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Abstract. We employ the active set strategy which was proposed by Facchinei for solving
large scale bound constrained optimization problems. As the special structure of the bound
constrained problem, a simple rule is used for updating the multipliers. Numerical results
show that the active set identification strategy is practical and efficient.
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1. Introduction

The bound constrained problems are probably the simplest kind of constrained

nonlinear programming problems, and they often arise in practice. Actually, most

unconstrained problems encountered in applications are only meaningful if the vari-

ables belong to some prefixed range of values and should therefore be viewed as

bound constrained problems. We are concerned with the solution of simple bound

constrained minimization problems of the form

min f(x)(1.1)

s.t. l 6 x 6 u

where x ∈ R
n. The objective function f(x) is assumed to be twice continuously

differentiable, l and u are given bound vectors in R
n.

*The work was supported in part by the National Science Foundation of China (10571109,
10901094), Natural Science Foundation of Shandong (Y2008A01) and Technique Foun-
dation of STA (2006GG3210009).
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We begin with an overview of the development of active set methods. In this class

of methods, a working set estimates the set of active constraints at the solution and

it is updated from iteration to iteration. In general, only a single active constraint

can be added to or dropped from the working set at each iteration, and this can slow

down the convergence rate, especially when dealing with large-scale problems.

In recent years, a number of algorithms have been proposed to add and drop

many constraints in an iteration. Moré and Toraldo [10] use the gradient projection

method to identify a suitable working face, followed by the conjugate gradient method

to explore the face, but its convergence is driven by the gradient projection with the

step length satisfying the sufficient decrease condition. Z. Dostál in [3] proposes a

proportioning based algorithm which preserves the finite termination property.

Another line of active set research, stemming from the work of Facchinei, has

dealt with the study of identification function. Below, we summarize some features

of these different techniques.

• The approximate active set identification [7]. Based on a multiplier function,

the estimate of the active set A(x) satisfies I+ ⊆ A(x) ⊆ I0, where I0 is the

index set of the active constraints at the solution and I+ is the index set of

strongly active constraints, i.e. the index set of active constraints with positive

multipliers.

• The accurate active set identification [4]. On the basis of identification function,

Facchinei-Fisher-Kanzow established a strategy that can identify the accurate

active constraints in a certain neighborhood Ω1 of the optimal solution [4], that

is, A(x) = I0, i ∈ Ω1. An algorithm in [2] employs this strategy successfully

in SSLE.

In this paper we analyze the approximate active set identification strategy. The

main features of our QNAS algorithm are shown below.

• QNAS algorithm generates feasible iterates.

• To compute the direction dk, an identification strategy is employed to predict

the active set. The active set identification function is based on the multiplier

functions as in [8]. In particular, the identification function works well with the

information of the gradient of the objective function.

• QNAS algorithm possesses the global convergent property under the standard

assumption.

The paper is organized as follows. In the next section some basic definitions and

assumptions are stated. In Section 3, we discuss the construction of the QNAS al-

gorithm, whose global convergence is proved in Section 4. The numerical tests and

the conclusion are given in Section 5 and the last section.

At the end of this section, we fix the notation. A superscript k is used to indicate

iteration numbers. Furthermore, we often omit the arguments and write, for example,
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fk instead of f(xk). If H is an n × n matrix with elements Hij , i, j = 1, . . . , n, and

I is an index set such that I ⊆ {1, . . . , n}, we denote by HI the |I| × |I| submatrix

of H consisting of elements Hij , i ∈ I, j ∈ I. If w is an n vector, we denote by wI

the subvector with components wi, i ∈ I. Finally, by ‖ · ‖we denote the Euclidean

norm.

2. Problem formulation and preliminaries

In what follows we indicate by Ω the feasible set of Problem (1.1), that is,

Ω = {x ∈ R
n : l 6 x 6 u}.

To guarantee that no unbounded sequences are produced by the minimization

process, we make the following standard assumption.

Assumption 1. The feasible set Ω is bounded.

A vector x ∈ Ω is said to be a stationary point for Problem (1.1) if for every

i = 1, . . . , n,

(2.1)











li = xi ⇒ ∇fi(x) > 0,

li < xi < ui ⇒ ∇fi(x) = 0,

xi = ui ⇒ ∇fi(x) 6 0,

where ∇fi(x) is the ith component of the gradient vector of f at x. Strict comple-

mentarity is said to hold at x if ∇fi(x) > 0 and ∇fi(x) < 0 in the first and third

implication of (2.1).

It is well known that the KKT conditions for x to solve Problem (1.1) are

(2.2)























∇f(x) − λ + µ = 0,

λ > 0, (l − x)T λ = 0,

µ > 0, (x − u)T µ = 0,

l 6 x 6 u,

where λ ∈ R
n and µ ∈ R

n are the KKT multipliers.
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3. A framework of the algorithm

3.1. Identifying the active constraints

In order to make our algorithm suitable for large-scale bound constrained prob-

lems, we define the sets of indices Lk, Uk, F k of the current iterate xk estimated to

be active, respectively, at their lower bound, upper bound, or estimated to be free:

Lk =
{

i : xk
i 6 li + min

[

ςλi(x
k),

ui − li
3

]}

,(3.1)

Uk =
{

i : xk
i > ui − min

[

ςµi(x
k),

ui − li
3

]}

,

F k = {1, . . . , n} \ (Lk ∪ Uk).

Here ς is a positive constant, in our numerical tests we choose ς = 10−5, and λ(x),

µ(x) are two multiplier functions [8] defined as

λi(x) = [(ui − xi)
2 + (xi − li)

2]−1(xi − ui)
2∇fi(x),(3.2)

µi(x) = − [(ui − xi)
2 + (xi − li)

2]−1(li − xi)
2∇fi(x).(3.3)

We try to employ the identification techniques which allows one to identify exactly

the active constraints at the solution without requiring strict complementarity [4]

in QNAS, but using this partition of the variables does not guarantee that Lk∩Uk = ∅

at each iteration k, which will lead to a misunderstanding when defining the direction.

Next, we investigate the possibility of reducing the computational costs of the

active set estimation. The basic idea is to follow a more classical approach, namely,

to obtain an approximation of λ and µ at each iteration, thus avoiding the necessity

of using the multiplier functions, which need the computation of n×n linear system,

see (3.2) and (3.3). Considering the first equality of (2.2), we obtain the approximate

multipliers easily as follows:

λk
i =

{

∇fi(x
k) if xk

i = li,

0 otherwise;
(3.4)

µk
i =

{

−∇fi(x
k) if xk

i = ui,

0 otherwise.
(3.5)

It is easy to see that the estimated multipliers can be determined directly by the

gradient of the objective function as the special structure of the bound constrained

problems. Employing (3.4) and (3.5) instead of the multiplier function, we obtain
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the following partition of Lk, Uk, F k:

Lk =
{

i : xk
i 6 li + min

[

ς∇fi(x
k),

ui − li
3

]}

,(3.6)

Uk =
{

i : xk
i > ui + min

[

ς∇fi(x
k),

ui − li
3

]}

,

F k = {1, . . . , n} \ (Lk ∪ Uk).

The active set identification function (3.6) is similar to that described in [5].

3.2. The scheme of search direction

We indicate the estimation of the active set Lk ∪ Uk by Ak. In order to obtain

the search direction for the active variables, we partition the active set Ak into three

parts,

Ak
1 = {i : (li + ui − 2xk

i )∇fi(x
k) > 0 and {xk

i = li or xk
i = ui}},(3.7)

Ak
2 =

{

i : (li + ui − 2xk
i )∇fi(x

k) < 0 and
{

li 6 xk
i 6 li + min

[

ςλi(x),
ui − li

3

]

or ui − min
[

ςµi(x),
ui − li

3

]}

6 xk
i 6 ui

}

,

Ak
3 =

{

i : (li + ui − 2xk
i )∇fi(x

k) > 0 and
{

li < xk
i 6 li + min

[

ςλi(x),
ui − li

3

]

or ui − min
[

ςµi(x),
ui − li

3

]}

6 xk
i < ui

}

.

Here Ak
1 is the index set of variables, where the corresponding steepest descent

directions head towards the outside of the feasible region. Therefore, it is reasonable

that we fix the variables with indices in Ak
1 . Further, Ak

2 is the index set of the

variables, where the steepest descent directions point into the interior of the feasible

region, and therefore we can use the steepest direction as a search direction in the

corresponding subspace. Finally, Ak
3 is the set of active variables, where the steepest

decent directions point towards the boundary. Thus the steepest descent directions

in this subspace should be truncated to ensure feasibility.

Let P k
0 be the matrix whose columns are {ei; i ∈ F k}, and P k

j the matrix whose

columns are {ei; i ∈ Ak
j } for j = 1, 2, 3, where ei is the ith column of the identity

matrix in R
n×n. The search direction at the kth iteration is defined by

(3.8) dk = P k
0 dk

F k − (P k
2 P kT

2 Θk + P k
3 P kT

3 Γk)∇f(xk).
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Here Θk = diag(θk
1 , . . . , θk

n) and Γk = diag(γk
1 , . . . , γk

n) with

θk
i =



































0 if i /∈ Ak
2 ,

xk
i − ui

∇fi(xk)
if li 6 xk

i 6 li + min[̺(xk, λk, µk), ς] and xk
i −∇fi(x

k) > ui,

xk
i − li

∇fi(xk)
if ui − min[̺(xk, λk, µk), ς] 6 xk

i 6 ui and xk
i −∇fi(x

k) 6 li,

1 otherwise,

γk
i =



































0 if i /∈ Ak
3 ,

xk
i − li

∇fi(xk)
if li < xk

i 6 li + min
[

ςλi(x),
ui − li

3

]

and xk
i −∇fi(x

k) 6 li,

xk
i − ui

∇fi(xk)
if ui − min

[

ςµi(x),
ui − li

3

]

6 xk
i < ui and xk

i −∇fi(x
k) > ui,

1 otherwise.

It is easy to conclude that the simple description of dk
Ak is

(3.9) dk
i =











−∇fi(x
k) if li 6 xk

i −∇fi(x
k) 6 ui,

li − xk
i if xk

i −∇fi(x
k) 6 li,

ui − xk
i if xk

i −∇fi(x
k) > ui,

where i ∈ Ak.

The search direction for the inactive variables is chosen as dk
F k , where dk

F k is the

optimal solution of the strictly convex quadratic programming problem

min m(dF k) = ∇fF k(xk)T dF k +
1

2
dT

F kBk
F kdF k(3.10)

s.t. lF k − xk
F k 6 dF k 6 uF k − xk

F k

where Bk
F k ∈ R

mk×mk is the reduced approximation of the Hessian matrix, mk is

the number of elements in F k, Bk
F k = P kT

0 BkP k
0 . The approach to updating Bk is

based on the recursive BFGS update that discard information corresponding to that

part of inactive set that is not changed.

The definition of the search direction (3.8) and that of dF k in (3.10) and dAk

in (3.9) ensure that

li 6 xk
i + dk

i 6 ui

holds for i = 1, . . . , n.
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Lemma 3.1. If dk is defined by (3.8), then it satisfies

(3.11) ∇f(xk)T dk
6 0

and the equality holds only if dk = 0.

P r o o f. Obviously, dF k = 0 is a feasible solution of the quadratic program (3.10),

hence

∇fF k(xk)T dk
F k +

1

2
dkT

F kBk
F kdk

F k 6 0,(3.12)

∇fF k(xk)T dk
F k 6 −

1

2
dkT

F kBk
F kdk

F k .

Since Bk
F k is positive definite, so

∇fF k(xk)T dk
F k 6 0.

Define

H̃k = P k
1 P kT

1 + P k
2 P kT

2 Θk + P k
3 P kT

3 Γk

and

(3.13) Hk = [P k
1 , P k

2 , P k
3 ]T H̃k[P k

1 , P k
2 , P k

3 ].

It is easy to see that Hk is positive definite. Because P kT

1 dk = 0, (3.13) gives

(3.14) ∇fAk(xk)T dk
Ak = −dkT

AkH−1

k dk
Ak 6 0.

This indicates that (3.11) is true and that ∇f(xk)T dk = 0 only if dk = 0. �

3.3. The active set quasi-Newton algorithm

Now, we are ready to give the active set quasi-Newton algorithm (QNAS) for

solving Problem (1.1).

Step 0. Choose σ ∈ (0, 1

2
), x0 ∈ R

n, where x0 satisfies l 6 x0 6 u, compute f(x0),

∇f(x0) and set k = 0.

Step 1. Determine the search direction by (3.8), if dk = 0, stop.

Step 2. Find the smallest integer i = 0, 1, . . . such that

f(xk + 2−idk) 6 f(xk) + σ2−i∇f(xk)T dk

and set αk = 2−i, xk+1 = xk + αkdk. Determine Lk+1, Uk+1, and F k+1 by (3.1)

or (3.6).

Step 3. Update Bk+1, Bk+1

F k+1 = P k+1
T

0 Bk+1P k+1
0 , k := k + 1, goto Step 1.
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4. Global convergence analysis

The KKT conditions (2.2) are equivalent to

(4.1)

{

(li + ui − 2xi)∇fi(x) > 0 if i ∈ L ∪ U,

∇fi(x) = 0 if i ∈ F .

Here L := {i : xi = li}, U := {i : xi = ui}, F := {1, . . . , n} \ (L ∪ U).

Assumption 2. There exist positive scalars c1, c2 such that any matrix Bk
F k ,

k = 1, 2, . . . satisfies

(4.2) c1‖z‖
2 6 zT Bk

F kz 6 c2‖z‖
2 ∀ z ∈ R

mk , z 6= 0.

Here mk is the number of elements in F k.

Lemma 4.1. If Assumptions 1, 2 hold, xk ∈ Ω, and dk is the direction defined

by (3.8), then

(4.3) ∇f(xk)T dk
6 −c‖dk‖2.

P r o o f. From (3.12) and (4.2) we have that

(4.4) ∇fF k(xk)T dk
F k 6 −

c1

2
‖dk

F k‖
2.

From the definition of dk
Ak in (3.9) we conclude that

1) dk
i = −∇fi(x

k) if li 6 xk
i −∇fi(x

k) 6 ui, so ∇fi(x
k)dk

i 6 −(dk
i )2;

2) dk
i = li − xk

i if ∇fi(x
k) > xk

i − li, which means ∇fi(x
k)dk

i 6 −(dk
i )2;

3) dk
i = ui − xk

i if ∇fi(x
k) 6 xk

i − ui, hence ∇fi(x
k)dk

i 6 −(dk
i )2.

Define c = min
(

c1

2
, 1

)

; this implies that (4.3) holds, which completes the proof.

�

Lemma 4.2. If Assumptions 1, 2 hold, xk ∈ Ω, and dk is the direction defined

by (3.9), then

dk = 0 ⇐⇒ xk is a KKT point of f on Ω.

P r o o f. First we suppose that dk = 0.

If i ∈ Ak, then according to (3.8) we have

P k
2 P kT

2 ∇f(xk) = 0, P k
3 P kT

3 Γk∇f(xk) = 0.
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Because γk
i 6= 0 for i ∈ Ak

3 , it follows that

P kT

j ∇f(xk) = 0, j = 2, 3.

Therefore, ∇fi(x
k) = 0 if i ∈ Ak

2 ∪ Ak
3 . By the definition of the multiplier func-

tions (3.2) and (3.3), we have λi(x
k) = 0 and µi(x

k) = 0 for i ∈ Ak
2 ∪ Ak

3 .

For i ∈ Ak
1 , if xk

i = li, then ∇fi(x
k) > 0 by (3.2), and we have λi(x

k) > 0.

Analogously, if xk
i = ui, we have µi(x

k) > 0.

To establish that xk is a KKT point of f on Ω, it is sufficient to prove that

li < xk
i < ui and ∇fi(x

k) = 0 for each i ∈ F k. If i ∈ F k, we have

(4.5) xk
i > li + min

[

ςλi(x),
ui − li

3

]

, xk
i < ui − min

[

ςµi(x),
ui − li

3

]

.

Suppose that there exists an i ∈ F k such that ∇fi(x
k) < 0. Then for sufficiently

small ε > 0, the vector d̃F k defined by

d̃j =

{

0 if j ∈ F k \ {i},

ε if j = i

satisfies lF k − xk
F k 6 d̃F k 6 uF k − xk

F k , and

m(d̃F k) = ∇fi(x
k)ε +

1

2
ε2Bk

ii < 0.

This is impossible, since dF k = 0 is the optimal solution of (3.10). We could

prove in a similar way that ∇fi(x
k) cannot be positive. Hence, ∇fi(x

k) = 0 for each

i ∈ F k. By (3.4) and (3.5), we have λk
i = 0, µk

i = 0, i ∈ F k.

The statements mentioned above prove that xk is a KKT point of f on Ω.

Now suppose that xk is a KKT point of f on Ω. From (3.7) and (4.1) it follows

that Ak
2 = ∅, Ak

3 = ∅, therefore dAk = 0.

On the other hand, dF k = 0 is a feasible solution of the quadratic programming

problem (3.10). Since ∇fF k(xk) = 0 and Bk
F k is a positive definite matrix,

m(dF k) =
1

2
dT

F kBk
F kdF k > 0.

Hence, dF k = 0 is the optimal solution of the quadratic programming prob-

lem (3.10). �
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Theorem 4.3. Suppose that Assumptions 1, 2 are satisfied. Assume that f is

twice continuously differentiable in Ω, dk → 0, and that xk → x, where dk is the

direction defined by (3.8). Then x is a KKT point of Problem (1.1).

P r o o f. Since x is the accumulation point of {xk}, there exists a subse-

quence {xki}, i = 1, 2, . . ., such that

(4.6) lim
i→∞

xki = x.

Define A = {i : xi = li or xi = ui}. If x is not a KKT point, there exists j ∈ A

such that

(4.7) (lj + uj − 2xj)∇fj(x) < 0

or there exists j /∈ A such that

(4.8) ∇fj(x) 6= 0.

If (4.7) holds for some j ∈ A, then j ∈ A2(x
ki) for all sufficiently large i.

But lim
k→∞

‖P k
2 ∇f(xk)‖ = 0 shows that

∇fj(x) = 0, j ∈ A2(x),

which contradicts (4.7). So it remains to prove that ∇fF (x) = 0. We recall that

dk
F is the solution of the quadratic programming problem

min∇fF (xk)T dF +
1

2
dT

F Bk
F dF

s.t. lF − xk
F 6 dF 6 uF − xk

F .

Since dk → 0, the continuity of the optimal solution of a strictly convex quadratic

programming problem under perturbations implies that zero is the optimal solution

of

min∇fF (x)T dF +
1

2
dT

F BF dF

s.t. lF − xF 6 dF 6 uF − xF .

Hence, ∇fF (x) = 0 by reasons similar to those used in the proof of Lemma 4.2.

�
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5. Numerical tests

In this section some numerical results are reported. The code was written in

MATLAB with double precision. For each problem, the termination condition is the

Euclidean norm of the search direction below 10−5, namely,

‖dk‖ 6 10−5.

In QNAS, we choose ς = 10−5, σ = 10−1 in all runs. In order to compare (3.1) and

(3.6) in identifying the active set, we use the technique in [6] for generating bound

constrained optimization problems with known characteristics. The test problems

were chosen from [13].

Let an unconstrained problem

(5.1) min
x∈Rn

g(x)

be given, where g is a twice continuously differentiable function. Let x be a local

minimum of this unconstrained problem. The bound constrained problem we will

generate has the same solution x. We start by choosing an arbitrary partition of the

index set {1, . . . , n} into three subsets L, F and U . They are the sets of indices of the

variables that are at a lower bound, free, and at an upper bound at x, respectively.

We choose the vectors l and u to satisfy the relationships

lL = xL < uL,(5.2)

lF < xF < uF ,

lU < xU = uF .

Now consider the objective function

(5.3) f(x) = g(x) +
∑

i∈L

hi(xi) −
∑

i∈U

hi(xi),

where hi : R → R, i ∈ L ∪ U , are twice continuously differentiable nondecreasing

functions.

It follows from (5.2) and (5.3) that x is a local minimum of the bound constrained

optimization problem

min f(x)(5.4)

s.t. l 6 x 6 u.
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If x is just a stationary point of (5.1), since ∇hi(x) > 0 for i ∈ L ∪ U , then x is a

stationary point of problem (5.4) as well.

The possible choices for the function hi can be

(1) ̟i(xi − xi),(5.5)

(2) κi(xi − xi)
3 + ̟i(xi − xi),

(3) κi(xi − xi)
7/3 + ̟i(xi − xi),

where κi, ̟i are nonnegative constants. Considering the KKT conditions at x, it

is easy to see that the Lagrange multipliers associated with the constraints lL 6 xL

and uU > xU are ̟i for i ∈ L ∪ U .

By this kind of strategy, the number and position of the constraints and of the

active constraints, the Lagrange multipliers, and the shape of the feasible region can

be easily controlled.

The number of iterations (IT), the final function value (FF) and the CPU time

(CPU) to obtain the solution through QNAS with (3.6) and (3.1) are given in the

form of IT/FF/CPU in Tab. 1. We observe that the identification of (3.1) and (3.6)

both work well, while (3.1) needs the additional computation of an n × n linear

system.

n QNAS with (3.1) QNAS with (3.6)

TP1 10000 16/9.6531e + 02/22.9690 20/9.3013e + 02/17.5000

TP2 10000 21/1.8705e− 007/11.9840 24/6.3826e− 011/10.3590

TP3 10000 187/1.8495e− 007/301.4690 193/8.8499e− 007/253.0150

TP4 5000 39/4.3915e− 008/18.7030 36/1.6289e− 007/16.5940

TP5 5000 80/1.748e− 014/55.2500 77/4.9702e− 017/52.8590

TP6 5000 206/2.2923e− 007/53.4220 207/2.0347e− 008/48.2970

TP7 5000 426/4.4702e− 007/135.9530 368/2.3013e− 007/99.1880

TP8 5000 59/3.6916e− 014/12.3280 87/3.7323e− 014/17.7190

TP9 5000 62/1.3083e− 015/18.1410 65/6.9232e− 022/20.7660

Table 1. Test results on 9 Test Problems.

6. Conclusion and the future work

An active set quasi-Newton method is analyzed in this paper. The active set strat-

egy which belongs to the approximate active set identification allows quick change

in the working set, it is suitable for solving large scale problems. As the special

structure of the KKT system of the bound constrained optimization, the multipliers
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can be determined directly by the gradient. Numerical results show that QNAS is

practical and efficient. However, QNAS requires the strict complementarity assump-

tion to obtain the superlinear convergence rate as shown in [5]. Consequently, how

to employ the accurate active set identification [4] in QNAS or how to obtain a feasi-

ble search direction of the inactive variables instead of solving the strictly quadratic

programming problem (3.10) remains to be investigated in future.
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