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AN ACTIVE SET STRATEGY BASED ON THE AUGMENTED LAGRANGIAN

FORMULATION FOR IMAGE RESTORATION

Kazufumi Ito
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and Karl Kunisch
2

Abstract. Lagrangian and augmented Lagrangian methods for nondifferentiable optimization prob-
lems that arise from the total bounded variation formulation of image restoration problems are an-
alyzed. Conditional convergence of the Uzawa algorithm and unconditional convergence of the first
order augmented Lagrangian schemes are discussed. A Newton type method based on an active set
strategy defined by means of the dual variables is developed and analyzed. Numerical examples for
blocky signals and images perturbed by very high noise are included.

Résumé. On analyse les méthodes de lagrangien et de lagrangien augmenté pour des problèmes
d’optimisation non différentiable, provenant de la formulation de variation totale bornée en restauration
d’images. La convergence conditionnelle de l’algorithme d’Uzawa et la convergence inconditionnelle des
schémas de premier ordre de lagrangien augmenté sont discutées. Une méthode de type Newton basée
sur une statégie d’ensemble actif, définie au moyen de variables primales et duales, est développée et
analysée. Des exemples numériques sont donnés pour des signaux discontinus et des images pertubées
par très fort bruit.
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1. Introduction

In this paper we present an augmented Lagrangian technique to numerically solve the nonsmooth convex
optimization problem that arises in image restoration. The image restoration problem is formulated as the
minimization of a least squares fit criterion and of a regularization of total bounded variational (BV-)type.
BV-regularization terms have the advantage over square of gradient-type regularization in that they minimize
undesirable smearing of corners and of discontinuities in the image. Due to the BV-term the cost functional
becomes nondifferentiable, however, and an efficient numerical technique needs to be employed which allows a
reliable minimization. Here we present such a technique.

To briefly describe the formulation of the problem let u denote the grey values of a noisy image z occupying
a two-dimensional bounded region Ω. To restore (or denoise) the image ū one considers the variational problem

min

∫
Ω

(µ2 |∇u|
2 + g|∇u|) dx+ 1

2

∫
Ω

|u− z|2dx over u ∈ H1
0 (Ω). (1.1)

In the infinite dimensional part of our study we focus on the case where the constant µ is positive and small with
respect to g. For the discretized problems we may take µ ≥ 0. From [7] we recall that

∫
Ω |∇u|dx is equivalent

to the BV-seminorm on H1
0 (Ω)-functions.
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While there is a large literature on image restoration the analysis of nondifferential optimization techniques
started only rather recently. In [10] the authors propose the BV-formulation (1.1) with µ = 0 and describe a

gradient type algorithm for numerical implementation. In [11] the BV-term in (1.1) is replaced by
∫

Ω

√
ε+ |∇u|2,

for small positive ε, thus circumventing the problem of lack of differentiability of the cost functional. The
requirement ε > 0 was eliminated in [2] where image deblurring problems are considered, i.e. the data z are
related to Ku with K a compact operator. The numerical methods in [2,11] are, however, completely different
from those proposed in the present work.

In [5] the authors give an interesting numerical account of the advantages and disadvantages of the BV-
formulation for the image restoration problem. The optimality condition related to (1.1) leads to a nonlinear
elliptic equation. In this context we mention the recent work of nonlinear parabolic diffusion models [1,4] which,
in particular guarantee that smoothing is enhanced parallel to edges in the original picture and its intensity
depends on the radius of curvature of the edges.

In the present paper the approach to solve (1.1) is based on abstract results on Lagrangian and augmented
Lagrangian techniques for nonsmooth optimization [8]. These techniques allow to substitute the nondifferen-
tiable term by a new variable, called the Lagrangian or dual variable. At the solution the primal variable u
and the dual variable satisfy a nonlinear system of equations, called the optimality system. This approach is
comparable (and on an abstract level equivalent) to realizing equality and inequality constraints in optimiza-
tion problems by Lagrangian terms in the cost functional. In Section 2 we develop the duality framework and
describe first order methods for solving the optimality system. Specifically, the Uzawa algorithm and the first
order augmented Lagrangian method are compared. The former can be considered as explicit algorithm in
the dual variable which is conditionally convergent. The latter on the other hand is an implicit method that
converges unconditionally.

Section 3 is devoted to the development of a Newton type algorithm that is based on the duality theory of
Section 2 for solving the optimality system. Difficulties arise due to the fact that the dual variable is not uniquely
defined on the active set, i.e. on {x : ∇u(x) = 0}. To circumvent this problem an active set strategy based on the
first order augmented Lagrangian update of the dual variable is employed. A similar technique was proposed
for finite dimensional inequality constrained optimization problems in [3]. The convergence analysis of the
method is impeded by the fact that |∇u(x)| can become zero arbitrarily slowly as x varies and that the gradient
operator is not surjective. We therefore restrict ourselves to the discretized formulation of (1.1) in that section.
Section 3 closes with a brief account of the case when Ω is only one-dimensional. The practical implications of
this case are given by voice detection problems. Numerical results for both, the image reconstruction and the
voice detection cases are given in Section 4.

2. Convex optimization and necessary optimality condition

Consider the variational problem

min

∫
Ω

(µ
2
|∇u|2 + g |∇u|

)
dx+

1

2

∫
Ω

|u− z|2 dx over u ∈ H1
0 (Ω), (2.1)

for restoring the original image u from a noisy image z ∈ L2(Ω). Here µ > 0 and g > 0 are fixed but can
be adjusted to the statistics of noise. If µ = 0 then this problem is equivalent to the image enhancement

in [10] based on minimization of the BV semi-norm formulation

∫
Ω

|∇u| subject to the standard deviation

constraint
∫

Ω
|u − z|2 dx = σ2. In fact 1/g is the Lagrange multiplier associated with the equality constraint∫

Ω |u− z|
2 dx = σ2. To describe and analyze algorithms to solve (2.1) in a systematic manner we shall consider

(2.1) as a special case of the following optimization problem:

minimize f(x) + ϕ(Λx). (2.2)
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Here f : X → R and ϕ : H → R are convex functions, Λ : X → H is a bounded linear operator, and X,H
are Hilbert spaces. It is assumed that f is a continuously differentiable, coercive function and that ϕ is a
proper, lower semicontinuous, convex function. The functional ϕ represents the nonsmooth component of the
costfunctional.

For the image restoration problem (2.1), we choose

X = H1
0 (Ω),H = L2(Ω)× L2(Ω) and Λ = grad,

and define f and ϕ by

f(u) = 1
2

∫
Ω

(µ|∇u|2 + |u− z|2) dx,

and

ϕ(v1, v2) = g

∫
Ω

√
v2

1 + v2
2 dx.

We note that there are no essential changes if X is chosen to be H1(Ω). In either case f is coercive on X.

2.1. Lagrange multiplier

We discuss the necessary optimality condition for (2.1) in terms of the Lagrange multiplier rule for the
nonsmooth minimization problem (2.2). For this purpose H is identified with its dual H∗, (·, ·) denotes the
inner product on H and 〈·, ·〉 denotes the duality product of X∗ ×X. We assume that f and ϕ are bounded
below by zero and that

〈f ′(x1)− f ′(x2), x1 − x2〉 ≥ σ|x1 − x2|
2
X (2.3)

for a constant σ > 0 and all x1, x2 ∈ X. The subdifferential ∂ϕ(v) of ϕ is defined by

∂ϕ(v) = {v∗ ∈ H : ϕ(y)− ϕ(v) ≥ (v∗, y − v) for all y ∈ H}.

That is, the differential is no longer single-valued. Since ϕ is proper there exists an element v0 ∈ D(ϕ) = {v ∈
H : ϕ(v) <∞} such that

ϕ(Λx) − ϕ(v0) ≥ (v∗0 ,Λx− v0)H for all v∗0 ∈ ∂ϕ(v0). (2.4)

Hence, lim f(x) +ϕ(Λx)→∞ as |x|X →∞ and it follows from [6] that there exists a unique minimizer x∗ ∈ X
for (2.2). The necessary and sufficient condition for x∗ ∈ X to be the minimizer of (2.2) is given by

〈f ′(x∗), x− x∗〉+ ϕ(Λx)− ϕ(Λx∗) ≥ 0 for all x ∈ X. (2.5)

Suppose that ϕ is differentiable at Λx∗. Then (2.5) is equivalent to f ′(x)+Λ∗ϕ′(Λx∗) = 0. For nondifferentiable,
proper, lower semicontinuous, convex function ϕ (2.5) implies the existence of λ∗ ∈ H such that

λ∗ ∈ ∂ϕ(Λx∗) and f ′(x∗) + Λ∗λ∗ = 0, (2.6)

provided, for example, that ϕ is finite and continuous at Λx∗. Conversely, suppose (x∗, λ∗) ∈ X ×H satisfies
(2.6). Then, ϕ(Λx) − ϕ(Λx∗) ≥ (λ∗,Λ(x − x∗)) for all x ∈ X. Thus, (2.6) implies (2.5). It then follows from
(2.4) that x∗ minimizes (2.2).
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For the image restoration problem ϕ(v) is finite and continuous at each v ∈ H and λ ∈ ∂ϕ(v) is given
by (e.g., see [6, 8])

λ ∈ C and λ(x) · v(x) = |v(x)| a.e. x ∈ Ω

where

C = {λ ∈ H : |λ(x)| ≤ 1 a.e. x ∈ Ω}.

Thus, the necessary and sufficient optimality condition for (2.1) is given by the existence of (u, λ) ∈ X × H
satisfying

−µ∆u+ u− g div λ = z (2.7)

λ(x) · ∇u(x) = |∇u(x)| a.e. x ∈ Ω.

Remark 2.1. The analysis of this section requires Hilbert space structure and for this reason µ > 0 is assumed.
Let us briefly comment, however, on the limit problem as µ→ 0+. We consider

min g

∫
Ω

|∇u |+ 1
2

∫
Ω

|u− z |2 dx over u ∈ BV (Ω) with τΓ u = 0 (2.8)

where BV (Ω) denotes the space of functions of bounded variation and τΓ denotes the trace in the sense of
BV (Ω) on the boundary Γ of Ω, as defined in [7], for example. Let us, within this remark, denote the solutions
to (2.1) by uµ. We shall argue that the sequence {uµ} converges to the solution u of (2.8) as µ → 0+. In
fact {uµ : µ ∈ (0, 1]} is bounded in BV (Ω) and hence in L2(Ω) [7]. It follows that there exists a subsequence,
denoted by the same symbols, and ū ∈ BV (Ω), such that uµ → ū weakly in L2(Ω) and strongly in L1(Ω), [7].
Moreover

∫
Ω
|∇ū | ≤ lim infµ→0

∫
Ω
|∇uj |, [7] and hence we may take the lim inf with respect to µ > 0 in∫

Ω

(
µ
2 |∇uµ |

2 + g |∇uµ |
)
dx+ 1

2

∫
Ω

|uµ − z |
2 dx ≤

∫
Ω

(
µ
2 |∇u |

2 + g |∇u |
)
dx+ 1

2

∫
Ω

|u− z |2 dx

for every u ∈ H1
0 (Ω) to obtain

g

∫
Ω

|∇ū |+ 1
2

∫
Ω

| ū− z |2 dx ≤ g

∫
Ω

|∇u |+1
2

∫
Ω

|u− z |2 dx,

for all u ∈ H1
0 (Ω). Since for every u ∈ BV (Ω) with τΓ u = 0 (in the sense of BV (Ω)) there exists {uj} ∈ H1

0 (Ω)
with limj→∞ |uj − u |L2 = 0 and limj→∞

∫
Ω
|∇uj | =

∫
Ω
|∇u |, ([7], p. 38), it follows that ū is a solution

to (2.8). 2

2.2. Augmented Lagrangian formulation

In this section we apply a regularization method based on augmented Lagrangians [3,8] to obtain a regularized
optimality condition that is equivalent to the complementary condition λ∗ ∈ ∂ϕ(Λx∗) in (2.17) below. This
regularization is a generalization of the well-known Moreau-Yosida regularization. It is clear that problem (2.2)
is equivalent to

minimize f(x) + ϕ(Λx− u) subject to u = 0 in H.

The equality constraint u = 0 is treated by the augmented Lagrangian method. That is, we consider the
minimization over x ∈ X and u ∈ H of the form

minimize f(x) + ϕ(Λx− u) + (λ, u)H + c
2 |u|

2
H (2.9)
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where λ ∈ H is a multiplier and c is a positive scalar penalty parameter [3]. Equivalently, problem (2.9) is
written as

minimize Lc(x, λ) = f(x) + ϕc(Λx, λ) (2.10)

where ϕc(v, λ) is defined by

ϕc(v, λ) = inf
y∈H
{ϕ(v − y) + (λ, y)H + c

2 |y|
2
H} (2.11)

for (c, λ) ∈ R+ ×H. Here, ϕc(v, λ) is a C1 approximation of ϕ in the following sense [8].

Lemma 2.2. For every v, λ ∈ H the infimum in (2.11) is attained at a unique point yc(v, λ) and ϕc(v, λ) is
convex, (Lipschitz-) continuously Fréchet differentiable in v and

ϕ′c(v, λ) = λ+ c yc(v, λ).

2

If λ = 0 then ϕc(v, 0) is the proximal approximation of ϕ. Moreover, if λ ∈ ∂ϕ(v) then yc(v, λ) = 0 and
ϕ′c(v, λ) = λ. The proof of the lemma is based on the observation that (2.11) is equivalent to

ϕc(v, λ) = inf
ỹ∈H
{ϕ(ỹ) + c

2 |v + c−1λ− ỹ|2} − 1
2c |λ|

2 (2.11)′

where ũ = v−u. The following dual representation of ϕc(v, λ) plays an important role in our discussion. Define
the conjugate function ϕ∗ of ϕ by

ϕ∗(v∗) = sup
v∈H
{(v, v∗)− ϕ(v)} for v∗ ∈ H.

Then, we have the following lemma [8].

Lemma 2.3. For x, λ ∈ H

ϕc(v, λ) = sup
y∗∈H

{(v, y∗)− ϕ∗(y∗)− 1
2c |y

∗ − λ|2} (2.12)

where the supremum is attained at a unique point λc(v, λ) and we have

λc(v, λ) = λ+ cyc(v, λ) = ϕ′c(v, λ). (2.13)

2

In many of the applications including the image restoration problem, the conjugate function ϕ∗ is given by

ϕ∗(y∗) = χC∗(y
∗), (2.14)

where C∗ is a closed convex set in H. Then, it follows from Lemma 2.3 that for v, λ ∈ H

ϕc(v, λ) = sup
y∗∈C∗

{− 1
2c |y

∗ − (λ+ c v)|2H}+ 1
2c(|λ + c v|2H − |λ|

2
H).

Hence, the supremum is attained at

ϕ′c(v, λ) = ProjC∗(λ+ c v) (2.15)

where ProjC∗(φ) denotes the projection of φ ∈ H onto C∗.
The following theorem provides an equivalent characterization of λ ∈ ∂ϕ(x).
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Theorem 2.4. If λ ∈ ∂ϕ(v) for v, λ ∈ H, then λ = ϕ′c(v, λ) for all c > 0. Conversely, if λ ∈ H satisfies
λ = ϕ′c(v, λ) for some c > 0, then λ ∈ ∂ϕ(v). 2

Proof. If λ ∈ ∂ϕ(x) then for all u ∈ H

ϕ(x− u)− ϕ(x) ≥ (λ,−u)

and thus

ϕ(x− u) + (λ, u) + c
2 |u|

2 ≥ ϕ(x).

Hence, the infimum of (2.11) is attained at uc(x, λ) = 0 and it follows from Lemma 2.2 that λ = ϕ′(x, λ).
Conversely, if λ ∈ H satisfies λ = ϕ′(x, λ) for some c > 0, then uc(x, λ) = 0 by Lemma 2.2. Hence, it follows
from Lemma 2.2, (2.11), and Lemma 2.3 that

ϕ(x) = ϕc(x, λ) = (x, λ) − ϕ∗(λ).

Since λ ∈ ∂ϕ(x) if and only if

ϕ(x) + ϕ∗(λ) = (λ, x)

(e.g., see [6]), λ ∈ ∂ϕ(x). 2

It follows from Theorem 2.4 that the complementarity condition λ∗ ∈ ∂ϕ(Λx∗) can be equivalently expressed
as

λ∗ = ϕ′c(Λx
∗, λ∗). (2.16)

Thus, the optimality condition (2.6) is equivalently written as

f ′(x∗) + Λ∗λ∗ = 0 and λ∗ = ϕ′c(Λx
∗, λ∗), (2.17)

for some and equivalently all c > 0.
The multiplier λ∗ in (2.6, 2.17) is the Lagrange multiplier in the following sense. Define the Lagrangian

L : X ×H → R by

L(x, λ) = f(x) + (Λx, λ) − ϕ∗(λ).

Then, (2.2) is equivalent to the min-max problem

min
x∈X

max
λ∈H

L(x, λ)

and we have the following result [6, 9].

Theorem 2.5. The pair (x∗, λ∗) ∈ X×H satisfies (2.6) (equivalently, (2.17)) if and only if (x∗, λ∗) is a saddle
point of L, i.e.,

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗)

for all x ∈ X,λ ∈ H.

2
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For the image restoration problem we have

ϕ∗(v) = g χC(v)

where C is defined by (2.7) and from (2.12, 2.15)

ϕc(v, λ) = g

∫
Ω\A

(1
c (|λ+ c v| − 1) + 1

2c (1− |λ|2)) dx+ g
2c

∫
A

(|λ+ c v|2 − |λ|2) dx,

where A = {x : |λ(x) + c v(x)| ≤ 1}, and

ϕ′c(v, λ) = g
λ(x) + c v(x)

max(1, |λ(x) + c v(x)|)
, a.e. x ∈ Ω.

The necessary and sufficient optimality condition (2.17) is given by

−µ∆u+ u− g div λ = z

λ(x) =
(λ+ c∇u)(x)

max(1, |λ+ c∇u|(x))

(2.18)

for some and equivalently every c > 0.

2.3. First order algorithms

In this section we present the first order iterative algorithms for the necessary and sufficient optimality
condition (2.17). It follows from (2.3) that given λ ∈ H the first equation of (2.17)

f ′(x) + Λ∗λ = 0

has a unique solution x(λ) ∈ X. Then (2.17) can be written as λ∗ = ϕ′c(Λx(λ∗), λ∗). That is, λ∗ ∈ H is a fixed
point of Φ(λ) = ϕ′c(Λx(λ), λ). In this setting the Uzawa algorithm [6] is the fixed point iteration given by

λk+1 = ϕ′c(Λx(λk), λk). (2.19)

In particular the Uzawa algorithm is an explicit iteration method for solving Φ(λ) = λ. It is proved in [9]
that the Uzawa algorithm converges provided that there exists a Lagrange multiplier λ∗ satisfying (2.6) and
2cσ − c2‖Λ‖2 > 0.

The first order augmented Lagrangian method [3, 8] can be written as the fixed point iteration

λk+1 = ϕ′c(Λxk+1, λk) (2.20a)

where xk+1 ∈ X satisfies
f ′(xk+1) + Λ∗λk+1 = 0. (2.20b)

The first order augmented Lagrangian method is implicit and it is proved in [8] that differently from the Uzawa
algorithm it converges unconditionally (in c > 0) provided that there exists a Lagrange multiplier λ∗ satisfying
(2.6). For the image restoration problem the Uzawa algorithm is expressed as

−µ∆uk + u− g div λk = z

λk+1 =
(λk + c∇uk)(x)

max(1, |λ+ c∇uk|(x))
·

(2.21)
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3. Discretized problem and active set strategy

Consider the discretization of (2.1) by the finite difference approximation on Ω = (0, 1)× (0, 1):

min
∑

0<i, j<n

µ

2
(|
ui,j − ui−1,j

h
|2 + |

ui+1,j − ui,j
h

|2

+|
ui,j − ui,j−1

h
|2 + |

ui,j+1 − ui,j
h

|2) +
1

2
|ui,j − zi,j |

2

+
∑

0<i, j<n

g (|ui,j−ui−1,j

h |2 + |ui,j−ui,j−1

h |2)1/2

(3.1)

over ui,j, 0 < i < n, 0 < j < n, where h = 1
n
, ui,j = u(ih, jh), u0,j = un,j = 0 and ui,0 = ui,n = 0. Numerical

experiments showed that the discretization of |∇u| by one-sided finite differences gives significantly better results
than by central finite differences. We can write (3.1) as

min
µ

2
utHu+

1

2
|u− z|2 + g|Du|1 over u ∈ X = Rm (3.2)

where m = (n−1)2, u = col (u·,1, u·,2, · · ·, u·,n−1) ∈ Rm. The matrices H,D are defined by H = H0⊗ I+ I⊗H0

and

D =

(
D1

D2

)
with D1 = D0 ⊗ I and D2 = I ⊗D0.

The matrix product ⊗ denotes the Kroneker product. The matrix H0 ∈ Rn−1,n−1 is symmetric tri-diagonal
with (H0)i,i = 2

h2 , (H0)i,i−1 = (H0)i−1,i = − 1
h2 , the matrix D0 is a lower triangular matrix with (D0)i,i = 1

h

and (D0)i,i−1 = − 1
h and zero otherwise and I is the (n − 1) × (n − 1) identity matrix. Further we use the

following notations

|Du|1 =
∑
i

|(Du)i|, where (Du)i =

(
(D1u)i
(D2u)i

)
,

|(Du)i| =
√

(D1u)2
i + (D2u)2

i

and

Cm = {λ = (λ1, λ2) ∈ R2m : |((λ1)i, λ2)i)|R2 ≤ 1, 1 ≤ i ≤ m}.

Throughout this section |x| denotes the Euclidean norm of the vector x, · denotes the dot product in R2 and
(·)i is an element in R2.

It is possible to consider more general costfunctionals f(u) provided that f is C2 and there exists a σ > 0
such that

f ′′(u)(h, h) ≥ σ|h|2 for all u, h ∈ X.

In particular, in this section we do not require µ > 0, but µ ≥ 0 suffices.
In (3.2)

f(u) = µ
2u

tHu+ 1
2 |u− z|

2.
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The necessary and sufficient optimality condition for the optimality pair (u∗, λ∗) for (3.2) is given by

µHu+ u+ gDtλ = z and λi =
λi + c(Du)i

max(1, |λi + c(Du)i|)
, 1 ≤ i ≤ m (3.3)

for every c > 0. Again the second condition is equivalent to

λi · (Du)i = |(Du)i| and |λi| ≤ 1

for all i and

λi =
(Du)i
|(Du)i|

if |(Du)i| 6= 0.

Hence, (3.3) is equivalent to

µHu+ u+ g Dtλ = z,

 λi = (Du)i
|(Du)i)|

for i ∈ I,

(Du)j = 0 for j ∈ J.

(3.4)

where the index sets I = {i : |(Du)i| 6= 0}, J = {j : |(Du)j | = 0}.

3.1. Active set strategy

Both the Uzawa algorithm and the first order augmented Lagrangian method are of first order. In order to
develop a Newton-like (formally second order) iterate for the nonsmooth minimization problem (3.2) we propose
an “active set strategy” which is based on the dual variable λ. It is motivated by the work in [3,8]. From (3.4)
it follows that

λi =
(Du)i
|(Du)i|

, i ∈ I∗ = (J∗)c (3.5)

where J∗ is the active (index) set defined by

J∗ = {j : |(Du)j | = 0}

at the minimizer u = u∗. This terminology is suggested by inequality constraints of the type u ≤ 0, in which
the complementarity conditions (u, λ)Rm = 0 and λ ≥ 0 imply that on the active set {j : uj = 0}, λj ≥ 0 is
unknown and otherwise λ = 0. The active set strategy that we propose involves the update of the active index
set J according to the complementarity condition

λi =
λi + c (Du)i

max (1, |λi + c (Du)i|)
, 1 ≤ i ≤ m,

i.e.,

Jk = {j : |λkj + c (Duk)j | ≤ 1} and Ik = {i : |λki + c (Duk)i| > 1}, (3.6)

where (uk, λk) is the solution update. Define the matrices Bk1 = (D1)i,·, B
k
2 = (D2)i,· for i ∈ Ik and Ck1 =

(D1)j,·, C
k
2 = (D2)j,· for j ∈ Jk and

Bk =

(
Bk1
Bk2

)
and Ck =

(
Ck1
Ck2

)
.
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Then, we consider the minimization problem

min J(u) = f(u) + g |Du |1 subject to Cku = 0 (3.7)

which is equivalent to

min f(u) + g |Bku |1 subject to Cku = 0.

Here we use the same notation for the matrices Bk, Ck as for the matrix D. In the statement and proof of the
following lemma we suppress the index k in the notation of Bk and Ck.

Lemma 3.1. The minimization (3.7) has a unique solution u and there exist λ satisfying

λi · (Bu)i = |(Bu)i| and |λi| ≤ 1 for i ∈ Ik (3.8)

and µ ∈ range (C) such that

f ′(u) + g Btλ+ g Ctµ = 0. (3.9)

2

Proof. First, note that the necessary and sufficient optimality condition for (3.7) is given by

f ′(u)(h) + g |B(u+ h)|1 − g |Bu|1 ≥ 0 for all h ∈ ker(C). (3.10)

The C1 approximation ϕc(v, 0) of |v| in the sense of (2.11) is given by

ϕc(v, 0) =

 |v| −
1
2c if |v| ≥ 1

c

c
2 |v|

2 if |v| < 1
c .

Consider the regularized problem

min Jc(u) = f(u) + g ϕ̃c(Bu, 0) subject to Cu = 0, (3.11)

where ϕ̃c(Bu, 0) =
∑
i∈I ϕc((Bu)i, 0). The necessary and sufficient optimality condition for (3.11) is given by

f ′(uc)(h) + g Btϕ̃′c(Buc, 0)(h) = 0 for all h ∈ ker(C).

Since X = range (Ct) + ker(C), this implies that there exists a unique µc ∈ range (C) such that

f ′(uc) + g Btϕ̃′c(Buc, 0) + g Ctµc = 0. (3.12)

From (3.10)

0 ≥ Jc(uc)− Jc(u) ≥ f(uc)− f(u)− f ′(u)(uc − u)

+g (ϕ̃c(Buc, 0)− ϕ̃c(Bu, 0)− |Buc|+ |Bu|).

Since

ϕc((Bu)i, 0)− |(Bu)i| ≤ 0
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we have

ϕc((Buc)i, 0)− |(Buc)i| − (ϕc((Bu)i, 0)− |(Bu)i|) ≥ −
1
2c

and thus

σ

2
|uc − u|

2 ≤
g

2c
→ 0 as c→∞.

If we define

(λc)i = ϕ′c((Buc)i, 0) =
c (Buc)i

max(1, |c (Buc)i|)

then |(λc)i| ≤ 1 and

(λc)i · (Buc)i =

 |(Buc)i| if |(Buc)i| ≥
1
c

c |(Buc)i|2 if |(Buc)i| ≤
1
c .

From (3.12) we deduce that |µc| is uniformly bounded in c > 0. Hence, it follows from (3.12) that for any cluster
point (λ, µ) of the sequence {(λc, µc)}c>0 (3.8, 3.9) are satisfied. 2

The second order update method of (uk, λk) based on the active set strategy is given as follows.

Algorithm 1.
Step 1: Choose c > 0, u0 ∈ Rm and λ0 ∈ R2m satisfying |λ0

i | ≤ 1 and set k = 0.
Step 2: Set the index sets Jk = {j : |(λk + cDuk)j | ≤ 1} and Ik = {i : |(λk + cDuk)i| > 1}. Let (u, λ, µ) be
the solution triple (as defined in Lemma 3.1) to

min f(u) + g |Bku|1 subject to Cku = 0.

Step 3: Set uk+1 = u, λk+1 = λ on Ik and λk+1 = µ on Jk and k = k + 1. Go to Step 2.
In the following theorem we establish the fact that the algorithm converges in finitely many steps. 2

Theorem 3.2. Suppose that the iterates generated by the Algorithm satisfy uk+1 6= uk if Jk 6= Jk−1 for k ≥ 1.
Then the algorithm converges in finitely many steps to the solution of (3.2). 2

Proof. If Jk = Jk+1 for some k ≥ 0, then |µi| ≤ 1 for all i ∈ Jk. Since by Lemma 3.1 |λk+1
i | ≤ 1 for all i ∈ Ik it

follows that (uk+1, λk+1) satisfies the optimality condition (3.4) and uk+1 is the minimizer of (3.2). It remains
to show that Jk 6= Jk+1 for all k is impossible.

We show that uk ∈ ker(Ck) for every k ≥ 1. This claim is equivalent to (Duk)j = 0 for all j ∈ Jk and k ≥ 1.
If j ∈ Jk−1 then (Duk)j = 0 by definition of uk. Suppose that (Duk)j 6= 0 for some j ∈ Ik−1, j ∈ Jk. Then,
see (3.3),

|(λk + cBkuk)j | = |
(Duk)j
|(Duk)j |

+ c (Duk)j | > 1

and therefore j ∈ Ik which is impossible.
Next we show that J(uk) is strictly decreasing as long as Jk−1 6= Jk. Since uk, uk+1 ∈ ker(Ck) for every

k ≥ 1, it follows from (3.8, 3.9) that

J(uk)− J(uk+1) = f(uk)− f(uk+1)− f ′(uk+1)(uk − uk+1)

+g
(
|Bkuk|1 − |B

kuk+1|1 − (λk+1, Bkuk −Bkuk+1)
)
≥ σ

2 |u
k − uk+1|2,
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which by assumption implies that J(uk) is strictly decreasing as long as Jk−1 6= Jk. Since there are only finitely
many combinations of possible active indices this completes the proof. 2

Let us turn to giving a sufficient condition for the assumption of Theorem 3.2. From the proof of Theorem 3.2
it follows that uk ∈ ker(Ck−1) ∩ ker(Ck). If uk = uk+1 then the minimization of J(u) over the two different
subspaces ker(Ck−1) and ker(Ck−1) ∩ ker(Ck) have the same solution. A sufficient condition that this cannot
happen and that the assumption of Theorem 3.2 holds is that D is surjective. We give the details of this
statement in the following lemma. D is surjective in the case of the voice detection problem which is the one
dimensional version of (3.2) and is described in Section 3.3 below.

Lemma 3.3. Suppose D is surjective. Then Jk−1 6= Jk implies uk 6= uk+1 for every k ≥ 1. 2

Proof. Suppose that j ∈ Jk−1 and j ∈ Ik for some k ≥ 1. This implies that (Duk)j = 0 and |µj | > 1. Then,
for h satisfying (Dh)j = µj and (Dh)i = 0, i 6= j we find using (3.9, 3.10) that

J(uk + t h)− J(uk) = f(uk + t h)− f(uk)− t f ′(uk)(h) + gt
(
|µj | − |µj |

2
)
< 0

for appropriately chosen t > 0, since |µj | > 1. It follows that uk+1 6= uk. 2

3.2. Modified algorithm

The implementation of the Algorithm for the active set strategy is as difficult as that for the original mini-
mization. Thus, we propose the following modification of the Algorithm 1 which can be readily implemented.

Algorithm 2 (implemented).
Step 1: Choose c > 0, ε > 0, u0 ∈ Rm and λ0 ∈ R2m satisfying |λ0

i | ≤ 1 and set k = 0.
Step 2: Set the index sets Jk = {j : |(λk + cDuk)j | ≤ 1} and Ik = {i : |(λk + cDuk)i| > 1}. Define the
corresponding matrices B = Di,·, i ∈ Ik and C = Dj,·, j ∈ Jk and solve(

µH + g (BtA(uk)B +
1

ε
CtC)

)
u+ u = z − g Bt

(Buk)i
|(Buk)i|

(3.13)

for u ∈ Rm, where the nonzero elements of the matrix A = A(uk) are given by Ai,i Ai,i+l

Ai+l,i Ai+l,i+l

 =
1

|(Buk)i|3

 (qi)
2
2 −(qi)1(qi)2

−(qi)1(qi)2 (qi)
2
1

 =: Ai

for 1 ≤ i ≤ l with l = cardinality of the index set Ik and qi = (Buk)i. Then set

λi =
(Buk)i

max(ε, |(Buk)i|)
for i ∈ Ik

λj =
1

ε
(Cu)j for j ∈ Jk.

Step 3: Set uk+1 = u, λk+1
i =

λi

max(1, |λi|)
and k = k + 1. Go to Step 2. 2

In what follows we describe the derivation of the modified algorithm and analyze its convergence properties.
Algorithm 2 (implemented) is based on treating the constraint Cu = 0 in (3.7) by the penalty method. Thus
for ε > 0 we consider the unconstrained problem

minJε(u) = f(u) + g |Bu|1 +
g

2ε
|Cu|2. (3.14)
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It can be proved using the same argument as in the proof of Theorem 2.4 and Lemma 3.1 that the necessary
and sufficient optimality condition for (3.14) is given by

f ′(uε) + g Btλε +
g

ε
CtCuε = 0 (3.15)

and

(λε)i · (Buε)i = |(Buε)i| and |(λε)i| ≤ 1 for i ∈ Ik. (3.16)

Equation (3.13) is derived for the case when (Buε)i 6= 0 for all i ∈ Ik. In this case

(λε)i =
(Buε)i
|(Buε)i|

,

and (3.13) is one step of the Newton method applied to (3.15). Here we use the fact that BtA(uk)Buk = 0.
In the following results we justify Algorithm 2 (implemented) as far as possible. The ultimate test will be its

numerical behavior.

Lemma 3.4. If for a given index pair (Ik, Jk) u is the solution to (3.7) (see, Lemma 3.1), then uε → u as
ε→ 0+ and for any cluster point λ of the sequence {λε} and µ of the sequence {µε} defined by

µε =
1

ε
Cuε, (3.17)

(3.8, 3.9) are satisfied. 2

Proof. Since

0 ≥ Jε(uε)− Jε(u) = f(uε)− f(u)− f ′(u)(uε − u)

+g (|Buε|1 − |Bu|1 − (λ,Buε −Bu)) +
g

2ε
|Cuε|

2 − g (µ,Cuε)

we have

σ

2
|uε − u|

2 +
g

2ε
|Cuε|

2 ≤ g (µ,Cuε)

which implies that

σ

2
|uε − u|

2 +
gε

2
|µε − µ|

2 ≤
gε

2
|µ|2.

Thus |uε − u| = O(
√
ε) and |µε| is bounded uniformly in ε > 0. The last assertion follows from (3.15, 3.16) by

taking the limit ε→ 0 for any clustering sequence. 2

Corollary 3.5. Suppose that |(Bu)i| 6= 0 for all i ∈ Ik. Then λ and µ ∈ range C in Lemma 3.1 are unique
and (λε, µε)→ (λ, µ). 2

Proof. It follows from Lemma 3.4 that |(Buε)i| 6= 0 for all i ∈ Ik provided that ε is sufficiently small. Thus,

λε =
Buε

|Buε|
→ λ =

Bu

|Bu|
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as ε→ 0. Hence the corollary follows from (3.9, 3.15). 2

In this section we henceforth assume that at the minimizer u∗ of (3.2) the Lagrange multiplier λ∗ satisfies
the condition:

{λ∗j}j∈J∗ ∈ range (C) and |λ∗j | < 1 for j ∈ J∗, (3.18)

where C corresponds to the index set J∗. The second part of (3.18) is referred to as the strict complementarity
condition. Due to (3.4) a multiplier λ∗ that satisfies the range condition is necessarily unique. The range
condition is satisfied if D is surjective. Moreover, if the active set strategy of the Algorithm 1 converges in
finitely many steps then the range condition is satisfied. With (3.18) holding we have the following proposition.

Proposition 3.6. Suppose C corresponds to J∗; i.e., J∗ = Jk. Then, there exists a constant ε0 > 0 such that
if ε ≤ ε0 then |µε| < 1. 2

Proof. First, note that the minimizer u∗ of (3.2) is the solution to (3.7) with C corresponding to J∗. It follows
from Lemma 3.4 and Corollary 3.5 that uε → u∗ and µε converges to λ∗ on J∗, and thus there exist an ε0 > 0
such that ε ≤ ε0 for |µε| < 1. 2

Corollary 3.5 and Proposition 3.6 imply that the penalty treatment (3.13) of the constraint Cu = 0 in (3.7)
maintains the property of the active set J∗.

By construction |(Buk)i| 6= 0 for i ∈ Ik and hence the modified algorithm is well-posed. Furthermore the
sequence generated by the modified algorithm is uniformly bounded. Note that the matrix

µH + g (BtA(uk)B +
1

ε
CtC)

has the same sparsity as H does. The following proposition supports the second order convergence property of
Algorithm 2 (implemented).

Proposition 3.7. Assume that 0 < ε ≤ ε0 and let uε be the solution to (3.14) where C corresponds to J∗ as in
Proposition 3.6. Suppose that Jk = J∗. Then there exist δ > 0 and c̄ > 0 such that for 0 < c ≤ c̄ if |uk−uε| ≤ δ
then Jk+1 = J∗ and

|uk+1 − uε| ≤ min (δ,M |uk − uε|
2)

for some M > 0. 2

Proof. Note that

F (u) = µHu+ u− z + g Bt
Bu

|Bu|
+
g

ε
CtCu

is locally C2 at uε and that (3.13) can equivalently be written as

F ′(uk)(uk+1 − uε) = F (uε)− F (uk)− F ′(uk)(uε − u
k).

Thus, there exist constants δ0 > 0 and M > 0 such that if |uk − uε| ≤ δ0 then

|uk+1 − uε| ≤M |u
k − uε|

2.

We choose δ ≤ δ0 such that δ ≤ 1/M and Mδ2 |C | < ε (1 − |µε|), which is possible due to Proposition 3.6.
Then |uk+1 − uε| ≤ δ for |uk − uε| ≤ δ and there exists η ∈ [0, 1) such that

|
1

ε
(Cuk+1)j | ≤ η for all j ∈ J∗.
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Moreover δ can be chosen sufficiently small such that

(Buk)i · (Bu
k+1)i > 0 for all i ∈ I∗.

From the above two inequalities it follows that there exists c̄ > 0 such that Jk+1 = J∗ for all c ∈ (0, c̄]. 2

In the following proposition it is asserted that under the assumption of convergence of the iterates {uk} of
Algorithm 2 (implemented) and with strict complementarity holding, the limit is the solution to the penalized
problem (3.14) corresponding to the true active set J∗.

Proposition 3.8. Suppose that for some ε > 0 the sequence {uk} of Algorithm 2 (implemented) converges to
û. Then û is the solution to

min
u

J1/ε(u) = f(u) + gϕ̃1/ε(Du, 0),

where ϕ̃1/ε(Du, 0) =
∑
i ϕ1/ε ((Du)i, 0). Moreover, if ε is sufficiently small and strict complementarity (in the

sense of the second condition in (3.18)) holds, then û = uε with uε as in Proposition 3.7. 2

Proof. Suppose that |(Dû)j | < ε. Then there exists k1 such that for k ≥ k1 j ∈ Jk. If, on the other hand
|(Dû)i| > ε, then there exists k2 such that i ∈ Ik for k ≥ k2. Finally suppose that |(Dû)`| = ε. Then the index
` can belong to either Ik or Jk. But, for either case we have

λk+1
` →

1

ε
(Dû)` =

(Dû)`
|(Dû)`|

·

For c = 1
ε

consider the cost functional

Jc(u) = f(u) + g ϕ̃c(Du, 0) (3.19)

where ϕc(v, λ) is the C1 approximation of |v|1. Hence the limit û satisfies

J ′c(û) = 0. (3.20)

Using the optimality condition for û and for uε from Proposition 3.7, one can argue that û = uε provided that
ε > 0 is sufficiently small and that strict complementarity holds. 2

3.3. One dimensional problem

Consider the one-dimensional problem on the interval (0, 1)

min

∫ 1

0

µ
2 |ux|

2 + 1
2 |u(x)− z(x)|2 dx+ g

∫ 1

0

|ux(x)| dx.

Then, the corresponding discretized problem is given by

min µ
2 u

tH0u+ 1
2 |u− z|

2
2 + g |D0u|1 over u ∈ Rn−1,

and the necessary and sufficient optimality condition is given by

µH0u+ u+ gDt
0λ = z and λi =

λi + c (D0u)i
max(1, |λi + c (D0u)i|)

·

Note thatD0 is surjective. Hence, in view of Lemma 3.3, Theorem 3.2 is applicable. The algorithm corresponding
to Algorithm 2 (implemented) is given as follows.
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Algorithm 3.
Step 1: Choose c > 0, ε > 0, u0 and λ0 satisfying |λ0

i | ≤ 1 and set k = 0.
Step 2: Set the index sets Jk = {j : |(λk + cD0u

k)j | ≤ 1} and Ik = {i : |(λk + cD0u
k)i| > 1}. Define the

matrices B = (D0)i,·, i ∈ Ik and C = (D0)j,·, j ∈ Jk. Let u be a solution to

µH0u+ u+
g

ε
CtCu = z − g Bt

(Buk)i
|(Buk)i|

and let

λi =
(Buk)i

max(ε, |(Buk)i|)
for i ∈ Ik

λj =
1

ε
(Cu)j for j ∈ Jk.

Step 3: Set uk+1 = u, λk+1
i =

λi

max(1, |λi|)
and k = k + 1. Go to Step 2. 2

4. Numerical experiments

Numerical experiments are carried out to demonstrate the efficiency of the proposed algorithm for the image
denoising and the voice detection problem. For the two-dimensional results that we report on here, the domain
Ω was chosen to be the unit square with 100×100 pixels. The noisy image z was produced by adding uniformly
distributed random numbers from the interval [−δ, δ] to the noise-free image at the nodal points. Here we only
show results with high relative noise. In order to ensure global convergence we consider the merit function Jc(·)
defined by (3.19) with c = 1

ε
. We modify Step 3 of the proposed algorithm by

Step 3′: Find w such that Jc(ũ) < Jc(u
k), ũ = (1 − w)uk + wu and set uk+1 = ũ, λk+1 as in Step 3 and

k = k + 1. Go to Step 2.
The following choices were made for the parameters appearing in the algorithm:

µ = 10−10, c = 0.1, w = 0.5,

with g = 0.02 for example 4.1 and g = 0.01 for example 4.2.
The typical number of iterations was 8. The code was written in MATLAB and the runs made on IBM

RISC 6000 workstation. Upon request the code can be made available.

Example 4.1. Here we consider the reconstruction of two square humps of height one and two lying inside
each other. The noise was δ = 1.5. Figure 1 shows the noisy image and a corresponding histogram, Figure 2
gives the reconstructed image. 2

Example 4.2. The second image to be reconstructed consists of flat as well as oblique surfaces. Figures 3 and 4
show the noise free and noisy image, respectively. Figure 5 shows the reconstructed image. The choice of g was
a heuristic one. It can be observed that choosing g too large smears the corners, whereas undesirable oscillations
may occur if g is too small. 2

Example 4.3. This is a one dimensional problem with the noise free signal z∗ given by

z∗(
i

n
) =

 2 for 201 ≤ i ≤ 300 or 651 ≤ i ≤ 800
1 for 500 ≤ i ≤ 650
0 otherwise,
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n = 1000 and δ = 2. The choices for the parameters in the one dimensional example were

µ = 10−10, g = 0.02, c = 10−4, w = 0.

The result after 12 iterations is shown in Figure 6, where the solid line represents z∗, the broken line represents
z and the stars depict the reconstruction u12. Decreasing the value of c slows down the convergence, whereas
increasing c can cause the solution to chatter. 2

Concerning the update of the Lagrange multiplier λ in Algorithm 2 (implemented) the Newton step would
be of the form

λi =
(Buk)i
|(Buk)i|

+Ai(Bu)i for i ∈ Ik. (4.1)

We gave our preference to the update stated in Algorithm 2 (implemented) since (4.1) does not enhance the
numerical results and requires a more restrictive choice of the relaxation parameter w. For the one dimensional
problem of Section 3.3 both the updates coincide.

References

[1] L. Alvarez, P.L. Lions and J.M. Morel, Image selective smoothing and edge detection by nonlinear diffusion, II. SIAM J. Nu-
mer. Anal. 29 (1992) 845-866.

[2] R. Acar and C.R. Vogel, Analysis of bounded variation penalty methods for ill-posed problems. Inverse Problems 10 (1994)
1217-1229.

[3] D.P. Bertsekas, Constraint Optimization and Lagrange Multiplier Methods. Academic Press, Paris (1982).
[4] F. Catte, P.L. Lions, J.M. Morel and T. Colle, Image selective smoothing and edge detection by nonlinear diffusion. SIAM

J. Numer. Anal. 29 (1992) 182-193.
[5] D.C. Dobson and F. Santosa, Recovery of blocky images from noisy and blurred data. Preprint.
[6] I. Ekeland and T. Turnbull, Infinite Dimensional Optimization and Convexity. The University of Chicago Press, Chicago

(1983).
[7] E. Giusti, Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston (1984).
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Figure 1
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Figure 2
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Figure 3

Figure 4
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Figure 5

Figure 6


