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Abstract

Several recent proposals for an “active networks” architecture ad-
vocate the placement of user-defined computation within the net-
work as a key mechanism to enable a wide range of new applica-
tions and protocols, including reliable multicast transports, mecha-
nisms to foil denial of service attacks, intra-network real-time sig-
nal transcoding, and so forth. Thislaudablegoal, however, createsa
number of very difficult research problems, and although a number
of pioneering research efforts in active networks have solved some
of the preliminary small-scale problems, a large number of wide
open problems remain. In this paper, we propose an aternative to
active networks that addresses a restricted and more tractable sub-
set of the active-networks design space. Our approach, which we
(and others) call “active services’, advocatesthe placement of user-
defined computation within the network as with active networks,
but unlike active networks preservesall of the routing and forward-
ing semanticsof current Internet architecture by restricting the com-
putation environment to the application layer. Because active ser-
vices do not require changes to the Internet architecture, they can
be deployed incrementally in today’s Internet.

We believe that many of the applications and protocols targeted
by the active networks initiative can be solved with active services
and, toward this end, we propose herein a specific architecture for
an active service and develop one such service in detail — the Me-
dia Gateway (MeGa) service — that exploits this architecture. In
defining our active service, we encountered six key problems —
service location, service control, service management, service at-
tachment, service composition, and the definition of the service en-
vironment — and have crafted solutions for these problems in the
context of theMeGaservice. To verify our design, weimplemented
and fielded MeGa on the UC Berkeley campus, where it has been
used regularly for several months by real users who connect via
ISDN to an “on-line classroom”. Our initial experience indicates
that our active services prototype provides a very flexible and pro-
grammable platform for intra-network computation that strikes a
good balance between the flexibility of the active networks archi-
tecture and the practical constraints of incremental deploymentin
the current Internet.

1 Introduction

One of the key strengths of the Internet service model is that it ab-
stracts away the details of how messagesare forwarded through the
network. On the one hand, this design principle is extremely pow-
erful becauseit divorces applicationsfrom much of the complexity
of the underlying communication system, but at the same time, it
constrainsapplicationsbecausethey cannot exploit detailed know!-
edge of the underlying network to enhancetheir performance. One
application classthat is constrained in thisway are so-called “ video
gateways’ [3], which are computational elementsthat adjust the bit
rate of video stream or collection of video streamsto accommodate
the constrained capacity of communication links at strategic loca-
tionswithin the network. Becausevideo gatewaysperform their op-
timization directly on the underlying data stream from within the
network itself, they must be physically situated at an appropriate,
perhaps arbitrary, point within the network. However, even though
these agents are deeply embedded within the network infrastruc-
ture, they are actually created, configured, and controlled dynam-
ically by the user application on the end-system at the edge of the
network, for instance, by employing application-specific protocols
to convey “receiver interest” into the network to best configurethe
agent for the receiving user’s preferences and capabilities [2].

Unfortunately, the Internet service model has no native support
for deploying agents within the network in this fashion. To over-
come this limitation, the “Active Networks” initiative [30] pro-
poses that the Internet service model be replaced with a new ar-
chitecture in which the network as a whole becomes a fully pro-
grammable computational environment. In this framework, not
only do application-defined entities run on arbitrary nodes in the
network but individual packets can be programmed to perform ar-
bitrary actions as they propagate through the network — “pro-
grammability” migrates down the protocol stack from the applica-
tion layer acrossthe transport layer and into the network and data-
link layers.

While the requirements of video gateways are often cited in the
active networks literature as proof of a pressing need for this new
infrastructure, the far-reaching implications of uprooting and sup-
planting over twenty years of Internet design experience begs the
question: Is active networks both sufficient and necessary for de-
ploying scalable, flexible, and robust services, like the video gate-
way service, within the network on behalf of the user? While we
concede that a comprehensive active networks framework would
immediately solve this problem and is therefore sufficient, we ar-
gue that for a large and important sub-class of the active networks
design space — namely those applications like the video gateway
that provide an application-level service — the active networks ar-
chitecture is not strictly necessary. Instead, we argue that these
applications are adequately and effectively supported by a “pro-
grammable service architecture,” built on top of and in harmony
with the existing Internet service model, that allows usersto down-
load and run code on their behalf at strategic locations within the



network. We and otherscall this programmable network infrastruc-
ture active services because we restrict the design to application-
level services yet we inherit the novelty of the active networks
programmability[16].

While we believe that the active services framework holds the
promise to enable many active networks-like applications, we do
not propose this framework as an outright replacement for active
networks because it cannot possibly meet all of the goals and sup-
port all of the applications targeted by active networks. The abil-
ity to quickly re-program and deploy new protocols at any level in
the network architectureisnot possiblein nor isit thegoal of active
services, and applicationslike nomadic routing [22], localized TCP
optimizations (e.g., “snoop” [8]), SY N-flooding avoidance, etc. are
not naturally amenableto our framework. Nevertheless, we believe
that the active service framework is an important new networking
technology not only because solving active networks sub-problems
inthisdomainwill contribute to the overall understanding of the ac-
tive networks problem, but also becauseit is a valuable and useful
technology inits own right — active services can solve anumber of
pressing networking problemsin away that isfully compatiblewith
today’s Internet. In fact, we have built, deployed, and extensively
exercised an experimental active service framework — the media
gateway system described later in this paper — that has provided a
tangible applicationto areal user community who used it to do real
work and collaboration on aregular basis for the past six months.

In the remainder of this paper, we develop the design rationale
for our active research framework and present a detailed overview
of its architecture and use. The next section describes our active
service framework. Section 3 describes the design of a prototype
service that runs on our framework: the MeGa service for media
gateway deployment. Section 4 presentsimplementation details. In
Section 5 we present a brief survey of related work and then con-
clude.

2 An Active Service Framewor k

A video gateway mitigates bandwidth heterogeneity by adjusting
eachvideo flow’sbit-ratein acontrolled fashionto meet eachlink’s
available capacity [3, 32]. While mechanismsto accomplish such
rate adaptation arewell understood, companion mechanismsfor in-
stantiating the transcoding agents at the appropriate places in the
network and for flexibly configuring and controlling them once run-
ning are comparatively underdeveloped. After a number of years
of experimentation with techniquesfor deploying and configuring
video gateways and drawing upon emerging ideas in active net-
works and the success of Java’s platform-independent computing
model [2, 3], we refined our creation and control protocols into a
programmable infrastructure that became the active services pro-
totype presented herein. Because we believe our service architec-
tureis useful for abroad range of applications beyond simple video
transcoding, we developed a re-usable framework where the “ac-
tive” multimedia gateway service consists of two key levels of ab-
straction:

e an active service framework, which provides the pro-
grammable substrate on which to build arbitrary network
services, and

o thespecializationof that framework for the particular problem
at hand, in our case, amedia gateway service.

In this section, we describe a specific design for an action service
that we call “AS1” (i.e., “active service version 1") and in the sub-
seguent section we describe the specialization of AS1 for the par-
ticular task of mediatranscoding manifested in our Media Gateway
(MeGa) active service.

Figurel: The ASl active service framework: clients rendezvous
with AS1 clustersviawell-known point-of-contact unicast or mul-
ticast addresses to create computational entities called “service
agents’ or serventsthat implement the desired service. A client can
simultaneously interact with multiple clusters to create and inter-
pose servents across the network to effect more complex services.

The key abstractions of and vocabulary for our AS1 framework
are illustrated in Figure 1. Users that require an active service
are called clients and within the network reside one or more pools
of active service nodes each called a cluster. Clients instantiate
application-level service agents, called servents (i.e., the contrac-
tion of service agent) on oneor moreclusters. A servent’s behavior
isdefined by its arbitrary active-service program, and oncecreated,
the servent is controlled by the clientsin a servent-specific fashion,
i.e., the control implementation is embedded in the servent defini-
tion. Multiple servents may be composed either within the same
cluster or across different cluster to implement more complex ser-
vices. To support robust operation and graceful reaction to system
failures, the servent’songoing existenceis continually refreshed by
the client, and when refresh messages cease, AS1 detects the lost
client and terminates the corresponding servent.

To facilitate the design process of the AS1 architecture, we de-
composed the framework into six core but interdependent compo-
nents:

e Service Environment: The service environment defines the
“active” part of active services, i.e., the programming model
and interfaces to programming resources available to the ser-
ventsthat run within AS1.

e Service Location: To instantiate a new servent, the client
must first locate an ASL1 cluster. The service location sub-
system provides a mechanism for the client to rendezvous
with ASL1.

e ServiceManagement: The service management sub-system
allocates the finite computational resources of the cluster
across serventsto implement load balancing, mechanismsfor
graceful degradation under high load, and admission control.

e Service Control: Once a servent is instantiated on ASL, the
client must be able to dynamically re-configure and control it
viathe service control subsystem.



e ServiceAttachment : If aclientisdoesnot havedirect access
to the serviceinfrastructure (i.e., because of lack of multicast
support or because of an administrative firewall), aclient uti-
lizes the service attachment sub-system to “tunnel” through
the barrier for general network connectivity.

¢ Service Composition: Some services are best implemented
as a collection of agents spread across the network. The ser-
vice composition sub-system allows clients to contact multi-
ple service clusters and interconnect servents running within
and across clusters.

Toillustrate the role of each component within our active service
framework, we will outline a simple scenario where a bandwidth-
impoverished, multicast-incapable client wishes to join a global
multicast video session. To initiate the process, the client con-
tacts the active service through a well-defined rendezvous mech-
anism (service location), which by default employs an exchange
of messages over a well-known multicast address. But since the
clientisnot directly attached to amulticast-capable network, it must
rely upon a unicast point-of-contact, which it might obtain from
DNS, DHCP, or some other service location protocol. This point-
of-contact information returned by this query includes alist of ad-
dresses so that the client can “round robin” over multiple contact
pointsfor simple load balancing and fault recovery. Theclient then
submits its service request on the rendezvous address in the form
of a program (service environment) that defines the servent to be
instantiated, namely a video gateway. In response, AS1 creates a
singleinstance of the specified video gateway according to itsinter-
nal load-balancing algorithms (service management). For the du-
ration of the session, the client runs a servent-defined protocol to
dynamically control transcoding parameters of the gateway; that is,
the control protocol is embedded in the active program running on
the service and its semantics are orthogonal to and independent of
ASL. Finally, the client may create multiple gateways on multiple
multicast groups chaining them together to accommodate arange of
bandwidth requirements(service composition). While our architec-
ture admits such configurations, we have not yet worked out all the
details of service composition, how clients and/or servents would
interact with the session directory service[18] to allocate multicast
address, and so forth; these problems are topics of future work.

In the remainder of this section, we detail the design of five of
the six componentsin the AS1 active service framework, with the
exception of service composition, which remains a topic of future
work.

2.1 Service Environment

A crucial capability of active servicesisflexibleand simple deploy-
ment of application-level computation within the network. To this
end, we follow the lead of other projects in this area [16, 17, 34]
by implementing an environment that consists of a programmable
substrate that the servents program to implement complex compu-
tation. But we diverge from the active networks approach by con-
straining our environment to the application layer. That is, the en-
vironment does not allow the servent to manipulate routing tables,
forwarding functions, network management functions, etc. We be-
lieve that this constrained approach strikes a good balance between
the flexibility of the active networks architecture and the practical
constraints of incremental deployment in the current Internet.
Because our principal research efforts revolve around real-time
multimedianetworking applications, weimplemented our AS1 pro-
grammable substrate using the “MASH platform” [23]. MASH is
aTcl [26] interpreter extended with real-time multimedia and net-
working related capabilities. Tcl provides a simple, flexible and
easy-to-use programming model based on scripting, while the in-
terface to the AS1 resources consists of a method APl to a set

of Object Tcl classes [33] that can be invoked from the servent's
Tcl program. Under this model, servents are simply Object Tcl
scripts interpreted by MASH, which we call “mashlets’. The use
of a scripting language for plumbing together components in our
programmable substrate strikes a good bal ance between the power
of low-level “system” languages such as C++, and the flexibil-
ity and ease of use of high-level “scripted” languages such as
Tcl/OTcl [27].

Our experiences with MASH have led us to conclude that a
fully general active service programming environment would un-
duly burden the active service developer and lead to unavoidable
performance constraints. In contrast, a domain-specific program-
ming model simplifies the problem of defining a set of APIsto ev-
ery possible resource that might be required of a servent. Conse-
quently, just as we have narrowed down our design space from ac-
tive networksto active services, we also believe that each instance
of an active service should be further narrowed in scopeto a spe-
cific domain. In our case, AS1 is tailored for real-time multime-
dia networking. Other service environments and design decisions
might be madeto support domainslike web caching or application-
defined reliable multicast.

Finally, animportant property of the service environment not yet
addressed in our work is the safety of untrusted, third-party code.
While we have not included a solution to this problem in our cur-
rent design, nothing in our service environment model precludes
the use of type-safe languages such as Safe-Tcl [10], Java [5], or
Python [28] and as such we view this problem asimportant, yet or-
thogonal to our current endeavor. As part of our future work, we
planto leverage ongoing work in the active networks research com-
munity to incorporate safelanguagesinto our service environment.

2.2 ServicelLocation

Before a client can instantiate a servent, it must first locate the ac-
tive service. That is, the client must obtain bootstrap configuration
information that enablesit to rendezvouswith an AS1 cluster.

We have identified two basic approaches to this problem. The
first relies on acentralized server at awell-known location that pro-
vides the necessary bootstrap. In this approach, the client obtains
necessary rendezvousinformation from aserver, e.g., usingthe Dy-
namic Host Configuration Protocol (DHCP) [6].

In contrast to this approach where a client “pulls’ down service
locationinformation from awell-known point, multicast communi-
cation can beexploitedto“ push” servicelocationinformation out to
multicast listeners. In this model, a client listens on a well-known
multicast address over which the required configuration informa-
tion is periodically transmitted. Hodes et al. [19] describe a gener-
alized schemefor servicelocation using this approach based on the
Service Location Protocol (SLP) [7].

In AS1, we decouplethe physical location of the active service
from the control communication channel by leveraging the level
of indirection offered by multicast communication. This greatly
simplifies the service location problem. Now, the AS1 bootstrap
reguires just a single, location independent, piece of information:
the network addressfor this control channel. If clients do not have
multicast service, they communicate with the AS1 cluster through
application-level forwarders (see Section 2.5) that enable unicast
clientsto “join” the control multicast group. In this case, we sup-
ply the clients with list of addresses of these forwarders or point-
of-contacts, e.g., using DHCP. In our prototype, we implemented
static configuration for simplicity (e.g., afile in /etc for Unix or a
property in the registry for Windows).



2.3 Service Management

Once clients rendezvouswith the active service, they can create ar-
bitrary instances of servents within and across the service cluster.
But because servents can induce an arbitrary computational load,
the cluster must intelligently apportion its computing resources
across service requeststo properly balanceload and gracefully de-
grade (or deny) service under high load.

We decomposedthis service management problem into two sub-
tasks:

¢ the processor sharing task allocates a subset of nodes from a
general purpose and shared cluster to act as the active service
infrastructure, and

o the servent creationtask creates serventswithin the cluster on
behalf of auser client.

The remainder of this section developsthesetwo componentsin de-
tail.

23.1 Servent Launching: The Active Service Control
Protocol (ASCP)

One approach to resource management in a distributed system
such as ASl is a centralized control model where al control flows
through asingle“resourcemanager” . Here, each client would issue
servent requests to the resource manager that in turn would create
servents on processors chosen through some load balancing algo-
rithm. While this approach is relatively simple to construct, it has
several disadvantages. First, the existenceof asingleresourceman-
ager presentsasingle point of failure in the system. Second, it cre-
ates a bottleneck in the control path since al resource management
decisionsmust flow throughit. Finally, sincethe state of the system
is managed by asingleentity — the resource manager — that entity
must also implement thorough error detection and recovery, which
incurs protocol complexity and implementation overhead.

In contrast to acentralized resource manager approach, AS1 em-
ploysadistributed control protocol, the Active Service Control Pro-
tocol (ASCP), which does not hold any of the undesirable proper-
ties of the centralized approach. Rather, ASCP relies exclusively
upon decentralized control through the exploitation of three impor-
tant protocol building blocks: announce-listen communication, soft
state, and multicast damping.

The announce-listen communication model is embodied in a
number of common network protocols including the protocol
suite that used for multicast-based Internet conferencing applica-
tions. Thesemulticast applicationsassumeacommunication model
where parties in the collaboration session simply “tune-in to” or
“tune-out of” the multicast group without any explicit group no-
tification operation. This loosely coupled, light-weight, real-time
multimedia communication model isknown asthe light-weight ses-
sions architecture [21].

Announce-listen communication serves as the primary protocol
building block for light-weight session applications. The model
is characterized by several properties: a shared (multicast) com-
munication channel over which all parties communicate; periodic,
self-descriptive (i.e., temporally independent) protocol messages;
timer-based aging of state; and reconfigurable components. To-
gether these constructs comprise a communication framework that
is particularly robust and resilient with regard to network hetero-
geneity, scale, and pathologies like communication partitions and
packet loss and reordering.

In a sense, announce-listen communication is a form of reliable
multicast where sources simply retransmit their data indefinitely.
We formalize this view by modeling the state of an announce-listen
protocol asa(key,value) table. Asillustrated in Figure 2, each mem-
ber of the session maintains its own copy of the table. Each table

entry hasassociatedwith it an “ owner” that identifies the originator
of the state contained in the entry. At periodic intervals, each mem-
ber transmits the entries that it owns. When a member receivesan
announcement, it inserts the entry in the state table, indexed by the
key. If the table does not contain an entry with the samekey, or the
value of the corresponding entry has changed, the received entry is
classifiedasan update. If, on the other hand, there already existsan
entry in the table with the same key, the received entry is classified
asarefresh. In the event that an entry has not been refreshed or up-
dated for a configured period of time, it is removed from the table,
aprocesscalled aging.

The goal of an announce-listen protocol is to maintain consis-
tency across all members' tables. In the presence of plentiful net-
work capacity and low packet loss, this is trivially achieved, but
when the announce-listen update rate is constrained or packet loss
is non-negligible, inconsistencies between tables will inevitably
arise. Nevertheless, inconsistencies are rectified over time by the
periodic announcements of the protocol that update the inconsis-
tent entries, thus ensuring eventual consistency and resilience to
packet loss. Simultaneously, these updates enable new members
joining the announce-listen session (i.e., with an “empty” table) to
be quickly brought up to date with the state of the system.
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Figure2: The Announce Listen Protocol Model.

As shown in Figure 2, each member maintains its own copy of
the protocol state table and periodically transmits the (key,value)
pairs (K V) that it owns (O). The figure shows two inconsistencies
in the current state of the protocol: member 2 is missing the (A,v)
entry from member 3, and the entire group is missing the updateto
the B entry owned by member 3. Theseinconsistenciesare eventu-
ally rectified by the next transmission of member 3's entries.

Announce-listen protocols, in general, combine timer-based ag-
ing of state with periodic messagerefresh and update. Thisimplic-
itly subsumesboth error detection and error recovery. Timer-based
aging implies that failures of membersin the session cause certain
entries of the state table to eventually be deleted while new mem-
bers or members recovering from failures are quickly brought up to
date with the current state by the periodic announcements. Because
state retained at each member site in the announce-listen eventually
expiresbut iscontinuously refreshed it is often called soft state[13].

The simplicity and robustness of the announce-listen metaphor
makeit ideally suited to serveasthe bedrock of the ASCP protocol.
Figure 3illustrates how the announce-listen communication model
is exploited in ASCP. In this example, the AS1 cluster consists of
two hosts and each host runs an agent called a host manager (HM).
ASCP runs among the HM, the client, and the servent as follows:

(a) Inresponseto aclient request, the HM createsaninstanceof a
servent on the local host. As described later, multicast damp-
ing ensuresthat exactly one host manager respondsto aclient
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Figure 3: The basic operation of the Active Service Control Pro-
tocol, ASCP. Clients announce* requests’ for serviceinstancesand
host managers (HM) respond to these announcementsby instantiat-
ing a single servent for each unique request. Servents (SA) in turn
announcetheir existenceto both the client andto other potential ser-
vent sites on the cluster to avoid duplicate servents.

request. Each request carries with it the program (or arefer-
ence to the program) that embodies the servent.

(b) The HM natifies the client of the servent’s existence.

(c) The client configuresthe newly created servent as well asit-
self.

ASCP handles stages (a) and (b) by forming a state table whose
(key,value) pairsareof theform (.S;, A; ) that designatethat the ser-
vice request S; is served by the servent A;. These pairs are suffi-
cient state to inform the HMs asto whether a servent exists for any
given client’'srequest. Thispreventsthe HMsfrom instantiating re-
dundant servents for a given client service request. Conseguently,
only one servent isinstantiated for each unique request.

To construct the state tables, clients and servents each periodi-
cally transmit ASCP messagescontaining the following two pieces
of information: an*“agent ID” (AID) for the each A; and a“ service
instance ID” (SID) for each S;. The AID is a unique identifier for
each servent whilethe SID isauniqueidentifier for each instance of
a particular service requested by a particular client. SIDs are one-
to-onewith the serventsthat areinstantiated on the platform and are
typically chosenin away that effects the desired deployment policy
acrossaset of clients. Section 3.1 givesa concrete example of how
SIDs are determined with regard to the MeGa service.

A client message containsan additional ServiceName (SNAME)
field, which namesthe code that implements the requested servent.
Since serventsaresimply Tcl scripts, the SNAME field specifiesthe
name of a MASH script. In our prototype, we recognize two types
of service name specifications: location-dependent names, such as
URLSs, and location-independent names, specifying ageneric name
of ascript, e.g., vgw 1. 0, for avideo gateway. Theresolution of a
location-independent nameto the actual codeis performed through
an orthogonal mechanism. In our prototype, the HM searches a
fixed set of locations, or “ script repositories’, for the existence of a
script with amatching name. Finally, anadditional manner inwhich
scripts can be specified is to embed them directly in the ASCP an-
nouncement. The disadvantageof this schemeisthat it significantly
increasesthe size of the A SCP announcements, and thusthe control
traffic overhead of the system. Therefore, whilein principal this ap-
proach is viable, a better approach isto simply specify alocation-
dependent name that points to the client and then to transmit the
script on demand to the requesting HM.

Onceaserventisinstantiated, it must rendezvouswith the client.
To this end, ASCP includes a Service Specific Data (SSD) field
whose role is to convey the initial servent configuration and ren-
dezvousinformation between the client and servent. After the ren-
dezvous has occurred, client control of the servent can be estab-
lished and performed independently of ASCP. We demonstrate the
use of this field in the context of the MeGa servicein Section 3.2.

The soft-state approach to our design yields a particularly robust
system with arelatively simple implementation. We illustrate this
robustnessby describing how the announce-listen/soft-state frame-
work recovers from the three primary sources of system failure in
ASCP:

e Network Failure: After afailure of network connectivity and
a subsequent recovery, the system automatically heals itself
since client and servent announcements are self-descriptive
and simply update and refresh the ASCP state tables. Any ser-
ventsthat have been terminated dueto aged state are promptly
restarted just asif they were created from scratch.

e ServentFailures: If aserventfails, the staterepresenting that
servent will time out, and subsequently the next client an-
nouncement serve as a service request to the cluster.

e Client Failures: If aclient fails, its ASCP messages subside
and the client state in the system will expire, thereby trigger-
ing the termination of the servent.

Thekey property of ASCP and the hallmark of announce-listenpro-
tocolsis that thereis no distinction between regular protocol oper-
ation and error detection and recovery. This yields a particularly
robust and fault tolerant system. In contrast to the explicit and often
complex error handling code in many protocols, announce-listen
protocols, ASCP included, provide implicit error detection and re-
covery, thereby greatly simplifying the protocol design. In sum-
mary, we have shown how to exploit the announce-listen commu-
nication model and soft state to instantiate servents across an AS1
cluster without explicit connections between clients and servents.

2.3.2 Servent Floods

Although the decentralization of resource managementyieldsaro-
bust design, it induces a new problem. If each host manager in
the cluster creates a servent immediately upon receiving arequest,
many duplicate servents would be simultaneously created and run.
Instead, for each service instance request, the HMs should, as a
whole, create exactly and only one servent.

This duplication effect, which we call a servent flood, is analo-
gousto the well-known multicast implosion problemwhere a syn-
chronous protocol event causes a flood of traffic. For example, if
the automatic repeat/request protocol primitive is extended to mul-
ticast in a naive fashion, acknowledgment messages from the re-
ceiverswould concentrate back at the source, resulting in an “im-
plosion” effect. More generally, any sort of control actions taken
synchronously across a multicast group can result in implosion.

Theseimplosion effects have been combated in anumber of net-
work protocols through a technique called multicast damping, first
introduced inthe IGMP[14] protocol and later usedin themulticast
version of XTP [12] and the SRM reliable multicast protocol [15].
Thekey to multicast dampingisthat responderswait arandomtime
interval before acting. After the random wait, the responder multi-
casts its message to the group. If a responder sees an equivalent
message from another member of the group, that responder sup-
presses its redundant response. In this way, most all the responses
from the group are suppressed. The degreeof suppressionand time-
liness of the response are controlled by the probability distribution
of responsetimers.
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Figure4: Serventlaunches. A naiveimplementation (a) yieldslaunch floodswhile ASCP preventsservent floodsthrough multicast damping
(b). Duplicate gateways can still be launched if the launch timers expire closely enough so that the damping messagesare not received within

the difference in the timers (c).

In AS1, the analog of aflood of duplicate control messagesis a
flood of duplicate serventsinstantiated across the cluster. To avoid
this pathology, we employ multicast damping in ASCP as depicted
in Figure 4.

Figure 4(b) shows how ASCP avoids servent floods. Upon re-
ceipt of a client announcement that requires the creation of a new
servent (i.e., theHM doesnot haveany record of aservent handling
the serviceinstancerequested by the client), each host manager sets
arandomizedlaunchtimer. Whenthelaunch timer expires, the HM
createsthe servent and multicasts amessagewith the servent’s SID.
Upon receipt of this message, all other host managers cancel their
launch timers, thereby circumventing a servent flood.

The servent flood prevention scheme does not guarantee that
all duplicate servents are eliminated. Asillustrated in Figure 4(c),
when two or more launch timers expire within around-trip timein-
terval of each other, the damping messages from the HMs do not
arrive in time to suppress each other. In this case, redundant ser-
vents are created. However, the periodic servent ASCP messages
ensure that these servents will learn about each others' existence.
The servents can then use a simple, deterministic rule to eliminate
all but one of them (e.g., a servent that sees another servent with a
larger AID terminates itself).
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Figure5: Expected Number of Duplicate Launches (dashed) and
Expected First Launch Latency (solid) vs. Number of Host Man-
agers with uniformly distributed launch timers over a five second
interval with atransmission latency between HMs of 10 ms.

The problem of minimizing the number of duplicate serventsis
equivalent to the problem of minimizing the number of duplicate
feedback messages in a multicast damping protocol; fortunately,
this problem has been extensively studied [15, 29, 25]. In our case,

we want to choose the launch timer distribution that minimizesthe
number of duplicate servents while maintaining acceptablebounds
on the meantime until aserventis created. In general, thisis adif-
ficult problem, but fortunately for our domain, we can assume that
the maximum number of HMs does not exceed afew hundred and
that all HMsareon aLAN, i.e., the transmission latencies are con-
stant and small. In this case, a simple uniform probability distribu-
tion is adequate. Asindicated in Figure 5, the expected number of
duplicate launchesislow for the range of HMs we are considering
and the latency until the servent is created decreases rapidly even
for small HM set sizes.

An attractive consegquence of the multicast damping schemeis
that servents are uniformly distributed across the cluster in a ran-
domized fashion. Thus, even without a centralized resource man-
ager, we achieve a coarse-grained load balancing. Moreover, we
can achievefine-grainedload balancing that accountsfor measured
load on the individual nodes. To this end, each HM monitors the
load on its host and biasesits launch timer to reflect the measured
load. If an HM is lightly loaded, its launch timers are short, but
asthe load increases, the launch timer distribution is biased toward
larger values. In addition, we perform simple admission control by
setting the launch timer to infinity when ahost is at or near full ca-
pacity (as defined by aconfigured-intarget load value). Thissimple
yet powerful mechanism implements load balancing without any
additional complexity.

To evaluate our load balancing algorithm, we conducted an ex-
periment where we created a large number of media gateway ser-
vents on clusters of varying sizes and recorded the resulting num-
ber of duplicates. Theresult, shown below, indicate an even spread
of serventsper nodeand low variancein servent distributions. This
confirms our intuition that ASCP can implement reasonable load-
balancing policies without the aid of a centralized resource man-

ager.

Nodes | Mean GW/Node | Variance GW/Node
1 9.0 0.00
2 8.5 0.25
3 9.3 0.22
4 8.8 0.56
8 85 0.50

2.3.3 Processor Sharing

Structuring active services as a cluster environment is attractive
since a cluster is easily expandable and our framework gracefully
accommodates such expansion; hence, this approachis scalable. In
AS1, we can add a processor to the service by merely running an
HM on it. To remove a processor from the service, we simply ter-



minate the HM on that host. Thus, the number of processorsallo-
cated to the service is one-to-one with the HM “population” on the
cluster.

However, a cluster is often available for general use and we
would thus like to share the cluster with other applications and po-
tentially with other active services. A simple way to allocate some
fixed number of processorsto the service is to statically run that
number of HMs on the cluster and monitor the cluster to make sure
that these HMs are all running. While straightforward, this ap-
proach requires supervision to maintain service availability.

A more desirable alternative is to have the HM population mon-
itor itself and maintain its level of availability on its own. In our
model, an HM can perform two popul ation maintenanceoperations:
it can copy itself onto another node and it can terminate itself. Us-
ing these primitives, we developedan algorithm to maintainthe HM
population at a target level using the metaphor of a “birth-death”
process.

The core mechanism for our birth-death process is announce-
listen communication. In this framework, each HM transmits a pe-
riodic announcement, and collectively, the HM s estimate the global
population. At randomized adaptation intervals, each HM updates
its population estimate, r, and comparesit with thetarget, N. This
comparison implies an action asfollows:

e if n < N, the HM forks a copy of itself on a randomly se-
lected host from the set of available hosts on which there is
no current HM; the new HM is created with probability p;,

. N
= 1,——1
pi = min(1, " )
e if n > N, the HM terminates with probability p.,
N
pr=1—-—
n

e if n = N, the HM does nothing.

Under this framework, if n < N (i.e., there are less HMs than the
target), then the number of HMs increasesquickly toward the target
at the rate prescribed by the adaptation interval until n > N/2; at
this point, the expected number of new HMs per adaptationinterval
is N — n, thusthe population size n quick convergesto the target
level N. Likewise, if n > N, the expected number of HMs that
terminateisn — N, and we quickly convergeto V.
Thoughthisalgorithmisdecentralized and robust, it canfail with
non-zero probability becauseall HMs could conceivably terminate
at precisely the same time. However, this is unlikely because it
requires the adaptation intervals of all active HMs to be precisely
aligned and further that all these HM s decide simultaneously to ter-
minate. The probability of this eventis (r/T)"p;’ whereT" isthe
adaptation interval and r isthe round-trip time between HMs. But,

pr=(1- %)" ~ e~ Vfor large n

Thus, we can makethe probability of total failure of the systemvan-
ishingly small by either adjusting N or by increasing the adaptation
interval. Sincethe HM growth process can run very slowly in the
background, we can easily make the adaptation adequately large.

Our agorithm has several desirable properties. First, to popu-
late the cluster, we simply start asingle HM on asingle host. Next,
to add more HMs, we simply increase the target number parame-
ter in the existing host managers. This can easily be performedin a
dynamic fashion with network management tools. Similarly, if we
want to decrease the number of HMs we decrease the target num-
ber andthe HM deployment algorithm will remove the excessHMs

automatically for us. Removing a machine from the AS1 cluster is
trivial since the system will automatically reconfigureitself on the
remaining unallocated processors. Similarly, adding a machine to
the cluster automatically increases the number of processors avail-
ableto the system. Finally, sincethe overall systemisbased exclu-
sively upon soft-state, the movement and redeployment of HMson
different machinesin the cluster does not affect the overall opera-
tion of the system. For example, you could decommission a ma-
chine with active servents and the system quickly healsitself.

The relationship between the announcement and adaptation in-
terval is critical to the algorithm’s performance, sincethe algorithm
depends on the accuracy of the HM population estimate which is
computed based on the periodic HM announcements. Increasing
the adaptation interval leads to increased “healing” latency in the
event of a change of state in the HM deployment, e.g., as aresult
of a HM failure or change in target number. On the other hand,
choosing an adaptation interval that is too small with respect to the
announcement interval announcement interval could lead to oscil-
latory adaptation behavior as aresult of instabilities in the control
feedback loop.
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Figure6: The effects of modifying the ratio of the adaptation to
announcement intervals on the launch overhead factor.

To quantify this relationship, we define a metric called the
“launch overhead factor” which representsthe number of HMs cre-
ated redundantly before the population converges, divided by N.
For example, a launch overhead factor of 1.5 implies that 2.5V
HMs were created before the algorithm stabilized at N HMs. Fig-
ure 6 plots the relationship between the ratio of the adaptation to
announcement intervals and the launch overhead factor obtained in
an ns[24] simulation of the HM deployment algorithm on a cluster
of 40 machineswith atarget population size of 10. The error bars
designate the standard deviation of our simulations. Asthe ratio of
adaptation to announcement intervals decreases, the number of re-
dundant launches increases. On the other hand, increasing the ra-
tio decreasesthe launch overhead, which becomes negligible when
the adaptation interval is roughly twice as large as the announce-
ment interval. This makes intuitive sense since this is the small-
est adaptation interval large enough to ensure that within it at least
one announcement is received from all other HMs. At that point,
the performance of the algorithm dependssolely on the termination
and launch probabilities. Therefore, given an announcement inter-
val, we choose an adaptation interval that is twice aslong.

2.4 Service Control

Oncea servent has been created, it must be controlled dynamically
for the duration of the session. By its definition, the service control
component of the AS1 architecture is service-specific. That said,



in order to maintain the overall robustness of the system, we would
like to design the service control protocols according to the same
principles of robustnessand simplicity. In Section 3.3 we describe
an instance of such a protocol in the context of the MeGa service.
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Figure 7: Using soft state gateways (SSG) to bridge two
announce-listen control sessions across a bottleneck link.

25 Service Attachment: Soft-State Gateways

ASCP relies on multicast communication and a well-known mul-
ticast address to rendezvous between clients and the AS1 plat-
form. Clients without multicast service must thus exploit some
other mechanism to rendezvouswith AS1. Furthermore, a second
problem arisesif the aggregate bandwidth of the ASCP control traf-
fic might congest a bottleneck link on the path between the AS1
cluster and the client. In this case we must provide mechanism to
limit the rate of the ASCP control traffic that is forwarded to the
client.

In our design, we solve both these problems through the use of
an application-level soft state gateway (SSG). The SSG's function
istwofold. First, it outputs the incoming ASCP control traffic at a
rate that maintains specific bandwidth constraints. Second, it serves
as arendezvous point for clients without multicast service to join
the ASCP session. Thus, the SSG serves as alternate mechanism
for aclient to “attach” to AS1.

Figure 7 illustrates an abstract scenario that demonstrates the
functionality of a SSG. Two sessions are connected across a bot-
tleneck link and are both running a common announce-listen (AL)
control protocol. If we simply forwarded the announce-listen con-
trol traffic across the bottleneck, the link would quickly saturate as
the number of group membersin either session grew. However, we
prevent this condition by placing SSGsthat limit the rate of the con-
trol traffic acrossthebottleneck link in anintelligent manner to meet
the bit-rate constraints.

Using our state table model of an announce-listen protocol, the
goa of the SSG is to minimize the number of inconsistenciesin
the protocol state table entries on both sides of the bottleneck link.
More specifically, the goal of the SSG is to minimize the state
update and refresh delay, subject to the input/output bit-rate con-
straints and potential packet loss between the servent and client.
The SSG achievesthis by building a cache of the (key,value) table
and transmitting the contents of thetable in amanner that obeysthe
bit-rate limits. The policy that determines how the table values are
transmitted is the critical performance factor for the SSG.

To perform efficient rate control for announce-listen traffic, the
SSG must take into account the semantics of the underlying com-
munication. Indiscriminately dropping ASCP messages could re-
sult in potentially long latencies in the state table updates, thereby
negatively impacting the operation of the system. For example,
dropping new servent announcementswould prevent a client from
learning about the existence of a servent handling its service re-
quest. Consequently, we must be careful in the rate-limiting algo-
rithm to favor event-triggered updatesas opposedto backgroundre-
freshes.

The structure of the AS1 SSG is as follows. The SSG out-
put channel (OC) manages communication between servents and
clients and is responsiblefor the rate-limiting of the ASCP control
traffic. The creation and persistence of the output channel structure
is driven by the ASCP announcementsfrom the client, i.e., an out-
put channel is asoft state structure.

Thefirst level of rate-limiting that the OC performsisto filter out
all the servent announcementsthat are of no interest to clients re-
ceiving the transmissions of the OC. Thisis easily performed since
the client-side ASCP announcementsdefine the set of SIDs that an
output channel’s associated clients are interested in. This in turn
exactly defines the set of servents whose control traffic should be
forwarded on the output channel. Since the ASCP announcements
are soft-state, the resulting filter is a soft-state structure aswell.

Oncethe OC has determined which state announcementsshould
potentially be output from the SSG, it must output these announce-
mentsin a manner that obeys the bit-rate constraints. In the event
the these constraints force some announcements to be dropped at
the SSG, the OC must select for transmission announcements that
maximize the state update rate of the clients.

To perform this selection, the OC maintains an announce-listen
state table, in our case the ASCP state table. This table is main-
tained according to all the timer/refresh rules of the announce-listen
protocol whosestateit represents. Thus, thetablerepresentsacache
of the current state of the protocol. Using this statetable, announce-
ments are classified into two groups: new announcements, repre-
senting state that is not in the cache, and refresh announcements,
representing state that is already in the cache. In ASCP, this classi-
ficationis particularly easy since a servent transmits only onetype
of announcement, which specifiesthe SID that it isassociated with.
Therefore, the announcement classification is performed by asim-
plelookup into the state table keyed by the SID.

Onceannouncementshavebeen classified, the OC performsrate-
control using aleaky bucket mechanism. Each channel has associ-
ated with it two token buckets, or queues, NEW and REFRESH, for
new and refresh announcements respectively. The queues are then
serviced, i.e., announcementsin the queuetransmitted, at the token
bucket rate.

The partition of the aggregate channel bandwidth among the
NEW and REFRESH queues directly affects the tradeoff between
update and refresh latencies. Allocating a higher bit-rate to the
NEW bucket decreasesthe latency for new state, but increasesthe
latency for refreshes. Alternatively, allocating a higher bit-rate to
the REFRESH bucket maintains a high refresh rate, but delays the
update of new state at the client. In our current design, we stati-
cally allocate 75% of the output rate to background refreshes and
25%to new state announcements. However, inthefuturewe planto
leveragethe schemesdeveloped by Sharmaet al. [29], which adapt
the update timers in soft-state protocols based on channel topology
models, to explore methodsfor dynamically varying the updateand
refresh rate allocation.

In summary, the SSG serves both as a point-of-contact for rate-
limited control traffic and asarendezvouspoint for client that do not
have multicast service. Despite the fact that the SSG offers the ap-
pearance of a centralized control model, its soft-state structure en-
ablestrivia regeneration and replication, thereby avoidinga“single
point of failure” design, and maintaining the overall robustness of
the AS1 architecture.

3 TheMeGaActive Service

Media gateways [3] are application-level agents that transparently
bridge two MBone RTP sessions and process the media streams
between the sessions. Having defined the AS1 re-usable frame-
work, we now describehow this framework is specialized to the de-



ployment of media gatewaysin the Media Gateway active service
(MeGa).

In our framework, a media gateway is cast as a servent. We im-
plemented MeGato run ontop of AS1 andthus providearobust and
scalable architecture for media gateway deployment that servesas
afully operational and deployed“ proof of concept” for the AS1 de-
sign. Moreover, the use of RTP as the media transport protocol at
the gateway guaranteesthe seamless integration of MeGa into the
Internet multimedia infrastructure.

Inthis section, wedescribethe design of the MeGaservicewithin
the AS1 framework and focus on the service-specific components
of the AS1 framework: the SID and SSD specificationsfor ASCP,
and the service control protocol.

3.1 SID Naming

Section 2.3.1 described how the ASCP SID field is used to deter-
mine whether or not a servent should be instantiated in responseto
a client message. Thus, the SID naming scheme fully determines
the number of servents deployed in responseto a given number of
client requests.

In MeGa, we use SID naming to implement a gateway “ deploy-
ment policy”. Specifically, a client may regquest that the output ad-
dressof the gateway be unicast or multicast. A gateway isdeployed
on behalf of every unicast request, while a single gateway per ses-
sion is shared among all clients requesting a multicast output ad-
dress. In other words there exists only one SID for each session
while for unicast requeststhere existsaunique SID for every client.
This leads to the following specification of the SID in MeGa. For
multicast requests, the SID is:

sspec: medi a
while for unicast requeststhe SID is
sspec: medi a: | ocal addr/rport

where sspec is the unique session name given by the session
creator (e.g., theo= fieldin an SDP [18] announcement), medi a is
the type of media, | ocal addr isthelocal IP addressof the client
host, and r por t isthe port on which it will receive the data.

Even though the design of ASCP is independent of the MeGa
goals, through appropriate naming of the serviceinstances, the one-
to-one relationship between SIDs and servents enables us to estab-
lish a MeGa-specific servent deployment policy.

3.2 SSD Data

The role of the ASCP SSD field is to exchange initial configura-
tion and rendezvousinformation between the client and servent. In
MeGa, the initial servent configuration information consists of the
“global” sessionaddressinformation, so that the gatewayscan join
the requested session. The gateways then transmit the transcoded
version of the session on a local address, which depending on the
service request, might be either a multicast or unicast address. In
either case, the gateway must notify the client of this address so that
the client can receive session data. This exchangeof global and lo-
cal session information between client and gateway is performed
using the SSD field of the ASCP announcements. Specifically, the
MeGa client transmits the global session addressin its SSD field,
whilethe gateway SSD field containsitslocal transmission address.

Figure 8 illustrates a specific example of how ASCP operates
in MeGa. The figure details the exchange of MeGa-specific infor-
mation contained in the SSD fields to emphasize how the MeGa
clients and media gateways rendezvous. The figure shows four
MeGa clients: three video clients, labeled vic, and one audio client,
labeled vat. The clients announcetheir interest in MBone sessions
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Figure8: ASCPinMeGa. MeGa clients announceinterest in ses-
sions while media gateways announce the session for which they
are a gateway along with their local transmission address. Clients
“join” the global session by reconfiguringthemselvesto listento the
appropriate local address.

(inthe ASCP SSD field). Theseannouncementsarereceived by the
HMswho then can look in their table and seeif there already exists
agateway for the given session. If no such gateway exists, the HM
launchesthe gateway, and configuresit to listen on the appropriate
session addressgiven in the client SSD field.

The next stage of the gateway launch is the selection of an out-
put transmission address for the transcoded version of the session.
In the event that the client request specified a unicast address, this
involves little more than a unique port selection. However, if the
request was for a multicast transmission address, we must select
a unique multicast address. Obtaining this address is part of the
larger multicast address allocation problem which is currently un-
der review inthe IETF and we intend to leveragetheir resultswhen
they become available. In the mean time we use an ad hoc solu-
tion where addressesare chosen randomly from afixed block of ad-
dressesand rely on the servent announcementsto detect and correct
collisions. In our current prototype we have co-located the address
allocation mechanism at the HM, though in the future these mech-
anisms can be separated. Thus, the HM launches the gateway and
notifiesit of the output transmission address.

Once the gateway has obtained a local transmission address, it
announcesthis addressin its SSD field. Since the MeGa SIDs are
chosen so that a client and gateway SID match if there is a match
between the session the gateway is handling and the session the
clientisinterested in, the client can detect that an appropriate gate-
way already existsand useit to receivetranscoded transmissions of
the session. Thus, in the figure, the clients for sessions A, B, and
C configure themselves to join group addresses X, Y, and Z, re-
spectively, thereby completing the rendezvous between the MeGa
clients and gateways.

3.3 ServiceControl

Service control protocols are embedded in the servents to enable
the clients to implement service-specific control of the servents. In
MeGa, the principal goal isthe allocation of constrained link band-
width among the media sources from a gateway to a client. Since
video streams dominate bandwidth consumption on thelink, wefo-
cus on a control protocol for video gateways. In the MeGa archi-
tecture, this control is carried out by the Scalable Consensus-based
Bandwidth Allocation (SCUBA) protocol. Reference[2] provides
a comprehensive description of the protocol. In this section, we
briefly describeits operation and focuson how it relatesto gateway
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Figure 9: Receiver-driven dynamic allocation: sources dynami-
cally adjust their transmission rate in responseto receiver interest.

control in MeGa.

The basic premise of SCUBA is to reflect receiver interest back
to the sourcesin amulticast session using a scalable control proto-
col. In current MBone sessions, bandwidth is alocated in a fixed
fashion. Each receiver transmits at somefixed rate, wherethe rates
are chosen either manually or through sender-based adaptation in
a fashion; in either case, an equal amount of bandwidth is typi-
cally allocated to each source. Clearly, this approach is subopti-
mal if all sources are not equally important to the receivers. But,
by integrating receiver feedback into the adaptation process, we can
weight each source’stransmission rate in proportion to receiver in-
terest. Thisapproachisillustrated in Figure 9, wherereceiversgen-
erate feedback that causessource .S, to transmit at ahigher rate than
source .S1; moreover, becausethere is no interest in source S-, its
transmission is disabled entirely.

As with ASCP, SCUBA is an announce-listen protocol using
only soft state. Receiverinterest is expressed back to the sourcesin
periodic, self-descriptive announcements. As aresult, sources and
receivers can join and leave the session at will without impacting
other session members. No individual piece of the state maintained
by the source is critical to the correct execution of the algorithm
since al state eventually times out (or is explicitly replaced) and
must be refreshed by receiver reports. Asin ASCR, failure recovery
is built into the protocol; we need no further mechanism to handle
network partitions, host failures, and soforth. Finally, SCUBA con-
trol messagesare idempotent — each message supersedesall previ-
ously sent messages— further enhancing the protocol’s scalability
and its resilience to packet loss.

SCUBA was designed for both session-wide deployment and
media gateway control. Becausewe can model each media source
as originating from the servent, we can run SCUBA locally be-
tween the receivers and the transcoders in the media gateways in
order to partition the managed link bandwidth among the sources
being transcoded by the gateway. By running SCUBA betweenthe
low bandwidth linked receivers and the gateway, scarce bottleneck
bandwidth can be dynamically apportionedin anintelligent manner
among the transcoders. In this way SCUBA provides arobust and
distributed control mechanismfor the gateway free from thevulner-
abilities of centralized control.

4 Implementation Status

The AS1 framework and the MeGa service have been fully imple-
mented and in regular use on the UC Berkeley campus for several
months. Theserviceisdeployed onthe Berkeley Network of Work-
stations (NOW) [4] using the host manager deployment algorithm
described in Section 2.3.3. The only unimplemented portion of the
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design described aboveis service composition and the use of an au-
tomatic service location mechanism as detailed in Section 2.2.

In its current form the MeGa architecture contains four clients
andfour matching gatewaysfor each of thefollowing media: video,
audio, whiteboard and SDP.

The audio and video gateways are implemented using the RTP
gateway architecture describedin [3]. The SDP gateway isimple-
mented as a reflector. The requirements of whiteboard gateways
differ significantly from the other three due to the fact that white-
board datamust be transmitted reliably, as opposedto the unreliable
transmission requirementsof audio, video and SDPdata. In our cur-
rent prototype we focussed only on the design and implementation
on “stateless” audio and video media gateways. As a result, our
whiteboard gateway is implemented a simple reflector. However,
in the future we intend to leverage the initial efforts by Chawathe
et al. [11] to develop an architecture for reliable real-time multicast
gateways as a component of our service.

ASCP is as a string-based protocol. Our choice of a string for-
mat over a binary format was motivated by several factors. String-
based protocols offer a much greater degree of flexibility in mes-
sage construction. Messages can be read and written using com-
mon text-based tools which significantly reducesthe amount of ef-
fort required for prototype development (e.g., one way to “send” a
messageis to simply type the message to the receiver’s port using
the telnet protocol). Many times the protocol information is funda-
mentally text-based, e.g., URL's, user names, and free text. Asa
result, the overhead of the text information dominates the savings
that would be gained by compacting the messagesto abinary packet
format. Many such protocols have been designed, including HTTP,
SDP, RTSP, and SIP.

The MeGa SSD field of the ASCP announcements is derived
from SDP dueto the close relationship between an SDP session an-
nouncementsand the information required by the clients and gate-
waysin MeGa. Thuswe avoided having to design an entirely new
message format and could leverage our existing SDP parser for
message parsing.
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Figure10: Host manager populationchangesonthe Berkeley Net-
work of Workstations over a 25 day period.

The host manager deployment algorithm has proven to be ex-
tremely robust in the presence of pathological operating conditions
onthe Berkeley NOW. The NOW consistsof 114 UltraSparcs used
by several departments on the Berkeley campus. Machines are re-
booted irregularly and without notice. We deployed 10 HMs on a
set of 40 machinesin this cluster. The system stayed up for approxi-
mately six weeksproviding robust and reliable user serviceuntil we
brought it down for an upgrade. The vast majority of the time, the
system was stable. Despite the occasions when machines running
HMs were rebooted, the population adapted flawlessly.



Figure 10illustrates the adaptation over the 25 daysof this period
(after this period there were no changesin the number of host man-
agers). The figure plots a time series of the number of host man-
agers present in the system. Throughout the 25 days, the system
survived many system reboots and utilized 17 of the 40 hostsat one
point or another. Two specific points of interest demonstrate the re-
silience of our system. First, on day 12 the entire cluster was re-
booted. Asillustrated by the downward “spike” in the graph, the
population was able to survive due to the fact that the interval over
which the cluster was rebooted was sufficiently long so that the ran-
domization in the selection of nodes on which HMsreplicate them-
selves enabled the HM population to replicate itself on the newly
rebooted machines before the old population was entirely termi-
nated — thereby ensuringthe“ survival” of the HM population. The
second point of interest is the final configuration, in which we no-
tice the presence of five HMs in the system. It turns out that the
NOW system administrators upgraded the system’s security on all
but five machines, and subsequently gradually rebooted machines
in the cluster. This upgrade prevented the HMs from replicating to
reach the target number of 10. However, the resilience of the sys-
tem was demonstrated in that the HMs attempts to replicate on ran-
dom nodes of the cluster caused the system to eventually populate
exactly those five machines that the system administrators did not
upgrade!

5 Related Work

Aswe stated in the introduction, our active service framework rep-
resents an attempt to provide “active” functionality within a re-
stricted, yet useful, subspace of active networks goals — deploy-
ment of application-level computation — while maintaining com-
patibility with the current Internet. In this section we present cur-
rent research in active networksand describe how it relatesto active
services.

Govindan et al. [16] giveahigh level description of aframework
for application-level active services. The report outlines an archi-
tecture for the active nodesin their network and discusses some of
the research issuesinvolved, including service deployment and the
design of the service platform.

In contrast to our focus on application-level deployment and
fault tolerance, most research on active networks addressessupport
for the more ambitious goal of enabling efficient and safe compu-
tation on arbitrary nodes at the network layer.

The SwitchWare project [17] is developing an architecture for
programmable switchesand routers. SwitchWaretakesalanguage-
based approach towards exploring the most extreme version of ac-
tive networks where each packet executes a program. In addition
to “active packets,” the SwitchWare architecture defines middle-
ware “switchlets’ that provide support for relatively simple and
lightweight packets to embody complex functionality. Alexander
et al. [1] describe an implementation of an “active bridge” imple-
mented entirely by switchlets running within the SwitchWare archi-
tecture. A related effort is the BBN “smart packets’” and “active
router” projects [20]

Bhattacharjee et al. [9] describe an active networks architecture
for dealing with congestion in the network. They detail the use of
“active processors’ —- software modules that implement applica-
tion specific processing on a packet-level basis. These packetsare
labeled and are dropped in the face of congestion according to a
“unit-level drop” function that enablesthe user to specify the gran-
ularity of adaptation. One of their examples is the use of an ac-
tive processor for MPEG streams to control packet lossin the face
of congestion. This problem is obviously very similar to that ad-
dressed by MeGaand, in asense, mediagatewaysare active proces-
sors. The main differenceisthat this approach comesfrom the net-
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work up, while MeGa addressesthe problem from the application-
level down. While theformer achievesincreased generality, it does
so by sacrificing the ability to leverage useful information from
higher-level protocols such as SCUBA.

The NetScript [35] project’sgoal isthe design of acommon lan-
guageand execution environment to provideauniversal abstraction
of a programmable networking environment. NetScript is orthogo-
nal to and complementary to our work and we foresee a possibility
of leveraging it in our active service framework when it becomes
more refined.

Finally, Wetherall and Tennenhouse describe a mechanism for
deploying computation in the network using an new option in the
IP header: the ACTIVE IP option [34] in conjunction with embed-
dingthe actual code, or “capsules’ [31], in the network-level packet
header. Similar to our goals, this approach is motivated in part by
the goal of compatibility with today’s Internet.

6 Summary

In this paper we described Active Services, an architecture for
deployment of application-level computation within the network.
Our active service architecture draws upon three important proto-
col building blocks — announce-listen communication, soft-state,
and multicast damping — which together yield a particularly robust
and flexible design. To demonstrate the efficacy of our architecture,
weimplemented an active servicefor mediagatewayscalled MeGa.
MeGa incorporates the core components of an active service and
servesasafully functional and deployed “ proof of concept” for our
work. Active Servicesaddressan important subset of the problems
targeted by the active networking initiative while preserving com-
patibility with the current Internet infrastructure.
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