
An Active Service Framework and its
Application to Real-time Multimedia Transcoding

Elan Amir, Steven McCanne, and Randy Katz
University of California, Berkeley

felan,mccanne,randyg@EECS.Berkeley.EDU

Abstract

Several recent proposals for an “active networks” architecture ad-
vocate the placement of user-defined computation within the net-
work as a key mechanism to enable a wide range of new applica-
tions and protocols, including reliable multicast transports, mecha-
nisms to foil denial of service attacks, intra-network real-time sig-
nal transcoding, and so forth. This laudable goal, however, creates a
number of very difficult research problems, and although a number
of pioneering research efforts in active networks have solved some
of the preliminary small-scale problems, a large number of wide
open problems remain. In this paper, we propose an alternative to
active networks that addresses a restricted and more tractable sub-
set of the active-networks design space. Our approach, which we
(and others) call “active services”, advocates the placement of user-
defined computation within the network as with active networks,
but unlike active networks preserves all of the routing and forward-
ing semanticsof current Internet architecture by restricting the com-
putation environment to the application layer. Because active ser-
vices do not require changes to the Internet architecture, they can
be deployed incrementally in today’s Internet.

We believe that many of the applications and protocols targeted
by the active networks initiative can be solved with active services
and, toward this end, we propose herein a specific architecture for
an active service and develop one such service in detail — the Me-
dia Gateway (MeGa) service — that exploits this architecture. In
defining our active service, we encountered six key problems —
service location, service control, service management, service at-
tachment, service composition, and the definition of the service en-
vironment — and have crafted solutions for these problems in the
context of the MeGa service. To verify our design, we implemented
and fielded MeGa on the UC Berkeley campus, where it has been
used regularly for several months by real users who connect via
ISDN to an “on-line classroom”. Our initial experience indicates
that our active services prototype provides a very flexible and pro-
grammable platform for intra-network computation that strikes a
good balance between the flexibility of the active networks archi-
tecture and the practical constraints of incremental deployment in
the current Internet.

1 Introduction

One of the key strengths of the Internet service model is that it ab-
stracts away the details of how messages are forwarded through the
network. On the one hand, this design principle is extremely pow-
erful because it divorces applications from much of the complexity
of the underlying communication system, but at the same time, it
constrains applications because they cannot exploit detailed knowl-
edge of the underlying network to enhance their performance. One
application class that is constrained in this way are so-called “video
gateways” [3], which are computational elements that adjust the bit
rate of video stream or collection of video streams to accommodate
the constrained capacity of communication links at strategic loca-
tions within the network. Becausevideo gateways perform their op-
timization directly on the underlying data stream from within the
network itself, they must be physically situated at an appropriate,
perhaps arbitrary, point within the network. However, even though
these agents are deeply embedded within the network infrastruc-
ture, they are actually created, configured, and controlled dynam-
ically by the user application on the end-system at the edge of the
network, for instance, by employing application-specific protocols
to convey “receiver interest” into the network to best configure the
agent for the receiving user’s preferences and capabilities [2].

Unfortunately, the Internet service model has no native support
for deploying agents within the network in this fashion. To over-
come this limitation, the “Active Networks” initiative [30] pro-
poses that the Internet service model be replaced with a new ar-
chitecture in which the network as a whole becomes a fully pro-
grammable computational environment. In this framework, not
only do application-defined entities run on arbitrary nodes in the
network but individual packets can be programmed to perform ar-
bitrary actions as they propagate through the network — “pro-
grammability” migrates down the protocol stack from the applica-
tion layer across the transport layer and into the network and data-
link layers.

While the requirements of video gateways are often cited in the
active networks literature as proof of a pressing need for this new
infrastructure, the far-reaching implications of uprooting and sup-
planting over twenty years of Internet design experience begs the
question: Is active networks both sufficient and necessary for de-
ploying scalable, flexible, and robust services, like the video gate-
way service, within the network on behalf of the user? While we
concede that a comprehensive active networks framework would
immediately solve this problem and is therefore sufficient, we ar-
gue that for a large and important sub-class of the active networks
design space — namely those applications like the video gateway
that provide an application-level service — the active networks ar-
chitecture is not strictly necessary. Instead, we argue that these
applications are adequately and effectively supported by a “pro-
grammable service architecture,” built on top of and in harmony
with the existing Internet service model, that allows users to down-
load and run code on their behalf at strategic locations within the



network. We and others call this programmable network infrastruc-
ture active services because we restrict the design to application-
level services yet we inherit the novelty of the active networks
programmability[16].

While we believe that the active services framework holds the
promise to enable many active networks-like applications, we do
not propose this framework as an outright replacement for active
networks because it cannot possibly meet all of the goals and sup-
port all of the applications targeted by active networks. The abil-
ity to quickly re-program and deploy new protocols at any level in
the network architecture is not possible in nor is it the goal of active
services, and applications like nomadic routing [22], localized TCP
optimizations (e.g., “snoop” [8]), SYN-flooding avoidance, etc. are
not naturally amenable to our framework. Nevertheless, we believe
that the active service framework is an important new networking
technology not only because solving active networks sub-problems
in this domain will contribute to the overall understanding of the ac-
tive networks problem, but also because it is a valuable and useful
technology in its own right — active services can solve a number of
pressing networking problems in a way that is fully compatible with
today’s Internet. In fact, we have built, deployed, and extensively
exercised an experimental active service framework — the media
gateway system described later in this paper — that has provided a
tangible application to a real user community who used it to do real
work and collaboration on a regular basis for the past six months.

In the remainder of this paper, we develop the design rationale
for our active research framework and present a detailed overview
of its architecture and use. The next section describes our active
service framework. Section 3 describes the design of a prototype
service that runs on our framework: the MeGa service for media
gateway deployment. Section 4 presents implementation details. In
Section 5 we present a brief survey of related work and then con-
clude.

2 An Active Service Framework
A video gateway mitigates bandwidth heterogeneity by adjusting
each video flow’s bit-rate in a controlled fashion to meet each link’s
available capacity [3, 32]. While mechanisms to accomplish such
rate adaptation are well understood, companion mechanisms for in-
stantiating the transcoding agents at the appropriate places in the
network and for flexibly configuring and controlling them once run-
ning are comparatively underdeveloped. After a number of years
of experimentation with techniques for deploying and configuring
video gateways and drawing upon emerging ideas in active net-
works and the success of Java’s platform-independent computing
model [2, 3], we refined our creation and control protocols into a
programmable infrastructure that became the active services pro-
totype presented herein. Because we believe our service architec-
ture is useful for a broad range of applications beyond simple video
transcoding, we developed a re-usable framework where the “ac-
tive” multimedia gateway service consists of two key levels of ab-
straction:

� an active service framework, which provides the pro-
grammable substrate on which to build arbitrary network
services, and

� the specializationof that framework for the particular problem
at hand, in our case, a media gateway service.

In this section, we describe a specific design for an action service
that we call “AS1” (i.e., “active service version 1”) and in the sub-
sequent section we describe the specialization of AS1 for the par-
ticular task of media transcoding manifested in our Media Gateway
(MeGa) active service.

Internet

AS1

Client

Client

Client

SA

SA

SA

SA
AS1

AS1

Figure 1: The AS1 active service framework: clients rendezvous
with AS1 clusters via well-known point-of-contact unicast or mul-
ticast addresses to create computational entities called “service
agents” or servents that implement the desired service. A client can
simultaneously interact with multiple clusters to create and inter-
pose servents across the network to effect more complex services.

The key abstractions of and vocabulary for our AS1 framework
are illustrated in Figure 1. Users that require an active service
are called clients and within the network reside one or more pools
of active service nodes each called a cluster. Clients instantiate
application-level service agents, called servents (i.e., the contrac-
tion of service agent) on one or more clusters. A servent’s behavior
is defined by its arbitrary active-service program, and once created,
the servent is controlled by the clients in a servent-specific fashion,
i.e., the control implementation is embedded in the servent defini-
tion. Multiple servents may be composed either within the same
cluster or across different cluster to implement more complex ser-
vices. To support robust operation and graceful reaction to system
failures, the servent’s ongoing existence is continually refreshed by
the client, and when refresh messages cease, AS1 detects the lost
client and terminates the corresponding servent.

To facilitate the design process of the AS1 architecture, we de-
composed the framework into six core but interdependent compo-
nents:

� Service Environment: The service environment defines the
“active” part of active services, i.e., the programming model
and interfaces to programming resources available to the ser-
vents that run within AS1.

� Service Location: To instantiate a new servent, the client
must first locate an AS1 cluster. The service location sub-
system provides a mechanism for the client to rendezvous
with AS1.

� Service Management: The service management sub-system
allocates the finite computational resources of the cluster
across servents to implement load balancing, mechanisms for
graceful degradation under high load, and admission control.

� Service Control: Once a servent is instantiated on AS1, the
client must be able to dynamically re-configure and control it
via the service control subsystem.

2



� Service Attachment : If a client is does not have direct access
to the service infrastructure (i.e., because of lack of multicast
support or because of an administrative firewall), a client uti-
lizes the service attachment sub-system to “tunnel” through
the barrier for general network connectivity.

� Service Composition: Some services are best implemented
as a collection of agents spread across the network. The ser-
vice composition sub-system allows clients to contact multi-
ple service clusters and interconnect servents running within
and across clusters.

To illustrate the role of each componentwithin our active service
framework, we will outline a simple scenario where a bandwidth-
impoverished, multicast-incapable client wishes to join a global
multicast video session. To initiate the process, the client con-
tacts the active service through a well-defined rendezvous mech-
anism (service location), which by default employs an exchange
of messages over a well-known multicast address. But since the
client is not directly attached to a multicast-capable network, it must
rely upon a unicast point-of-contact, which it might obtain from
DNS, DHCP, or some other service location protocol. This point-
of-contact information returned by this query includes a list of ad-
dresses so that the client can “round robin” over multiple contact
points for simple load balancing and fault recovery. The client then
submits its service request on the rendezvous address in the form
of a program (service environment) that defines the servent to be
instantiated, namely a video gateway. In response, AS1 creates a
single instance of the specified video gateway according to its inter-
nal load-balancing algorithms (service management). For the du-
ration of the session, the client runs a servent-defined protocol to
dynamically control transcoding parameters of the gateway; that is,
the control protocol is embedded in the active program running on
the service and its semantics are orthogonal to and independent of
AS1. Finally, the client may create multiple gateways on multiple
multicast groups chaining them together to accommodate a range of
bandwidth requirements (service composition). While our architec-
ture admits such configurations, we have not yet worked out all the
details of service composition, how clients and/or servents would
interact with the session directory service [18] to allocate multicast
address, and so forth; these problems are topics of future work.

In the remainder of this section, we detail the design of five of
the six components in the AS1 active service framework, with the
exception of service composition, which remains a topic of future
work.

2.1 Service Environment
A crucial capability of active services is flexible and simple deploy-
ment of application-level computation within the network. To this
end, we follow the lead of other projects in this area [16, 17, 34]
by implementing an environment that consists of a programmable
substrate that the servents program to implement complex compu-
tation. But we diverge from the active networks approach by con-
straining our environment to the application layer. That is, the en-
vironment does not allow the servent to manipulate routing tables,
forwarding functions, network management functions, etc. We be-
lieve that this constrained approach strikes a good balance between
the flexibility of the active networks architecture and the practical
constraints of incremental deployment in the current Internet.

Because our principal research efforts revolve around real-time
multimedia networking applications, we implemented our AS1 pro-
grammable substrate using the “MASH platform” [23]. MASH is
a Tcl [26] interpreter extended with real-time multimedia and net-
working related capabilities. Tcl provides a simple, flexible and
easy-to-use programming model based on scripting, while the in-
terface to the AS1 resources consists of a method API to a set

of Object Tcl classes [33] that can be invoked from the servent’s
Tcl program. Under this model, servents are simply Object Tcl
scripts interpreted by MASH, which we call “mashlets”. The use
of a scripting language for plumbing together components in our
programmable substrate strikes a good balance between the power
of low-level “system” languages such as C++, and the flexibil-
ity and ease of use of high-level “scripted” languages such as
Tcl/OTcl [27].

Our experiences with MASH have led us to conclude that a
fully general active service programming environment would un-
duly burden the active service developer and lead to unavoidable
performance constraints. In contrast, a domain-specific program-
ming model simplifies the problem of defining a set of APIs to ev-
ery possible resource that might be required of a servent. Conse-
quently, just as we have narrowed down our design space from ac-
tive networks to active services, we also believe that each instance
of an active service should be further narrowed in scope to a spe-
cific domain. In our case, AS1 is tailored for real-time multime-
dia networking. Other service environments and design decisions
might be made to support domains like web caching or application-
defined reliable multicast.

Finally, an important property of the service environment not yet
addressed in our work is the safety of untrusted, third-party code.
While we have not included a solution to this problem in our cur-
rent design, nothing in our service environment model precludes
the use of type-safe languages such as Safe-Tcl [10], Java [5], or
Python [28] and as such we view this problem as important, yet or-
thogonal to our current endeavor. As part of our future work, we
plan to leverage ongoing work in the active networks research com-
munity to incorporate safe languages into our service environment.

2.2 Service Location

Before a client can instantiate a servent, it must first locate the ac-
tive service. That is, the client must obtain bootstrap configuration
information that enables it to rendezvous with an AS1 cluster.

We have identified two basic approaches to this problem. The
first relies on a centralized server at a well-known location that pro-
vides the necessary bootstrap. In this approach, the client obtains
necessaryrendezvous information from a server, e.g., using the Dy-
namic Host Configuration Protocol (DHCP) [6].

In contrast to this approach where a client “pulls” down service
location information from a well-known point, multicast communi-
cation can be exploited to “push”service location information out to
multicast listeners. In this model, a client listens on a well-known
multicast address over which the required configuration informa-
tion is periodically transmitted. Hodes et al. [19] describe a gener-
alized scheme for service location using this approach based on the
Service Location Protocol (SLP) [7].

In AS1, we decouple the physical location of the active service
from the control communication channel by leveraging the level
of indirection offered by multicast communication. This greatly
simplifies the service location problem. Now, the AS1 bootstrap
requires just a single, location independent, piece of information:
the network address for this control channel. If clients do not have
multicast service, they communicate with the AS1 cluster through
application-level forwarders (see Section 2.5) that enable unicast
clients to “join” the control multicast group. In this case, we sup-
ply the clients with list of addresses of these forwarders or point-
of-contacts, e.g., using DHCP. In our prototype, we implemented
static configuration for simplicity (e.g., a file in /etc for Unix or a
property in the registry for Windows).

3



2.3 Service Management
Once clients rendezvous with the active service, they can create ar-
bitrary instances of servents within and across the service cluster.
But because servents can induce an arbitrary computational load,
the cluster must intelligently apportion its computing resources
across service requests to properly balance load and gracefully de-
grade (or deny) service under high load.

We decomposedthis service management problem into two sub-
tasks:

� the processor sharing task allocates a subset of nodes from a
general purpose and shared cluster to act as the active service
infrastructure, and

� the serventcreation task creates servents within the cluster on
behalf of a user client.

The remainder of this section develops these two components in de-
tail.

2.3.1 Servent Launching: The Active Service Control
Protocol (ASCP)

One approach to resource management in a distributed system
such as AS1 is a centralized control model where all control flows
through a single “resource manager”. Here, each client would issue
servent requests to the resource manager that in turn would create
servents on processors chosen through some load balancing algo-
rithm. While this approach is relatively simple to construct, it has
several disadvantages. First, the existence of a single resource man-
ager presents a single point of failure in the system. Second, it cre-
ates a bottleneck in the control path since all resource management
decisions must flow through it. Finally, since the state of the system
is managed by a single entity — the resource manager — that entity
must also implement thorough error detection and recovery, which
incurs protocol complexity and implementation overhead.

In contrast to a centralized resource manager approach, AS1 em-
ploys a distributed control protocol, the Active Service Control Pro-
tocol (ASCP), which does not hold any of the undesirable proper-
ties of the centralized approach. Rather, ASCP relies exclusively
upon decentralized control through the exploitation of three impor-
tant protocol building blocks: announce-listen communication, soft
state, and multicast damping.

The announce-listen communication model is embodied in a
number of common network protocols including the protocol
suite that used for multicast-based Internet conferencing applica-
tions. These multicast applications assume a communication model
where parties in the collaboration session simply “tune-in to” or
“tune-out of” the multicast group without any explicit group no-
tification operation. This loosely coupled, light-weight, real-time
multimedia communication model is known as the light-weight ses-
sions architecture [21].

Announce-listen communication serves as the primary protocol
building block for light-weight session applications. The model
is characterized by several properties: a shared (multicast) com-
munication channel over which all parties communicate; periodic,
self-descriptive (i.e., temporally independent) protocol messages;
timer-based aging of state; and reconfigurable components. To-
gether these constructs comprise a communication framework that
is particularly robust and resilient with regard to network hetero-
geneity, scale, and pathologies like communication partitions and
packet loss and reordering.

In a sense, announce-listen communication is a form of reliable
multicast where sources simply retransmit their data indefinitely.
We formalize this view by modeling the state of an announce-listen
protocol as a (key,value) table. As illustrated in Figure 2, each mem-
ber of the session maintains its own copy of the table. Each table

entry has associated with it an “owner” that identifies the originator
of the state contained in the entry. At periodic intervals, each mem-
ber transmits the entries that it owns. When a member receives an
announcement, it inserts the entry in the state table, indexed by the
key. If the table does not contain an entry with the same key, or the
value of the corresponding entry has changed, the received entry is
classified as an update. If, on the other hand, there already exists an
entry in the table with the same key, the received entry is classified
as a refresh. In the event that an entry has not been refreshed or up-
dated for a configured period of time, it is removed from the table,
a process called aging.

The goal of an announce-listen protocol is to maintain consis-
tency across all members’ tables. In the presence of plentiful net-
work capacity and low packet loss, this is trivially achieved, but
when the announce-listen update rate is constrained or packet loss
is non-negligible, inconsistencies between tables will inevitably
arise. Nevertheless, inconsistencies are rectified over time by the
periodic announcements of the protocol that update the inconsis-
tent entries, thus ensuring eventual consistency and resilience to
packet loss. Simultaneously, these updates enable new members
joining the announce-listen session (i.e., with an “empty” table) to
be quickly brought up to date with the state of the system.

D k 1

B x 3

C g 2

A v 3

D k 1

C g 2

A v 3

D k 1

B x 3

C g 2

K V O
K V O

K V O

K V O

B x 3

02

3

1

A v 3

D k 1

B k 3

C g 2

Figure 2: The Announce Listen Protocol Model.

As shown in Figure 2, each member maintains its own copy of
the protocol state table and periodically transmits the (key,value)
pairs (K V) that it owns (O). The figure shows two inconsistencies
in the current state of the protocol: member 2 is missing the (A,v)
entry from member 3, and the entire group is missing the update to
the B entry owned by member 3. These inconsistencies are eventu-
ally rectified by the next transmission of member 3’s entries.

Announce-listen protocols, in general, combine timer-based ag-
ing of state with periodic message refresh and update. This implic-
itly subsumes both error detection and error recovery. Timer-based
aging implies that failures of members in the session cause certain
entries of the state table to eventually be deleted while new mem-
bers or members recovering from failures are quickly brought up to
date with the current state by the periodic announcements. Because
state retained at each member site in the announce-listen eventually
expires but is continuously refreshed it is often called soft state [13].

The simplicity and robustness of the announce-listen metaphor
make it ideally suited to serve as the bedrock of the ASCP protocol.
Figure 3 illustrates how the announce-listen communication model
is exploited in ASCP. In this example, the AS1 cluster consists of
two hosts and each host runs an agent called a host manager (HM).
ASCP runs among the HM, the client, and the servent as follows:

(a) In response to a client request, the HM creates an instance of a
servent on the local host. As described later, multicast damp-
ing ensures that exactly one host manager responds to a client

4



HM

(AID1, SID1, SNAME, SSD)

Client

SA
SA

AS1 Platform

(AID2, SID1, SSD)
(AID3, SID2, SSD)

HM

Figure 3: The basic operation of the Active Service Control Pro-
tocol, ASCP. Clients announce “requests” for service instances and
host managers (HM) respond to these announcements by instantiat-
ing a single servent for each unique request. Servents (SA) in turn
announce their existence to both the client and to other potential ser-
vent sites on the cluster to avoid duplicate servents.

request. Each request carries with it the program (or a refer-
ence to the program) that embodies the servent.

(b) The HM notifies the client of the servent’s existence.

(c) The client configures the newly created servent as well as it-
self.

ASCP handles stages (a) and (b) by forming a state table whose
(key,value) pairs are of the form (Si;Aj) that designate that the ser-
vice request Si is served by the servent Aj . These pairs are suffi-
cient state to inform the HMs as to whether a servent exists for any
given client’s request. This prevents the HMs from instantiating re-
dundant servents for a given client service request. Consequently,
only one servent is instantiated for each unique request.

To construct the state tables, clients and servents each periodi-
cally transmit ASCP messages containing the following two pieces
of information: an “agent ID” (AID) for the eachAj and a “service
instance ID” (SID) for each Si. The AID is a unique identifier for
each servent while the SID is a unique identifier for each instance of
a particular service requested by a particular client. SIDs are one-
to-one with the servents that are instantiated on the platform and are
typically chosen in a way that effects the desired deployment policy
across a set of clients. Section 3.1 gives a concrete example of how
SIDs are determined with regard to the MeGa service.

A client message contains an additional Service Name (SNAME)
field, which names the code that implements the requested servent.
Since servents are simply Tcl scripts, the SNAME field specifies the
name of a MASH script. In our prototype, we recognize two types
of service name specifications: location-dependent names, such as
URLs, and location-independentnames, specifying a generic name
of a script, e.g., vgw-1.0, for a video gateway. The resolution of a
location-independent name to the actual code is performed through
an orthogonal mechanism. In our prototype, the HM searches a
fixed set of locations, or “script repositories”, for the existence of a
script with a matching name. Finally, an additional manner in which
scripts can be specified is to embed them directly in the ASCP an-
nouncement. The disadvantageof this scheme is that it significantly
increases the size of the ASCP announcements, and thus the control
traffic overhead of the system. Therefore, while in principal this ap-
proach is viable, a better approach is to simply specify a location-
dependent name that points to the client and then to transmit the
script on demand to the requesting HM.

Once a servent is instantiated, it must rendezvouswith the client.
To this end, ASCP includes a Service Specific Data (SSD) field
whose role is to convey the initial servent configuration and ren-
dezvous information between the client and servent. After the ren-
dezvous has occurred, client control of the servent can be estab-
lished and performed independently of ASCP. We demonstrate the
use of this field in the context of the MeGa service in Section 3.2.

The soft-state approach to our design yields a particularly robust
system with a relatively simple implementation. We illustrate this
robustness by describing how the announce-listen/soft-state frame-
work recovers from the three primary sources of system failure in
ASCP:

� Network Failure: After a failure of network connectivity and
a subsequent recovery, the system automatically heals itself
since client and servent announcements are self-descriptive
and simply update and refresh the ASCP state tables. Any ser-
vents that have been terminated due to aged state are promptly
restarted just as if they were created from scratch.

� ServentFailures: If a servent fails, the state representing that
servent will time out, and subsequently the next client an-
nouncement serve as a service request to the cluster.

� Client Failures: If a client fails, its ASCP messages subside
and the client state in the system will expire, thereby trigger-
ing the termination of the servent.

The key property of ASCP and the hallmark of announce-listenpro-
tocols is that there is no distinction between regular protocol oper-
ation and error detection and recovery. This yields a particularly
robust and fault tolerant system. In contrast to the explicit and often
complex error handling code in many protocols, announce-listen
protocols, ASCP included, provide implicit error detection and re-
covery, thereby greatly simplifying the protocol design. In sum-
mary, we have shown how to exploit the announce-listen commu-
nication model and soft state to instantiate servents across an AS1
cluster without explicit connections between clients and servents.

2.3.2 Servent Floods

Although the decentralization of resource management yields a ro-
bust design, it induces a new problem. If each host manager in
the cluster creates a servent immediately upon receiving a request,
many duplicate servents would be simultaneously created and run.
Instead, for each service instance request, the HMs should, as a
whole, create exactly and only one servent.

This duplication effect, which we call a servent flood, is analo-
gous to the well-known multicast implosion problem where a syn-
chronous protocol event causes a flood of traffic. For example, if
the automatic repeat/request protocol primitive is extended to mul-
ticast in a naive fashion, acknowledgment messages from the re-
ceivers would concentrate back at the source, resulting in an “im-
plosion” effect. More generally, any sort of control actions taken
synchronously across a multicast group can result in implosion.

These implosion effects have been combated in a number of net-
work protocols through a technique called multicast damping, first
introduced in the IGMP [14] protocol and later used in the multicast
version of XTP [12] and the SRM reliable multicast protocol [15].
The key to multicast damping is that responders wait a random time
interval before acting. After the random wait, the responder multi-
casts its message to the group. If a responder sees an equivalent
message from another member of the group, that responder sup-
presses its redundant response. In this way, most all the responses
from the group are suppressed. The degree of suppressionand time-
liness of the response are controlled by the probability distribution
of response timers.

5



Launch!

2HM1HM0 HM3Client

Launch!Launch!Launch!

HM

cancel

2HM1HM0 HM3Client

Launch!

cancel cancel

HM

cancel

2HM1HM0 HM3Client

Launch!
Launch! cancel

HM

(a) (b) (c)

Figure 4: Servent launches. A naive implementation (a) yields launch floods while ASCP prevents servent floods through multicast damping
(b). Duplicate gateways can still be launched if the launch timers expire closely enough so that the damping messages are not received within
the difference in the timers (c).

In AS1, the analog of a flood of duplicate control messages is a
flood of duplicate servents instantiated across the cluster. To avoid
this pathology, we employ multicast damping in ASCP as depicted
in Figure 4.

Figure 4(b) shows how ASCP avoids servent floods. Upon re-
ceipt of a client announcement that requires the creation of a new
servent (i.e., the HM does not have any record of a servent handling
the service instance requested by the client), each host manager sets
a randomized launch timer. When the launch timer expires, the HM
creates the servent and multicasts a message with the servent’s SID.
Upon receipt of this message, all other host managers cancel their
launch timers, thereby circumventing a servent flood.

The servent flood prevention scheme does not guarantee that
all duplicate servents are eliminated. As illustrated in Figure 4(c),
when two or more launch timers expire within a round-trip time in-
terval of each other, the damping messages from the HMs do not
arrive in time to suppress each other. In this case, redundant ser-
vents are created. However, the periodic servent ASCP messages
ensure that these servents will learn about each others’ existence.
The servents can then use a simple, deterministic rule to eliminate
all but one of them (e.g., a servent that sees another servent with a
larger AID terminates itself).

E
xpected N

um
ber of D

uplicate Launches0

0.5

1

1.5

2

2.5

20 40 60 80 100

Number of Host Managers

E
xp

ec
te

d 
F

irs
t L

au
nc

h 
La

te
nc

y

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Figure 5: Expected Number of Duplicate Launches (dashed) and
Expected First Launch Latency (solid) vs. Number of Host Man-
agers with uniformly distributed launch timers over a five second
interval with a transmission latency between HMs of 10 ms.

The problem of minimizing the number of duplicate servents is
equivalent to the problem of minimizing the number of duplicate
feedback messages in a multicast damping protocol; fortunately,
this problem has been extensively studied [15, 29, 25]. In our case,

we want to choose the launch timer distribution that minimizes the
number of duplicate servents while maintaining acceptable bounds
on the mean time until a servent is created. In general, this is a dif-
ficult problem, but fortunately for our domain, we can assume that
the maximum number of HMs does not exceed a few hundred and
that all HMs are on a LAN, i.e., the transmission latencies are con-
stant and small. In this case, a simple uniform probability distribu-
tion is adequate. As indicated in Figure 5, the expected number of
duplicate launches is low for the range of HMs we are considering
and the latency until the servent is created decreases rapidly even
for small HM set sizes.

An attractive consequence of the multicast damping scheme is
that servents are uniformly distributed across the cluster in a ran-
domized fashion. Thus, even without a centralized resource man-
ager, we achieve a coarse-grained load balancing. Moreover, we
can achieve fine-grained load balancing that accounts for measured
load on the individual nodes. To this end, each HM monitors the
load on its host and biases its launch timer to reflect the measured
load. If an HM is lightly loaded, its launch timers are short, but
as the load increases, the launch timer distribution is biased toward
larger values. In addition, we perform simple admission control by
setting the launch timer to infinity when a host is at or near full ca-
pacity (as defined by a configured-in target load value). This simple
yet powerful mechanism implements load balancing without any
additional complexity.

To evaluate our load balancing algorithm, we conducted an ex-
periment where we created a large number of media gateway ser-
vents on clusters of varying sizes and recorded the resulting num-
ber of duplicates. The result, shown below, indicate an even spread
of servents per node and low variance in servent distributions. This
confirms our intuition that ASCP can implement reasonable load-
balancing policies without the aid of a centralized resource man-
ager.

Nodes Mean GW/Node Variance GW/Node
1 9.0 0.00
2 8.5 0.25
3 9.3 0.22
4 8.8 0.56
8 8.5 0.50

2.3.3 Processor Sharing

Structuring active services as a cluster environment is attractive
since a cluster is easily expandable and our framework gracefully
accommodates such expansion; hence, this approach is scalable. In
AS1, we can add a processor to the service by merely running an
HM on it. To remove a processor from the service, we simply ter-

6



minate the HM on that host. Thus, the number of processors allo-
cated to the service is one-to-one with the HM “population” on the
cluster.

However, a cluster is often available for general use and we
would thus like to share the cluster with other applications and po-
tentially with other active services. A simple way to allocate some
fixed number of processors to the service is to statically run that
number of HMs on the cluster and monitor the cluster to make sure
that these HMs are all running. While straightforward, this ap-
proach requires supervision to maintain service availability.

A more desirable alternative is to have the HM population mon-
itor itself and maintain its level of availability on its own. In our
model, an HM can perform two population maintenanceoperations:
it can copy itself onto another node and it can terminate itself. Us-
ing these primitives, we developedan algorithm to maintain the HM
population at a target level using the metaphor of a “birth-death”
process.

The core mechanism for our birth-death process is announce-
listen communication. In this framework, each HM transmits a pe-
riodic announcement, and collectively, the HMs estimate the global
population. At randomized adaptation intervals, each HM updates
its population estimate, n, and compares it with the target, N . This
comparison implies an action as follows:

� if n < N , the HM forks a copy of itself on a randomly se-
lected host from the set of available hosts on which there is
no current HM; the new HM is created with probability pl,

pl = min(1;
N

n
� 1)

� if n > N , the HM terminates with probability pt,

pt = 1�
N

n

� if n = N , the HM does nothing.

Under this framework, if n < N (i.e., there are less HMs than the
target), then the number of HMs increases quickly toward the target
at the rate prescribed by the adaptation interval until n > N=2; at
this point, the expected number of new HMs per adaptation interval
is N � n, thus the population size n quick converges to the target
level N . Likewise, if n > N , the expected number of HMs that
terminate is n �N , and we quickly converge to N .

Though this algorithm is decentralized and robust, it can fail with
non-zero probability because all HMs could conceivably terminate
at precisely the same time. However, this is unlikely because it
requires the adaptation intervals of all active HMs to be precisely
aligned and further that all these HMs decide simultaneously to ter-
minate. The probability of this event is (r=T )npnt where T is the
adaptation interval and r is the round-trip time between HMs. But,

pnt = (1�
N

n
)n � e�N for large n

Thus, we can make the probability of total failure of the system van-
ishingly small by either adjusting N or by increasing the adaptation
interval. Since the HM growth process can run very slowly in the
background, we can easily make the adaptation adequately large.

Our algorithm has several desirable properties. First, to popu-
late the cluster, we simply start a single HM on a single host. Next,
to add more HMs, we simply increase the target number parame-
ter in the existing host managers. This can easily be performed in a
dynamic fashion with network management tools. Similarly, if we
want to decrease the number of HMs we decrease the target num-
ber and the HM deployment algorithm will remove the excess HMs

automatically for us. Removing a machine from the AS1 cluster is
trivial since the system will automatically reconfigure itself on the
remaining unallocated processors. Similarly, adding a machine to
the cluster automatically increases the number of processors avail-
able to the system. Finally, since the overall system is based exclu-
sively upon soft-state, the movement and redeployment of HMs on
different machines in the cluster does not affect the overall opera-
tion of the system. For example, you could decommission a ma-
chine with active servents and the system quickly heals itself.

The relationship between the announcement and adaptation in-
terval is critical to the algorithm’s performance, since the algorithm
depends on the accuracy of the HM population estimate which is
computed based on the periodic HM announcements. Increasing
the adaptation interval leads to increased “healing” latency in the
event of a change of state in the HM deployment, e.g., as a result
of a HM failure or change in target number. On the other hand,
choosing an adaptation interval that is too small with respect to the
announcement interval announcement interval could lead to oscil-
latory adaptation behavior as a result of instabilities in the control
feedback loop.

La
un

ch
 O

ve
rh

ea
d 

F
ac

to
r

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3
Ratio of Adaptation to Announcement Intervals

0

Figure 6: The effects of modifying the ratio of the adaptation to
announcement intervals on the launch overhead factor.

To quantify this relationship, we define a metric called the
“launch overhead factor” which represents the number of HMs cre-
ated redundantly before the population converges, divided by N .
For example, a launch overhead factor of 1.5 implies that 2.5N
HMs were created before the algorithm stabilized at N HMs. Fig-
ure 6 plots the relationship between the ratio of the adaptation to
announcement intervals and the launch overhead factor obtained in
an ns [24] simulation of the HM deployment algorithm on a cluster
of 40 machines with a target population size of 10. The error bars
designate the standard deviation of our simulations. As the ratio of
adaptation to announcement intervals decreases, the number of re-
dundant launches increases. On the other hand, increasing the ra-
tio decreases the launch overhead, which becomes negligible when
the adaptation interval is roughly twice as large as the announce-
ment interval. This makes intuitive sense since this is the small-
est adaptation interval large enough to ensure that within it at least
one announcement is received from all other HMs. At that point,
the performance of the algorithm depends solely on the termination
and launch probabilities. Therefore, given an announcement inter-
val, we choose an adaptation interval that is twice as long.

2.4 Service Control
Once a servent has been created, it must be controlled dynamically
for the duration of the session. By its definition, the service control
component of the AS1 architecture is service-specific. That said,

7



in order to maintain the overall robustness of the system, we would
like to design the service control protocols according to the same
principles of robustness and simplicity. In Section 3.3 we describe
an instance of such a protocol in the context of the MeGa service.

SSG ALSSGAL

Figure 7: Using soft state gateways (SSG) to bridge two
announce-listen control sessions across a bottleneck link.

2.5 Service Attachment: Soft-State Gateways

ASCP relies on multicast communication and a well-known mul-
ticast address to rendezvous between clients and the AS1 plat-
form. Clients without multicast service must thus exploit some
other mechanism to rendezvous with AS1. Furthermore, a second
problem arises if the aggregate bandwidth of the ASCP control traf-
fic might congest a bottleneck link on the path between the AS1
cluster and the client. In this case we must provide mechanism to
limit the rate of the ASCP control traffic that is forwarded to the
client.

In our design, we solve both these problems through the use of
an application-level soft state gateway (SSG). The SSG’s function
is twofold. First, it outputs the incoming ASCP control traffic at a
rate that maintains specific bandwidth constraints. Second, it serves
as a rendezvous point for clients without multicast service to join
the ASCP session. Thus, the SSG serves as alternate mechanism
for a client to “attach” to AS1.

Figure 7 illustrates an abstract scenario that demonstrates the
functionality of a SSG. Two sessions are connected across a bot-
tleneck link and are both running a common announce-listen (AL)
control protocol. If we simply forwarded the announce-listen con-
trol traffic across the bottleneck, the link would quickly saturate as
the number of group members in either session grew. However, we
prevent this condition by placing SSGs that limit the rate of the con-
trol traffic across the bottleneck link in an intelligent manner to meet
the bit-rate constraints.

Using our state table model of an announce-listen protocol, the
goal of the SSG is to minimize the number of inconsistencies in
the protocol state table entries on both sides of the bottleneck link.
More specifically, the goal of the SSG is to minimize the state
update and refresh delay, subject to the input/output bit-rate con-
straints and potential packet loss between the servent and client.
The SSG achieves this by building a cache of the (key,value) table
and transmitting the contents of the table in a manner that obeys the
bit-rate limits. The policy that determines how the table values are
transmitted is the critical performance factor for the SSG.

To perform efficient rate control for announce-listen traffic, the
SSG must take into account the semantics of the underlying com-
munication. Indiscriminately dropping ASCP messages could re-
sult in potentially long latencies in the state table updates, thereby
negatively impacting the operation of the system. For example,
dropping new servent announcements would prevent a client from
learning about the existence of a servent handling its service re-
quest. Consequently, we must be careful in the rate-limiting algo-
rithm to favor event-triggered updates as opposed to backgroundre-
freshes.

The structure of the AS1 SSG is as follows. The SSG out-
put channel (OC) manages communication between servents and
clients and is responsible for the rate-limiting of the ASCP control
traffic. The creation and persistence of the output channel structure
is driven by the ASCP announcements from the client, i.e., an out-
put channel is a soft state structure.

The first level of rate-limiting that the OC performs is to filter out
all the servent announcements that are of no interest to clients re-
ceiving the transmissions of the OC. This is easily performed since
the client-side ASCP announcements define the set of SIDs that an
output channel’s associated clients are interested in. This in turn
exactly defines the set of servents whose control traffic should be
forwarded on the output channel. Since the ASCP announcements
are soft-state, the resulting filter is a soft-state structure as well.

Once the OC has determined which state announcements should
potentially be output from the SSG, it must output these announce-
ments in a manner that obeys the bit-rate constraints. In the event
the these constraints force some announcements to be dropped at
the SSG, the OC must select for transmission announcements that
maximize the state update rate of the clients.

To perform this selection, the OC maintains an announce-listen
state table, in our case the ASCP state table. This table is main-
tained according to all the timer/refresh rules of the announce-listen
protocolwhose state it represents. Thus, the table represents a cache
of the current state of the protocol. Using this state table, announce-
ments are classified into two groups: new announcements, repre-
senting state that is not in the cache, and refresh announcements,
representing state that is already in the cache. In ASCP, this classi-
fication is particularly easy since a servent transmits only one type
of announcement, which specifies the SID that it is associated with.
Therefore, the announcement classification is performed by a sim-
ple lookup into the state table keyed by the SID.

Once announcementshave been classified, the OC performs rate-
control using a leaky bucket mechanism. Each channel has associ-
ated with it two token buckets, or queues,NEW and REFRESH, for
new and refresh announcements respectively. The queues are then
serviced, i.e., announcements in the queue transmitted, at the token
bucket rate.

The partition of the aggregate channel bandwidth among the
NEW and REFRESH queues directly affects the tradeoff between
update and refresh latencies. Allocating a higher bit-rate to the
NEW bucket decreases the latency for new state, but increases the
latency for refreshes. Alternatively, allocating a higher bit-rate to
the REFRESH bucket maintains a high refresh rate, but delays the
update of new state at the client. In our current design, we stati-
cally allocate 75% of the output rate to background refreshes and
25% to new state announcements. However, in the future we plan to
leverage the schemes developed by Sharma et al. [29], which adapt
the update timers in soft-state protocols based on channel topology
models, to explore methods for dynamically varying the update and
refresh rate allocation.

In summary, the SSG serves both as a point-of-contact for rate-
limited control traffic and as a rendezvouspoint for client that do not
have multicast service. Despite the fact that the SSG offers the ap-
pearance of a centralized control model, its soft-state structure en-
ables trivial regeneration and replication, thereby avoiding a “single
point of failure” design, and maintaining the overall robustness of
the AS1 architecture.

3 The MeGa Active Service
Media gateways [3] are application-level agents that transparently
bridge two MBone RTP sessions and process the media streams
between the sessions. Having defined the AS1 re-usable frame-
work, we now describe how this framework is specialized to the de-

8



ployment of media gateways in the Media Gateway active service
(MeGa).

In our framework, a media gateway is cast as a servent. We im-
plemented MeGa to run on top of AS1 and thus provide a robust and
scalable architecture for media gateway deployment that serves as
a fully operational and deployed “proof of concept” for the AS1 de-
sign. Moreover, the use of RTP as the media transport protocol at
the gateway guarantees the seamless integration of MeGa into the
Internet multimedia infrastructure.

In this section, we describe the design of the MeGa service within
the AS1 framework and focus on the service-specific components
of the AS1 framework: the SID and SSD specifications for ASCP,
and the service control protocol.

3.1 SID Naming
Section 2.3.1 described how the ASCP SID field is used to deter-
mine whether or not a servent should be instantiated in response to
a client message. Thus, the SID naming scheme fully determines
the number of servents deployed in response to a given number of
client requests.

In MeGa, we use SID naming to implement a gateway “deploy-
ment policy”. Specifically, a client may request that the output ad-
dress of the gateway be unicast or multicast. A gateway is deployed
on behalf of every unicast request, while a single gateway per ses-
sion is shared among all clients requesting a multicast output ad-
dress. In other words there exists only one SID for each session
while for unicast requests there exists a unique SID for every client.
This leads to the following specification of the SID in MeGa. For
multicast requests, the SID is:

sspec:media

while for unicast requests the SID is

sspec:media:localaddr/rport

where sspec is the unique session name given by the session
creator (e.g., the o= field in an SDP [18] announcement),media is
the type of media, localaddr is the local IP address of the client
host, and rport is the port on which it will receive the data.

Even though the design of ASCP is independent of the MeGa
goals, through appropriate naming of the service instances, the one-
to-one relationship between SIDs and servents enables us to estab-
lish a MeGa-specific servent deployment policy.

3.2 SSD Data
The role of the ASCP SSD field is to exchange initial configura-
tion and rendezvous information between the client and servent. In
MeGa, the initial servent configuration information consists of the
“global” session address information, so that the gateways can join
the requested session. The gateways then transmit the transcoded
version of the session on a local address, which depending on the
service request, might be either a multicast or unicast address. In
either case, the gateway must notify the client of this address so that
the client can receive session data. This exchange of global and lo-
cal session information between client and gateway is performed
using the SSD field of the ASCP announcements. Specifically, the
MeGa client transmits the global session address in its SSD field,
while the gateway SSD field contains its local transmission address.

Figure 8 illustrates a specific example of how ASCP operates
in MeGa. The figure details the exchange of MeGa-specific infor-
mation contained in the SSD fields to emphasize how the MeGa
clients and media gateways rendezvous. The figure shows four
MeGa clients: three video clients, labeled vic, and one audio client,
labeled vat. The clients announce their interest in MBone sessions

agw

C on Z

HM

vat

vgw
vgw

AS1 Platform
HM

vic

A B BC

A on X

vic

B on Y

vic

Figure 8: ASCP in MeGa. MeGa clients announce interest in ses-
sions while media gateways announce the session for which they
are a gateway along with their local transmission address. Clients
“join” the global sessionby reconfiguring themselves to listen to the
appropriate local address.

(in the ASCP SSD field). These announcements are received by the
HMs who then can look in their table and see if there already exists
a gateway for the given session. If no such gateway exists, the HM
launches the gateway, and configures it to listen on the appropriate
session address given in the client SSD field.

The next stage of the gateway launch is the selection of an out-
put transmission address for the transcoded version of the session.
In the event that the client request specified a unicast address, this
involves little more than a unique port selection. However, if the
request was for a multicast transmission address, we must select
a unique multicast address. Obtaining this address is part of the
larger multicast address allocation problem which is currently un-
der review in the IETF and we intend to leverage their results when
they become available. In the mean time we use an ad hoc solu-
tion where addresses are chosen randomly from a fixed block of ad-
dresses and rely on the servent announcements to detect and correct
collisions. In our current prototype we have co-located the address
allocation mechanism at the HM, though in the future these mech-
anisms can be separated. Thus, the HM launches the gateway and
notifies it of the output transmission address.

Once the gateway has obtained a local transmission address, it
announces this address in its SSD field. Since the MeGa SIDs are
chosen so that a client and gateway SID match if there is a match
between the session the gateway is handling and the session the
client is interested in, the client can detect that an appropriate gate-
way already exists and use it to receive transcoded transmissions of
the session. Thus, in the figure, the clients for sessionsA;B; and
C configure themselves to join group addresses X;Y; and Z , re-
spectively, thereby completing the rendezvous between the MeGa
clients and gateways.

3.3 Service Control
Service control protocols are embedded in the servents to enable
the clients to implement service-specific control of the servents. In
MeGa, the principal goal is the allocation of constrained link band-
width among the media sources from a gateway to a client. Since
video streams dominate bandwidth consumption on the link, we fo-
cus on a control protocol for video gateways. In the MeGa archi-
tecture, this control is carried out by the Scalable Consensus-based
Bandwidth Allocation (SCUBA) protocol. Reference [2] provides
a comprehensive description of the protocol. In this section, we
briefly describe its operation and focus on how it relates to gateway

9



0
S0

Backchannel
SCUBA

Backchannel
SCUBA

Send-S1

Send-S0

Send-S0

Send-S0

S

R

R

R

R

2

1S

3

2

1

Figure 9: Receiver-driven dynamic allocation: sources dynami-
cally adjust their transmission rate in response to receiver interest.

control in MeGa.
The basic premise of SCUBA is to reflect receiver interest back

to the sources in a multicast session using a scalable control proto-
col. In current MBone sessions, bandwidth is allocated in a fixed
fashion. Each receiver transmits at some fixed rate, where the rates
are chosen either manually or through sender-based adaptation in
a fashion; in either case, an equal amount of bandwidth is typi-
cally allocated to each source. Clearly, this approach is subopti-
mal if all sources are not equally important to the receivers. But,
by integrating receiver feedback into the adaptation process, we can
weight each source’s transmission rate in proportion to receiver in-
terest. This approach is illustrated in Figure 9, where receivers gen-
erate feedback that causessourceS0 to transmit at a higher rate than
source S1; moreover, because there is no interest in source S2 , its
transmission is disabled entirely.

As with ASCP, SCUBA is an announce-listen protocol using
only soft state. Receiver interest is expressed back to the sources in
periodic, self-descriptive announcements. As a result, sources and
receivers can join and leave the session at will without impacting
other session members. No individual piece of the state maintained
by the source is critical to the correct execution of the algorithm
since all state eventually times out (or is explicitly replaced) and
must be refreshed by receiver reports. As in ASCP, failure recovery
is built into the protocol; we need no further mechanism to handle
network partitions, host failures, and so forth. Finally, SCUBA con-
trol messagesare idempotent — each message supersedesall previ-
ously sent messages — further enhancing the protocol’s scalability
and its resilience to packet loss.

SCUBA was designed for both session-wide deployment and
media gateway control. Because we can model each media source
as originating from the servent, we can run SCUBA locally be-
tween the receivers and the transcoders in the media gateways in
order to partition the managed link bandwidth among the sources
being transcoded by the gateway. By running SCUBA between the
low bandwidth linked receivers and the gateway, scarce bottleneck
bandwidth can be dynamically apportioned in an intelligent manner
among the transcoders. In this way SCUBA provides a robust and
distributed control mechanismfor the gateway free from the vulner-
abilities of centralized control.

4 Implementation Status
The AS1 framework and the MeGa service have been fully imple-
mented and in regular use on the UC Berkeley campus for several
months. The service is deployed on the Berkeley Network of Work-
stations (NOW) [4] using the host manager deployment algorithm
described in Section 2.3.3. The only unimplemented portion of the

design described above is service composition and the use of an au-
tomatic service location mechanism as detailed in Section 2.2.

In its current form the MeGa architecture contains four clients
and four matching gateways for each of the following media: video,
audio, whiteboard and SDP.

The audio and video gateways are implemented using the RTP
gateway architecture described in [3]. The SDP gateway is imple-
mented as a reflector. The requirements of whiteboard gateways
differ significantly from the other three due to the fact that white-
board data must be transmitted reliably, as opposed to the unreliable
transmission requirements of audio, video and SDP data. In our cur-
rent prototype we focussed only on the design and implementation
on “stateless” audio and video media gateways. As a result, our
whiteboard gateway is implemented a simple reflector. However,
in the future we intend to leverage the initial efforts by Chawathe
et al. [11] to develop an architecture for reliable real-time multicast
gateways as a component of our service.

ASCP is as a string-based protocol. Our choice of a string for-
mat over a binary format was motivated by several factors. String-
based protocols offer a much greater degree of flexibility in mes-
sage construction. Messages can be read and written using com-
mon text-based tools which significantly reduces the amount of ef-
fort required for prototype development (e.g., one way to “send” a
message is to simply type the message to the receiver’s port using
the telnet protocol). Many times the protocol information is funda-
mentally text-based, e.g., URL’s, user names, and free text. As a
result, the overhead of the text information dominates the savings
that would be gained by compacting the messages to a binary packet
format. Many such protocols have been designed, including HTTP,
SDP, RTSP, and SIP.

The MeGa SSD field of the ASCP announcements is derived
from SDP due to the close relationship between an SDP session an-
nouncements and the information required by the clients and gate-
ways in MeGa. Thus we avoided having to design an entirely new
message format and could leverage our existing SDP parser for
message parsing.

N
u

m
b

er
 o

f 
H

o
st

 M
an

ag
er

s

0

2

4

6

8

10

12

0 5 10 15 20 25

Time [days]

Figure 10: Host manager population changes on the Berkeley Net-
work of Workstations over a 25 day period.

The host manager deployment algorithm has proven to be ex-
tremely robust in the presence of pathological operating conditions
on the Berkeley NOW. The NOW consists of 114 UltraSparcs used
by several departments on the Berkeley campus. Machines are re-
booted irregularly and without notice. We deployed 10 HMs on a
set of 40 machines in this cluster. The system stayed up for approxi-
mately six weeks providing robust and reliable user service until we
brought it down for an upgrade. The vast majority of the time, the
system was stable. Despite the occasions when machines running
HMs were rebooted, the population adapted flawlessly.

10



Figure 10 illustrates the adaptation over the 25 days of this period
(after this period there were no changes in the number of host man-
agers). The figure plots a time series of the number of host man-
agers present in the system. Throughout the 25 days, the system
survived many system reboots and utilized 17 of the 40 hosts at one
point or another. Two specific points of interest demonstrate the re-
silience of our system. First, on day 12 the entire cluster was re-
booted. As illustrated by the downward “spike” in the graph, the
population was able to survive due to the fact that the interval over
which the cluster was rebooted was sufficiently long so that the ran-
domization in the selection of nodes on which HMs replicate them-
selves enabled the HM population to replicate itself on the newly
rebooted machines before the old population was entirely termi-
nated — thereby ensuring the “survival” of the HM population. The
second point of interest is the final configuration, in which we no-
tice the presence of five HMs in the system. It turns out that the
NOW system administrators upgraded the system’s security on all
but five machines, and subsequently gradually rebooted machines
in the cluster. This upgrade prevented the HMs from replicating to
reach the target number of 10. However, the resilience of the sys-
tem was demonstrated in that the HMs attempts to replicate on ran-
dom nodes of the cluster caused the system to eventually populate
exactly those five machines that the system administrators did not
upgrade!

5 Related Work
As we stated in the introduction, our active service framework rep-
resents an attempt to provide “active” functionality within a re-
stricted, yet useful, subspace of active networks goals — deploy-
ment of application-level computation — while maintaining com-
patibility with the current Internet. In this section we present cur-
rent research in active networks and describe how it relates to active
services.

Govindan et al. [16] give a high level description of a framework
for application-level active services. The report outlines an archi-
tecture for the active nodes in their network and discusses some of
the research issues involved, including service deployment and the
design of the service platform.

In contrast to our focus on application-level deployment and
fault tolerance, most research on active networks addresses support
for the more ambitious goal of enabling efficient and safe compu-
tation on arbitrary nodes at the network layer.

The SwitchWare project [17] is developing an architecture for
programmable switches and routers. SwitchWare takes a language-
based approach towards exploring the most extreme version of ac-
tive networks where each packet executes a program. In addition
to “active packets,” the SwitchWare architecture defines middle-
ware “switchlets” that provide support for relatively simple and
lightweight packets to embody complex functionality. Alexander
et al. [1] describe an implementation of an “active bridge” imple-
mented entirely by switchlets running within the SwitchWare archi-
tecture. A related effort is the BBN “smart packets” and “active
router” projects [20]

Bhattacharjee et al. [9] describe an active networks architecture
for dealing with congestion in the network. They detail the use of
“active processors” —- software modules that implement applica-
tion specific processing on a packet-level basis. These packets are
labeled and are dropped in the face of congestion according to a
“unit-level drop” function that enables the user to specify the gran-
ularity of adaptation. One of their examples is the use of an ac-
tive processor for MPEG streams to control packet loss in the face
of congestion. This problem is obviously very similar to that ad-
dressed by MeGa and, in a sense, media gateways are active proces-
sors. The main difference is that this approach comes from the net-

work up, while MeGa addresses the problem from the application-
level down. While the former achieves increased generality, it does
so by sacrificing the ability to leverage useful information from
higher-level protocols such as SCUBA.

The NetScript [35] project’s goal is the design of a common lan-
guage and execution environment to provide a universal abstraction
of a programmable networking environment. NetScript is orthogo-
nal to and complementary to our work and we foresee a possibility
of leveraging it in our active service framework when it becomes
more refined.

Finally, Wetherall and Tennenhouse describe a mechanism for
deploying computation in the network using an new option in the
IP header: the ACTIVE IP option [34] in conjunction with embed-
ding the actual code, or “capsules” [31], in the network-level packet
header. Similar to our goals, this approach is motivated in part by
the goal of compatibility with today’s Internet.

6 Summary
In this paper we described Active Services, an architecture for
deployment of application-level computation within the network.
Our active service architecture draws upon three important proto-
col building blocks — announce-listen communication, soft-state,
and multicast damping — which together yield a particularly robust
and flexible design. To demonstrate the efficacy of our architecture,
we implemented an active service for media gateways called MeGa.
MeGa incorporates the core components of an active service and
serves as a fully functional and deployed “proof of concept” for our
work. Active Services address an important subset of the problems
targeted by the active networking initiative while preserving com-
patibility with the current Internet infrastructure.

7 Acknowledgments
We thank Prof. James Landay for providing his CSCW course at
UC Berkeley as an invaluable testbed for MeGa in a production en-
vironment. During the course, Robert Wilensky, Teck-Lee Tung,
and Angela Schuett provided valuable user feedback. We thank our
colleagues Hari Balakrishnan, Venkat Padmanabhan,Mark Stemm,
and Todd Hodes for the input throughout the development of work
in this paper. David Culler, Rich Martin, and Eric Fraser helped in
deploying AS1 and MeGa on the Berkeley NOW. Finally, we thank
the anonymous reviewers for their comments.

References
[1] ALEXANDER, D. S., SHAW, M., NETTLES, S. M., AND

SMITH, J. M. Active bridging. In Proceedings of SIG-
COMM’97 (Cannes, France, Sep 1997), ACM.

[2] AMIR, E., MCCANNE, S., AND KATZ, R. Receiver-driven
bandwidth adaptation for light-weight sessions. In Proceed-
ings of ACM Multimedia ’97 (Nov. 1997), ACM.

[3] AMIR, E., MCCANNE, S., AND ZHANG, H. An application-
level video gateway. In Proceedings of ACM Multimedia ’95
(Nov. 1995), ACM.

[4] ANDERSON, T. E., CULLER, D. E., PATTERSON, D. A.,
AND THE NOW TEAM. A case for networks of workstations:
NOW. IEEE Micro (Feb. 1995).

[5] ARNOLD, K., AND GOSLING, J. The Java Programming
Language. Addison-Wesley, 1996.

11



[6] ARPANET WORKING GROUP REQUESTS FOR COMMENT,
DDN NETWORK INFORMATION CENTER. Dynamic Host
Configuration Protocol (DHCP). SRI International, Menlo
Park, CA, October 1993. RFC-1541.

[7] ARPANET WORKING GROUP REQUESTS FOR COMMENT,
DDN NETWORK INFORMATION CENTER. Service Loca-
tion Protocol. SRI International, Menlo Park, CA, June 1997.
RFC-2165.

[8] BALAKRISHNAN, H., SESHAN, S., AMIR, E., AND KATZ,
R. H. Improving TCP/IP performance over wireless net-
works. In Proceedings of 1st ACM Conf. on Mobile Comput-
ing and Networking (MOBICOM) (Berkeley, CA, November
1995), ACM.

[9] BHATTACHARJEE, S., CALVERT, K. L., AND ZEGURA, E.
On active networking and congestion. TechnicalReport GUT-
CC-96/02, College of Computing, Georgia Institute of Tech-
nology, Atlanta GA, 1996.

[10] BORENSTEIN, N. E-mail with a mind of its own: The Safe-
Tcl language for enabled mail. In Proceedings of IFIP Inter-
national Conference (Barcelona, Spain, 1994).

[11] CHAWATHE, Y., FINK, S., MCCANNE, S., AND BREWER,
E. A proxy architecture for reliable multicast in heteroge-
neous environments. In Proceedings of ACM Multimedia ’98
(Sept. 1998), ACM. To appear.

[12] CHESSON, G. XTP/protocol engine design. In Proceedings
of the IFIP WG6.1/6.4 Workshop (Rüschlikon, May 1989).

[13] CLARK, D. D. The design philosophy of the DARPA Internet
protocols. In Proceedings of SIGCOMM ’88 (Stanford, CA,
Aug. 1988), ACM.

[14] FENNER, W. Internet Group Management Protocol, Version
2. Internet Engineering Task Force, Inter-Domain Multicast
Routing Working Group, Feb 1996. Internet Draft (work in
progress).

[15] FLOYD, S., JACOBSON, V., MCCANNE, S., LIU, C.-G.,
AND ZHANG, L. A reliable multicast framework for light-
weight sessionsand application level framing. In Proceedings
of SIGCOMM ’95 (Boston, MA, Sept. 1995), ACM.

[16] GOVINDAN, R., ALAETTINOĞLO, C., AND ESTRIN, D. A
framework for active distributed services. Technical Report
98-669, Information Sciences Institute, University of South-
ern California, Los Angeles CA, 1998.

[17] GUNTER, C. A., NETTLES, S. M., AND SMITH, J. M. The
SwitchWare active network architecture, Nov 1997. White
paper available at http://www.cis.upenn.edu/˜ switchware.

[18] HANDLEY, M., AND JACOBSON, V. SDP: Session Directory
Protocol. Internet Draft, Mar 26, 1997.

[19] HODES, T. D., KATZ, R. H., SERVAN-SCHREIBER, E., AND

ROWE, L. A. Composable ad-hoc mobile services for uni-
versal interaction. In Proceedings of The Third ACM/IEEE
Interattional Conference on Mobile Computing (MOBICOM)
(Budapest, Hungary, Septmber 1997).

[20] JACKSON, A. W., AND PARTRIDGE, C. Smart packets,
March 1997. Slides from 2nd Active Nets Workshop1.

1available at http://www.net-tech.bbn.com/smtpkts/baltimore/index.htm

[21] JACOBSON, V. SIGCOMM ’94 Tutorial: Multimedia confer-
encing on the Internet, Aug. 1994.

[22] KLEINROCK, L. Nomadic computing, Nov 1995. Keynote
Address: International Conf. on Mobile Computing and Net-
working (MOBICOM).

[23] MCCANNE, S., BREWER, E. A., KATZ, R. H., ROWE, L.,
AMIR, E., ET AL. Toward a common infrastructure for
multimedia-networking middleware. In Proceedings of the
Fifth International Workshop on Network and OS Support for
Digital Audio and Video (NOSSDAV) (St. Louis, Missouri,
May 1997).

[24] MCCANNE, S., AND FLOYD, S. The UCB/LBNL Network
Simulator. University of California, Berkeley. Software on-
line2.

[25] NONNENMACHER, J., AND BIERSACK, E. Optimal multi-
cast feedback. In Proceedingsof IEEE INFOCOMM 98 (April
1998).

[26] OUSTERHOUT, J. K. Tcl and the Tk Toolkit. Addison-Wesley,
1994.

[27] OUSTERHOUT, J. K. Scripting: Higher level programming
for the 21st century. IEEE Computer (Mar. 1998).

[28] ROSSUM, G. V. Python tutorial.

[29] SHARMA, P., ESTRIN, D., FLOYD, S., AND JACOBSON, V.
Scalable timers for soft state protocol. In Proceedingsof IEEE
INFOCOMM 97 (April 1997).

[30] TENNENHOUSE, D. L., SMITH, J. M., SINCOSKIE, W. D.,
WETHERALL, D. J., AND MINDEN, G. J. A survey of active
network research. IEEE Communications Magazine 35 (Jan
1997), 80–86.

[31] TENNENHOUSE, D. L., AND WETHERALL, D. J. Towards
an active network architecture. Computer Communication
Review 26, 2 (Apr. 1996), 5–18.

[32] TURLETTI, T., AND BOLOT, J.-C. Issues with multicast
video distribution in heterogeneous packet networks. In Pro-
ceedings of the Sixth International Workshop on Packet Video
(Portland, OR, Sept. 1994).

[33] WETHERALL, D., AND LINDBLAD, C. J. Extending Tcl for
dynamic object-oriented programming. In Proceedings of the
Tcl/Tk Workshop (Ontario, Canada, July 1995).

[34] WETHERALL, D. J., AND TENNENHOUSE, D. L. The AC-
TIVE IP option. In Proceedings of the 7th ACM SIGOPS Eu-
ropean Workshop (Connemara, Ireland, Sep 1996), ACM.

[35] YEMINI, Y., AND DA SILVA, S. Towards programmable
networks. In Proceedings of IFIP/IEEE International Work-
shop on Distributed Systems, Operation and Management
(L’Aquila, Italy, Oct 1996), IEEE.

2http://www-mash.cs.berkeley.edu/ns/

12


