of win-

dows Γ(ot) = {wj}
J
j=1 (not necessarily object proposals).

These windows cover locations likely to contain objects of

the class, as learned from a set of training windows and their

0
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3: Classifier score force S. (Left) Image and observation

ot. (Right) Belief map produced by S. Colours correspond to

belief values.

relative position to the objects in their own images. We ex-

plain how our context extractor works in sec. 4.

We can now define C as

C(oi, o
t;σC) =

∑

wj∈Γ(ot)

K(wj , oi;σC) (3)

It gives high values to object proposals close to windows in

Γ(ot), as we expect these windows to be near objects. The

influence of the windows in Γ(ot) is weighted by a smooth-

ing kernel

K(w, o;σ) = e−(1−IoU(w,o))2/(2σ2) (4)

This choice of kernel assumes smoothness in the presence

of an object for nearby windows. Indeed, adjacent windows

to a window containing an object will also contain part of

the object. The further apart the windows are, the lower the

probability of containing the object is. We use the inverse

overlap 1 - intersection-over-union [16] (IoU) as distance

between two windows.

Classifier score force S attracts the search to the area sur-

rounding the observation ot if it has high classifier score,

while pushing away from it if it has low score:

S(oi, o
t;σS) = K(oi, o

t;σS) · (φ(o
t)− 0.5) (5)

where φ(ot) ∈ [0, 1] is the window classifier score of ot

(sec.4 details our choice of window classifier). We trans-

late φ(ot) into the [−0.5, 0.5] range and weight it using the

smoothing kernel (4). Therefore, S operates in the sur-

roundings of ot, spreading the classifier score to windows

near ot. When S is positive, it attracts the search to the

region surrounding ot. For example, if ot contains part of

a car, it will probably have a high classifier score (fig. 3).

Then S will guide the search to stay in this area, as some

nearby window is likely to contain the whole car. On the

other hand, when S values are negative, it has a repulsive

effect. It pushes the search away from uninteresting regions

with low classifier score, such as background (sky, build-

ings, etc).

(a) (b)

(c)

Figure 4: Context extractor. (a,b) The displacement vectors ∆v1

and ∆v2 of training samples r1 and r2 point to their respective

ground-truth objects. (c) By applying ∆v1 and ∆v2 to test obser-

vation o, we obtain displaced windows w1 and w2, covering likely

locations for the object with respect to o.

4. Context extractor

Given an input observation o in the test image, the con-

text extractor Γ returns a set of windows Γ(o) = {wj}
J
j=1

covering locations likely to contain objects.

The context extractor is trained from the same data as

the window classifier, i.e. images with annotated object

bounding-boxes. Hence our approach requires the same an-

notation as standard object detectors [8, 10, 19, 22, 26, 35,

49, 53]. The training set consists of pairs {(rn,∆vn)}
N
n=1;

rn is a proposal from a training image, and ∆vn is a 4D

displacement vector, which transforms rn into the closest

object bounding-box in its training image (fig. 4a-b). Here

index n runs over all object proposals in all the training

images. For 500 images and 3200 proposals per image,

N = 500 · 3200 = 1′600′000.

Given the observation, the context extractor regresses a

displacement vector ∆v pointing to the object For robust-

ness, the context extractor actually outputs a set of displace-

ment vectors {∆vj}
J
j=1, to allow for some uncertainty re-

garding the object’s location. Then it applies {∆vj}
J
j=1 to

o, obtaining a set of displaced windows on the test image:

Γ(o) = {o + ∆vj}
J
j=1. The windows in Γ(o) indicate ex-

pected locations for the object in the test image. Note that

they may be any window, not necessarily object proposals.

Random Forests. We use Random Forests (RF) [5] as our

context extractor. A RF is an ensemble of J binary decision

trees, each tree inputs the window o and outputs a displace-

ment vector ∆vj . The final output of RF are all displace-

ment vectors {∆vj}
J
j=1 produced by each tree.

Figure 5: Internal node at test time. The test compares distance

dp(o, rp) between test window o and training sample rp with the

threshold τp.

RF have been successfully applied in several learning

problems such as classification, regression or density esti-

mation [9]. RF in computer vision [9, 17, 20, 23, 38] typ-

ically use axis-aligned separators (thresholding on one fea-

ture dimension) as tests in the internal nodes. However, we

found that tests on distances to training samples perform

better in our case, as they are more informative. Hence, we

build our RF based on distance tests. This is related to Prox-

imity Forests [42], although [42] uses RF for clustering, not

geometric regression.

When the test window o goes down a tree, it traverses it

from the root to a leaf guided by tests in the internal nodes.

At each node p the decision whether o goes left or right is

taken by comparing the distance dp(o, rp) between o and a

pivot training point rp to the threshold τp. The test window

o proceeds to a left child if dp(o, rp) ≥ τp or to the right

child otherwise (fig. 5). This process is repeated until a leaf

is reached. Each leaf stores a displacement vector, which

the tree returns. The triplet (rp,τp,dp) at each internal node

is chosen during training (the process can choose between

two different distance functions, sec. 6).

RF training. For each class, we train one RF with J = 10
trees. To keep the trees diverse, we train each one on win-

dows coming from a random sub-sample of 40 training im-

ages. As shown in [9], this procedure improves general-

ization. We construct each tree by recursively splitting the

training set at each node. We want to learn tests in the inter-

nal nodes such that leaves contain samples with a compact

set of displacement vectors. This way a tree learns to group

windows using features that are predictive of their relative

location to the object. To create an internal node p, we need

to select a triplet (rp,τp,dp), which defines our test function.

Following the extremely randomized forest framework [39]

we generate a random set of possible triplets. We then pick

the triplet that achieves maximum information gain:

IG = H(S)−
|SL|

|S|
·H(SL)−

|SR|

|S|
·H(SR), (6)

where S is the set of training samples at the node and L,R
denote the left and right children with samples SL and SR,

respectively. H is the approximated Shannon entropy of

Test Training

Figure 6: RF examples. (Test) Example image and observation

o for classes car (top) and chair (bottom). Windows displaced by

the displacement vectors regressed by the RF are in green, whereas

ground-truth objects are in red. (Training) Training samples (yel-

low) in leaves reached by o when input into our RF and associated

ground-truth objects (red).

the 4D displacement vectors in S: we first compute a sepa-

rate histogram per dimension, and then sum their individual

entropies [25]. Finally, we keep in each leaf the mediod

displacement vector of the training samples that fell into it.

Fig. 6 shows examples test windows passed through the

RF, along with example training windows in leaves they

reach. Note how these training windows are similar in ap-

pearance to the test window, and produce displaced win-

dows covering areas likely to contain objects of that class

in the test image. This demonstrates that RF is capable of

learning the relation between the appearance of a window

and its position relative to the object.

Efficiency. A key benefit of RF over a simple nearest-

neighbour regressor [3] is computational efficiency. Since

the observation o is only compared to at most as many pivot

points as the depth of the tree, the runtime of RF grows

only logarithmically with the size of the training set. In

contrast, the runtime of nearest-neighbour grows linearly,

since it compares o to all training samples. This makes a

substantial different in runtime in practice (sec. 7.2).

5. Classifier scores

As our method supports any window classifier φ, we

demonstrate it on two very different ones: R-CNN [22] and

UvA [49].

R-CNN. This detector is based on the CNN model of [30],

which achieved winning results on the ILSVRC-2012 im-

age classification competition [1]. The CNN is then fine-

tuned from a image classifier to a window classifier on

ground-truth bounding-boxes. Finally, a linear SVM classi-

fier is trained on normalized 4096-D features, obtained from

the 7th layer of the CNN. We use the R-CNN implementa-

tion provided by the authors [22], based on Caffe [29].

UvA. The Bag-of-Words technique of [49] was among

the best detectors before CNNs. A window is described

by a 3x3 spatial pyramid of bag-of-words. The codebook

has 4096 words and is created using Random Forest on

PCA-reduced dense RGB-SIFT [50] descriptors. Overall,

the window descriptor has 36864 dimensions. The window

classifier is an SVM with a histogram intersection kernel on

these features. We use the implementation provided to us

kindly by the authors [49].

For both methods, we fit a sigmoid to the outputs of the

SVM to make the classifier score φ lie in [0, 1].

6. Technical details

Object proposals. We use the fast mode of Selective

Search [49], giving 3200 object proposals per image on

average. These form the set of windows oi visible to our

method (both to the context extractor and window classi-

fier). Note how both the R-CNN and UvA detectors as orig-

inally proposed [22, 49] also evaluate their window classi-

fier on these proposals.

Features and distances for context extractor. We repre-

sent a proposal by two features: location and appearance.

A proposal location [x/W, y/H,w/W, h/H] is normalized

by image width W and height H . Here x, y, w, h are the

top-left coordinates, width and height of the proposal. The

distance function is the inverse overlap 1− IoU.

The appearance features used by the context extractor

match those in the window classifier. We embed the 4096-

dimensional CNN appearance features [29] in a Hamming

space with 512 bits using [24]. This reduces the memory

footprint by 256× (from 131072 to just 512 bits per win-

dow). It also speeds up distance computations, as the Ham-

ming distance between these binary strings is 170× faster

than L2-distance in the original space. We do the same for

the Bag-of-Words features of [49]. These Hamming embed-

dings are used only for the context extractor (sec. 4). The

window classifiers work on the original features (sec. 4).

Training hyperparameters Θ. For each object class, we

find optimal hyperparameters σS , σC , and λ by maximiz-

ing object detection performance by cross-validation on the

training set (by grid search in ranges σS , σS ∈ [0.01, 1] and

λ ∈ [0, 1]). Performance is quantified by the area under

the Average Precision (AP) curve, which reports AP as a

function of the number of proposals evaluated by the strat-

egy (fig. 7). Interestingly, the learned σ values correspond

to intuition. For σS we obtain small values, as the classi-

fier score informs only about the immediate neighborhood

of the observed window. Values for σC are larger, as the

context force informs about a broader region of the image.

Furthermore, C uses arbitrary windows, hence the distance

to proposals is generally larger.

7. Experiments

We perform experiments on two datasets: SUN2012 [55]

and PASCAL VOC10 [16].

SUN2012. We use all available images for the 5 most

frequent classes in the highly challenging SUN2012

dataset [55]: Chair, Person, Car, Door and Table. This

amounts to 2920 training images and 6794 test images, us-

ing the official train/test split provided with the dataset [56].

Each image is annotated with bounding-boxes on instances

of these 5 classes. This dataset contains large cluttered

scenes with small objects, as it was originally created for

scene recognition [55]. This makes it very challenging for

object detection, and also well suited to show the benefits

of using context in the search strategy.

PASCAL VOC10. We use all 20 classes of PASCAL

VOC10 [16]. While also challenging, on average this

dataset has larger and more centered objects than SUN2012.

We use the official splits, train on the train set (4998 im-

ages) and test on the val set (5105 images).

Protocol. We train the window classifier (including fine-

tuning for R-CNN), the Random Forest regressor and the

hyperparameters Θ on the training set. We measure perfor-

mance on the test set by Average Precision (AP), following

the PASCAL protocol [16] (i.e. a detection is correct if it

overlaps a ground-truth object > 0.5). Previous to the AP

computation, we use Non-Maxima Suppression [19] to re-

move duplicate detections.

7.1. Results

R-CNN on SUN2012. Fig. 7 presents results for our full

system (‘Combination’) and when using each force S or

C alone. The figure shows the evolution of AP as a func-

tion of the number of proposals evaluated. As a baseline,

we compare to evaluating proposals in a random sequence

(‘Proposals Subsampling’). This represents a naive way of

reducing the number of evaluations. The rightmost point on

the curves represent the performance of evaluating all pro-

posals, i.e. the original R-CNN method.

Our full method clearly outperforms Proposals Subsam-

pling, by selecting a better sequence of proposals to eval-

uate. On average over all classes, by evaluating about 350

proposals we match the performance of evaluating all pro-

posals (fig. 7f). This corresponds to a 9× reduction in the

number of window classifier evaluations.

In general, we achieve our best results by combining

both forces S and C. When using one force alone, C per-

forms better, in some cases even reaching the accuracy of

our combined strategy. Nevertheless, force S achieves sur-

prisingly good results by itself, providing a rather simple

method to speed-up state-of-the-art object detectors while

maintaining high accuracy.

Fig. 9 shows our search strategy in action. After just a

few iterations the belief maps are already highlighting areas

containing the objects. Uninteresting areas such as the sky

or ceiling are barely ever visited, hence we waste little com-

putation. Our method detects multiple object instances and

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

N. windows

A
P

(a) Chair

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

N. windows

A
P

(b) Person

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

N. windows

A
P

(c) Car

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

N. windows

A
P

(d) Door

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

N. windows

A
P

(e) Table

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

N. windows

m
A

P

Baseline: Proposals Subsampling

Ours: Classifier Score − S

Ours: Context − C

Ours: Combination − λ S + (1−λ) C

(f)

Figure 7: Results for SUN2012. Results for the baseline Proposals Subsampling and our method on SUN2012, using each force S, C

alone and in combination. The x-axis shows the number of evaluated windows. The y-axis in (a-e) shows the AP of each class, while in (f)

it shows the mean AP over all classes (mAP).

viewpoints, even in challenging images with small objects.

In these examples, it finds the first instance in fewer than

50 iterations, showing its efficiency in guiding the search.

After finding the first instance, it continues exploring other

areas of the image looking for more instances.

As a last experiment, we compare our RF context extrac-

tor with one based on nearest-neighbour search, as in [3].

We run our method only using the context force C, but sub-

stituting RF with nearest-neighbours, on the same training

set and input features. The results show that both ways of

extracting context lead to the same performance. The AP

at 500 windows, averaged over all classes, differs by only

0.006. Importantly, however, RF is 60× faster (sec. 7.2).

UvA on SUN2012. We re-trained all the elements of our

method on the Bag-of-Words features of [49]: window clas-

sifier, RF regressor, and hyperparameters. Our method

matches the performance of evaluating all proposals with 35

windows on average, a reduction of 85× (fig. 8-left) . In-

terestingly, the curve for our method reaches an even higher

point when evaluating just 100 windows (+0.02 mAP). This

is due to avoiding some cluttered areas where the window

classifier would produce false-positives. This effect is less

noticeable for the R-CNN window classifier, as UvA is

more prone to false-positives.

R-CNN on PASCAL VOC10. As fig. 8-right shows, our

method outperforms the Proposal Subsampling baseline

again, having a very rapid growth in the first 100 windows.

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

N. windows

m
A

P

Baseline: Proposals Subsampling

Ours: Classifier Score − S

Ours: Context − C

Ours: Combination − λ S + (1−λ) C

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

N. windows

m
A

P

Figure 8: (Left) Results on SUN2012 using the UvA detector [49].

(Right) Results on PASCAL VOC10 using R-CNN.

7.2. Runtime

We measure runtimes on an Intel Xeon E5-1620v2 CPU

and a GeForce GTX 770 GPU, for the R-CNN detector.

The most expensive component is computing CNN features,

which takes 4.5 ms per window on the GPU. Evaluating

the 3200 proposals in an average image takes 14.4 seconds.

The total overhead added by our method is 2.6 ms per it-

eration. Therefore, processing one image while maintain-

ing the same AP performance (350 iterations on SUN2012)

takes 350 · (4.5+2.6) ms = 2.5 seconds, i.e. 6× faster than

evaluating all proposals 2.

The small overhead added by our method is mainly due

to the RF query performed at each iteration for the context

2Extracting CNN descriptors on a GPU is more efficient in batches than

one at a time, and is done in R-CNN [22] by batching many proposals in a

single image. In our sequential search we can form batches by processing

one window each from many different images.

Figure 9: Qualitative results. (Top) Original image. (Middle) Belief maps for some iterations. The blue window indicates the observation

at that iteration. (Bottom) The top scored detections.

force, which amounts to 1.9 ms including the Hamming

embedding of the appearance features. In comparison, a

context extractor implemented using nearest-neighbours as

in [3] takes 57 ms per iteration, which would lead to no ac-

tual total runtime gain over evaluating all proposals.

As the runtime of the window classifier grows, the

speedup made by of our method becomes more important.

Extracting CNN features on the CPU takes 100 ms per win-

dow [29]. In this regime, the overhead added by our method

becomes negligible, only 3% of running the window clas-

sifier. Evaluating all 3200 proposals in an image would re-

quire 320 seconds, in contrast to just 36 seconds for evalu-

ating 350 proposals with our method, a 9× speed-up.

7.3. Conclusion

Most object detectors independently evaluate a classifier

on all windows in a large set. Instead, we presented an ac-

tive search strategy that sequentially chooses the next win-

dow to evaluate based on all the information gathered be-

fore. Our search effectively combines two complementing

driving forces: context and window classifier score.

In experiments on SUN2012 and PASCAL VOC10, our

method substantially reduces the number of window classi-

fier evaluations. Due to the efficiency of our proposed con-

text extractor based on Random Forests, we add little over-

head to the detection pipeline, obtaining significant speed-

ups in actual runtime.

Acknowledgements This work was supported by the

ERC Starting Grant VisCul. A. Vezhnevets is also sup-

ported by SNSF fellowship PBEZP-2142889.

References

[1] Imagenet large scale visual recognition challenge (ILSVRC).

http://www.image-net.org/challenges/LSVRC/2012/index,

2012.

[2] B. Alexe, T. Deselaers, and V. Ferrari. Measuring the object-

ness of image windows. IEEE Trans. on PAMI, 2012.

[3] B. Alexe, N. Heess, Y. Teh, and V. Ferrari. Searching for

objects driven by context. In NIPS, 2012.

[4] L. Bazzani, N. de Freitas, H. Larochelle, V. Murino, and

J. Ting. Learning attentional policies for tracking and recog-

nition in video with deep networks. In ICML, 2011.

[5] L. Breiman. Random forests. Machine Learning, 45(1):5–

32, 2001.

[6] N. J. Butko and J. R. Movellan. Optimal scanning for faster

object detection. In CVPR, 2009.

[7] M. Choi, J. Lim, A. Torralba, and A. Willsky. Exploiting

hierarchical context on a large database of object categories.

In CVPR, 2010.

[8] R. Cinbis, J. Verbeek, and C. Schmid. Segmentation driven

object detection with fisher vectors. In ICCV, 2013.

[9] A. Criminisi, J. Shotton, and E. Konukoglu. Decision forests

for classification, regression, density estimation, manifold

learning and semi-supervised learning. Microsoft Research

Cambridge, Tech. Rep. MSRTR-2011-114, 2011.

[10] N. Dalal and B. Triggs. Histogram of Oriented Gradients for

human detection. In CVPR, 2005.

[11] N. Dalal and B. Triggs. Histogram of Oriented Gradients

for Human Detection. In CVPR, volume 2, pages 886–893,

2005.

[12] M. Denil, L. Bazzani, H. Larochelle, and N. de Freitas.

Learning where to attend with deep architectures for image

tracking. Neural Computation, 24(8):2151–184, 2012.

[13] C. Desai, D. Ramanan, and C. Folkess. Discriminative mod-

els for multi-class object layout. In ICCV, 2009.

[14] S. K. Divvala, D. Hoiem, J. H. Hays, A. A. Efros, and

M. Hebert. An empirical study of context in object detec-

tion. In CVPR, pages 1271–1278, 2009.

[15] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,

E. Tzeng, and T. Darrell. Decaf: A deep convolutional acti-

vation feature for generic visual recognition. arXiv preprint

arXiv:1310.1531, 2013.

[16] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The pascal visual object classes (voc)

challenge. IJCV, 2010.

[17] G. Fanelli, J. Gall, and L. Van Gool. Real time head pose

estimation with random regression forests. In CVPR, pages

617–624. IEEE, 2011.

[18] P. Felzenszwalb, R. Girshick, and D. McAllester. Cascade

Object Detection with Deformable Part Models. In CVPR,

2010.

[19] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ra-

manan. Object detection with discriminatively trained part

based models. IEEE Trans. on PAMI, 32(9), 2010.

[20] J. Gall and V. Lempitsky. Class-specific hough forests for

object detection. In CVPR, 2009.

[21] C. Galleguillos, A. Rabinovich, and S. Belongie. Object cat-

egorization using co-occurrence, location and appearance. In

CVPR, 2008.

[22] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In CVPR, 2014.

[23] R. Girshick, J. Shotton, P. Kohli, A. Criminisi, and

A. Fitzgibbon. Efficient regression of general-activity human

poses from depth images. In ICCV, pages 415–422. IEEE,

2011.

[24] Y. Gong and S. Lazebnik. Iterative quantization: A pro-

crustean approach to learning binary codes. In CVPR, 2011.

[25] P. Hall and S. C. Morton. On the estimation of entropy.

AISM, 45(1):69–88, 1993.

[26] H. Harzallah, F. Jurie, and C. Schmid. Combining efficient

object localization and image classification. In ICCV, 2009.

[27] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling

in deep convolutional networks for visual recognition. In

ECCV, 2014.

[28] G. Heitz and D. Koller. Learning spatial context: Using stuff

to find things. In ECCV, 2008.

[29] Y. Jia. Caffe: An open source convolutional archi-

tecture for fast feature embedding. http://caffe.

berkeleyvision.org/, 2013.

[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, 2012.

[31] C. H. Lampert, M. B. Blaschko, and T. Hofmann. Beyond

sliding windows: Object localization by efficient subwindow

search. In CVPR, 2008.

[32] H. Larochelle and G. E. Hinton. Learning to combine foveal

glimpses with a third-order Boltzmann machine. In NIPS,

2010.

[33] A. Lehmann, P. V. Gehler, and L. J. Van Gool. Branch&rank:

Non-linear object detection. In BMVC, volume 2, page 1,

2011.

[34] C. Li, D. Parikh, and T. Chen. Extracting adaptive contex-

tual cues from unlabeled regions. In ICCV, pages 511–518.

IEEE, 2011.

[35] T. Malisiewicz, A. Gupta, and A. Efros. Ensemble of

exemplar-svms for object detection and beyond. In ICCV,

2011.

[36] S. Manen, M. Guillaumin, and L. Van Gool. Prime object

proposals with randomized prim’s algorithm. In ICCV, 2013.

[37] V. Mnih, N. Heess, and A. Graves. Recurrent models of vi-

sual attention. In NIPS, pages 2204–2212, 2014.

[38] A. Montillo and H. Ling. Age regression from faces using

random forests. In Proceedings of the IEEE International

Conference on Image Processing, pages 2465–2468. IEEE,

2009.

[39] F. Moosman, B. Triggs, and F. Jurie. Fast discriminative vi-

sual codebook using randomized clustering forests. In NIPS,

2006.

[40] R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fi-

dler, R. Urtasun, and A. Yuille. The role of context for object

http://caffe.berkeleyvision.org/
http://caffe.berkeleyvision.org/

detection and semantic segmentation in the wild. In CVPR,

pages 891–898. IEEE, 2014.

[41] K. Murphy, A. Torralba, and W. T. Freeman. Using the forest

to see the trees: A graphical model relating features, objects,

and scenes. In NIPS, 2003.

[42] S. O’Hara and B. A. Draper. Are you using the right approx-

imate nearest neighbor algorithm? In wacv, 2013.

[43] M. Pedersoli, A. Vedaldi, and J. Gonzales. A coarse-to-fine

approach for fast deformable object detection. In CVPR,

2011.

[44] A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora,

and S. Belongie. Objects in context. In ICCV, 2007.

[45] M. Saberian and N. Vasconcelos. Boosting algorithms for

detector cascade learning. JMLR, 15(1):2569–2605, 2014.

[46] R. Sznitman and B. Jedynak. Active testing for face detection

and localization. IEEE Trans. on PAMI, 2010.

[47] Y. Tang, N. Srivastava, and R. Salakhutdinov. Learning gen-

erative models with visual attention. In NIPS, pages 1808–

1816, 2014.

[48] A. Torralba. Contextual priming for object detection. IJCV,

53(2):153–167, 2003.

[49] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and

A. W. M. Smeulders. Selective search for object recognition.

IJCV, 104(2):154–171, 2013.

[50] K. E. A. Van De Sande, T. Gevers, and C. G. M. Snoek.

Evaluating color descriptors for object and scene recogni-

tion. IEEE Trans. on PAMI, 32(9):1582–1596, 2010.

[51] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman. Mul-

tiple kernels for object detection. In ICCV, 2009.

[52] P. Viola and M. Jones. Rapid object detection using a boosted

cascade of simple features. In CVPR, pages 511–518, 2001.

[53] X. Wang, M. Yang, S. Zhu, and Y. Lin. Regionlets for generic

object detection. In ICCV, pages 17–24. IEEE, 2013.

[54] T. Wu and S. Zhu. Learning near-optimal cost-sensitive de-

cision policy for object detection. In ICCV, pages 753–760,

2013.

[55] J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba. SUN

database: Large-scale scene recognition from Abbey to Zoo.

In CVPR, 2010.

[56] J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba.

SUN database. http://groups.csail.mit.edu/

vision/SUN/, 2012.

[57] M. Zhu, N. Atanasov, G. Pappas, and K. Daniilidis. Active

Deformable Part Models Inference. In ECCV, 2014.

http://groups.csail.mit.edu/vision/SUN/
http://groups.csail.mit.edu/vision/SUN/

