
45

An Active Temporal Model

for Network Management Databases

Masum Z. Hasan

zmhasanOdb.toronto.edu

Computer Systems Research Institute

University of Toronto

Toronto, Canada M5S lAl

Abstract

The purpose of a network management system is to provide smooth functioning of a large

heterogeneous network through monitoring and controlling of network behavior. ISO/OSI

has defined six management functionalities that aid in overall management of a network:
configuration, fault, performance, security, directory and accounting management. These

management functionalities provide tools for overall graceful functioning of the network on

both day-to-day and long-term basis. All of the functionalities entail dealing with huge

volumes of data. So network management in a sense is management of data, like a DBMS
is used to manage data. This is precisely our purpose in this paper to show that by viewing
the network as a conceptual global database the six management functionalities can be
performed in a declarative. fashion through specification of management functionalities as

data manipulation statements.
But to be able to do so we need a model that incorporates the unique properties of

network management related data and functions. We propose a model of a database that

combines and extends the features of active and temporal databases as a model for a network
management database. This model of a network management database allows us to specify
network management functions as Event-Condition-Action rules. The event in the rule is
specified using our proposed event specification language.

1 Introduction

A network management (NM) system supporting all the six functionalities of configuration, fault,

performance, accounting, security and directory management has to deal with huge volumes of

data that are resident on the management station(s) and on the managed entities distributed

over the network.

The system generally has to deal with two types of data: static and dynamic. Static data

either never change or change very infrequently. The topology of the network, hardware and

software network configurations, customers information etc. and the stored history traces of

both dynamic and static data constitute the static portion of the NM-related data. The rapidly

changing dynamic data embodies the current behavior of the network. A Management Infor­

mation Base (MIB) defines the schema of the dynamic data to be collected for a particular

network entity. The dynamic data distributed over the network is not visible to the network

management station until they are collected. The past and present static and dynamic data

A. S. Sethi et al. (eds.), Integrated Network Management IV

© Springer Science+Business Media Dordrecht 1995

An active temporal model for network management databases 525

form a conceptual global database which allows a management station to see the global picture

of the network.

The management of a network is generally performed through two activities: monitoring

and controlling. Monitoring is performed for two purposes: collection of data traces for current

and future analysis and watching for interesting events. An occurrence of an event or a set of

interrelated events may cause further monitoring or controlling action.

An event can be a "happening" (for example, link down) in the network or a pattern of

data appearing in the network. The later being called a data-pattern event in (WSY91]. An

example of a data pattern event is the crossing of a threshold value of a MIB variable. A

data pattern event may also be defined as a more complex pattern involving more than one

variables and managed entities. A set of interrelated events is called a composite event or

event pattern. The interrelationship of network management events are generally temporal. For

example, a composite (alert) event may be defined which occurs when the interval during which

three successive server overload events occur is overlapped with the interval of three successive

observation of large packets on the local net from unauthorized destination or the first crossing

(up) of a rising threshold since the crossing (up) of a falling threshold.

Monitoring action can be performed either by asynchronous event notification (trap) or

through periodic polling. Polling can be considered as an event whose occurrence at regular

intervals triggers retrieval.

Both data traces and events may be stored selectively for future analysis. A temporal database

is required for this purpose.

From the discussion above we conclude that the nature of NM data and functionalities

require a model of a database that incorporates novel features of both active and temporal

databases, since active databases allow one to specify events whose occurrence trigger actions

and temporal databases allow one to manipulate temporal data. We propose such a model

where the NM functions are specified as declarative Event-Condition-Action (ECA) statements.

In this system, data pattern events and any other NM functions can be specified as declarative

data manipulation statements. We have developed an event specification language (ESL) for

defining composite events used in the E part of ECA. Our ESL incorporated with a temporal

data manipulation language (used in the C and A part of ECA) provides us with a sophisticated

declarative language for use with a database that requires active and temporal features, such

as, a network management database.

The rest of the paper is organized as follows. In Section 2 we describe the features of active

and temporal databases and our proposed model of a network management database. The ESL

language with examples of ESL expressions and an example of an implementation of an ESL

operator is discussed in Section 3. In Section 4 we provide a number of example specifications of

NM functions using ECA rules. We compare our work with others in the literatures in Section

5 and conclude in Section 6.

2 Model of a Network Management Database

Before discussing our proposed model of a network management database we first discuss the

features of active and temporal databases.

2.1 Active Databases

Conventional DBMSs are passive in that they manipulate data only when requests from applica­

tions are made. On the other hand, an Active DBMS (ADBMS) provides facilities for specifying

526 Part Three Practice and Experience

actions or database operations to be performed automatically in response to certain events and

conditions. Active behavior in an ADBMS is achieved through Event-Condition-Action (ECA)

[MD89] rules. The rules state that when the specified event(s) occurs and the condition holds,

perform the action. A condition is defined over the state of the database and its environment (for

example, transaction causing the event). An action can be an arbitrary program or a database

operation.

The following primitive events are generally supported in an ADBMS: 1) events relating

to database manipulation operations, such as, retrieve, insert, delete, update; 2) transaction

events; 3) absolute and relative time events; 4) in object-oriented databases method or function

execution events; and 5) explicit or abstract events that are raised explicitly by the application

(programmer). We also add in the list of primitive events the data-pattern events. A data­

pattern event is specified using a database query language, for example, SQL. An event may

have typed formal arguments which are bound to actual values when the event is detected. For

example, the insert event may have as arguments the name of the relation and the inserted

tuple.

An event is an occurrence in the database, it's environment and application's environment

and can be considered as a point in time where time is modeled as a discrete sequence of

points. It is desirable for many applications to react not only to current events but also to a

composition or selection of events occurring at different time points. An event algebra allows

one to specify composite events consisting of other primitive and composite events by means

of algebra operators. A composite events expression operates on a history of events. So a

composite event expression formed using algebra operators allows one to express relationship

between events in the temporal dimension. The composite event happens when the specified

relationship as defined by the algebra operators is detected in the event history. Petri net

[GD94] or finite state machines [GJS92] can be used to model the language operators and detect

composite events expressed as event expressions.

2.2 Temporal Databases

A temporal database in [ea93] is defined as a database that supports some aspect of time, not

counting user-defined time. In other words, a TDBMS "understands" the notion of time and

provides temporal operators that allow one to specify temporal queries. A temporal database

contains the history of the modeled world as opposed to the traditional snapshot database where

the past states of the database are discarded.

A temporal database contains two types of entities: events and intervals. An event is an

instantaneous occurrence with an implicit time attribute indicating when that event occurred.

Since time is generally considered as discrete, the notion of "instantaneous" requires definition.

A term called chronon which is the shortest duration of time supported by a TDBMS, that

is, a nondecomposable unit of time, is defined in [ea93]. An event occurs at any time during

the chronon interval. In the network management domain we need the support for multiple

choronons associated with each event entity or relation. The need for the support of multi­

ple chronons is mentioned in [ea94). An interval is the time between two events. It may be

represented by a set of contiguous chronons [ea93).

2.3 Network Management Databases

Network management consists of monitoring and controlling the behavior of a network, which

require the presence of sophisticated mechanism for the specification of events and correlated

events occurring at different time points and specification of rules for dealing with these events.

An active temporal model for network management databases 527

Both primitive and composite events may need to be saved in the database as events or intervals

for current or future manipulation. Timestamped trace data which may or may not be considered

as events may also need to be stored in the database. The later is called a trace collection

in [WSY91]. The underlying datastore is thus a temporal database capturing the history of

snapshots of network behavior. So a model of a database that combines the features of both

active and temporal databases is well suited for network management databases.

The question then arises, how to specify polling, data pattern events, composite events and

trace collection in a declarative way.

By considering the network as a database, the data pattern events can be specified as data

manipulation statements in any declarative database language, for example, SQL. In [CH93] we

specified data pattern events as GraphLog queries.

Management action is performed by monitoring on the network database. Polling or sam­

pling is one form of monitoring. Monitoring action then consists of the following: 1) fetch the

attributes specified in the select statement of the DML at each poll interval, 2) as data arrive,

evaluate the query. If the evaluation succeeds, the data pattern event is generated. In case of

trace collection, the DML statement will insert the arrived tuples in the database. The system

may delegate the above functions to managed entities, if it knows that the entities can perform

the functions themselves. The entities then report back the events to the manager.

This is how monitoring for a data pattern event or trace collection will be specified in our

system:

E: poll at regular intervals

C:TRUE
A: Evaluate DML statement

Polling and composite events will be specified using our proposed ESL which is the subject

of the next section. We specify polling in the E part as a composite event, because it is a time

event occurring at regular intervals. By specifying it as a composite event using ESL we control

how polling will be performed. A graphical view of the ECA mechanism is shown in Figure 1.

2.3.1 Special events

1) poll(X}, where X is an unique id of an ECA rule. This event may be used to start a polling

action or execution of any action at regular intervals. 2) deactivate (X}, where X is an unique

id of an ECA rule. This event may be used to deactivate a perpetually running instance of an

event expression. Note that both poll and deactivate are events, not procedures. These events

can be generated through a special function called generate(e).

3 Event Specification Language

In this section we describe a language for specifying composite events. We define a number

of operators which are used for composing primitive, other composite events and intervals into

higher level composite events and intervals. The operators are chosen so that they are useful for

specifying events and intervals selections, compositions and correlations in a number of advanced

application domains.

In our intended applications domain events happen in parallel in the distributed entities. It

is possible to order the events totally at the central site where they are collected for processing.

But this does not allow us to detect arbitrary temporal ordering, for example, overlap of intervals

528 Part Three Practice and Experience

0 her Events

Condition

f----..
I Event Exprj

Action r--

Event Detector
Poll

:

Event Data Pattern I
EventDML

QueryEval.

Figure 1: Graphical View of the ECA Mechanism

during which events happen. A total ordering in the event history is assumed in [GJS92]. We

use Petri Net as implementation model of ESL expressions. Petri net allows reasoning about

partial order of computation.

3.1 ESL Operators and Expressions

We define a number of basic operators, we think are useful for a number of applications requiring

active database support. Details about the language and its implementation can be found in

[Has94].

• E = e1 8 e2, Operator 8 defines the event that occurs when either of e 1 or e2 occurs.

• E = e1 E9 e2, E occurs when both of the events occur in any order.

• E = e1 tb e2, Event E happens when e2 occurs any time after the occurrence of e1.

• E = e1 se e2, Event E happens when e1 occurs strictly after e2 in the successive chronon

points associated with the events.

• E = e1 in I, E is signalled when e1 happens in the interval I which is open at the right.

• E = h ol h, E happens when the two intervals h and h overlap.

• E = e1 ne I, E happens if e1 does not happen in the interval I which is open at the right,

E is signalled at the end point Ie of I.

• n nth e, E happens when n number of e events happen.

• E = first(e), This operator selects the first e event from a series of consecutive or concurrent

e events in the event history.

• E = last(e), If an interval is not specified, then last(e) = e.

An active temporal model for network management databases 529

• An interval between two events e1 and e2 is specified as [et. e2]. The interval is open on

the right.

We will now provide a number of useful additional operators.

• e3 fs e1 = :first(last(e3) tb e1), specifies first e1 event since (after) the recent e3. Since

this event may fire at each e1 after the recent e3, the first qualifier is necessary.

In the network management domain persistence of an event in an interval may be of interest.

Since the model of time is discrete, rather than continuous, persistence has to be defined in

terms of the discrete model of time. If an event happens at all chronon points associated with

the event in the specified interval, then that event is said to persist for tha.t interval.

• e1 pe I= (... ((e1 se e1) se ei) ...) se ei) in I, defines the persistence of an event, which

happens when e1 events happen in strict sequence at each chronon point in the interval I.

3.2 Implementation Model of ESL Operators

In this section we will provide an implementation model of the ESL operators using colored Petri

net (CPN).

A CPN is a directed graph with two kinds of nodes, places P and transitions T, interconnected

by arcs A. Arcs may be inscribed with arc expressions and transitions with guard expressions. A

colored token of a CPN, as opposed to simple Petri net, can carry complex information. Places

are depicted as circles and transitions as vertical line segments.

The behavior of a CPN is described as follows. A transition fires, when it is enabled. A

transition is enabled when the variables of input arc expressions can be bound with appropriate

tokens or colors present on the input places and evaluated, and the guard (if present) evaluates to

true. When a transition fires, tokens are removed from the input places and placed on the output

places. The number of removed/added tokens and the colors of these tokens are determined by

the value/type of the corresponding input and output arc expressions evaluated with respect to

bindings in question.

Figure 2 shows the CPN implementation of e2 fs e1. The upper portion of the figure corre­

sponds to last(e2) before the first e1 appears. Since the last e2 token is removed from PI when

t3 fires, all e1s appearing after the firing and until the occurrence of next e2, will be removed.

A is an auxiliary place which is marked initially. Any e1s appearing before e2 will be removed.

If both t1 and t2 are enabled concurrently, then we resolve the firing sequence in favor of the

terminator event e1, that is, t2 will fire first, thus removing the e1 event.

3.3 Example ESL expressions for NM

We will now give a number of examples showing how the above operators can be used for

declaratively specifying interesting events of interest in the network management domain.

• A server_underutilized (su) event follows a router congestion (co) event within 2 minutes.

Jl (co tb su) in [co, (2 nth minute)] II

530 Part Three Practice and Experience

Figure 2: Petri Net Model of e2 fs e1

• Polling or Sampling is an important function in network management.

An event of polling every 2 minutes for 1 hour can be specified as follows:

II C£3 = (2 nth minute) in [last(poll(X)), 60 minute)] II

The timer is started when the (recent) poll event is detected. The expression is then used

to control the duration of the timer that emits (time) events every 2 minutes.

In some cases, polling may be stopped when requested explicitly. Following expression

CE4 polls every two minutes in an interval delimited by the poll and deactivate events.

II CE4 = (2 nth minute) in [(poll(X), deactivate(X)Jil

• If the expression "value 2': threshold" is contained in the definition of an event , then the

event will be generated at each sampling interval as long the value remains high. An ECA

rule using this event will fire the action repeatedly which may be undesirable. What we

need is some filtering mechanism to prevent this. For example, jiTst event since some

other event or the hysteresis mechanism as defined in the RMON specification [Wal]. The

mechanism by which small fluctuations are prevented from causing alarm i~ referred to in

the RMON specification as hysteresis mechanism.

An active temporal model for network management databases

' ' ' ' ' ' a) ' not (e_3 fs eL._l)

~vn: *

111111111111111111 : 111111111

1 12 2 3 3 3 2 21 1121 1 12 2 2 3 3 2 2 3 22 1 1

b)

Figure 3: Specification of Hysteresis Mechanism

531

Hysteresis mechanism is best explained through the Figure 3.a (similar to the figure in

[Sta93], we modify it to suit our purpose). As the rules for the hysteresis mechanism

stipulates only the events marked as stars (*) will be reported. We assume that the events

are reported at each sampling interval. Then the hysteresis mechanism can be specified as

follows.

A large number of interesting event patterns can be specified using ESL as opposed to

programming or hardcoding limited set of rules in the system (like the hysteresis mechanism

only in RMON). For example, if we consider Figure 3, events (such as, server_overload) in the

region 1 may persist for long time. But that persistence event will not be generated by the

hysteresis mechanism, thus leaving no room for taking action to alleviate the problem.

4 Example ECA Specifications

We now provide a number of example specifications of NM functions employing ESL, active and

temporal databases concepts in an unified framework.

532 Part Three Practice and Experience

The SQL query Ql in the rule RLl below defines a server_underutilized (S_U) data pattern

event.

RLl:

Ql:

E: CE4

C:TRUE

A:Ql

GENERATE S_U (HOST, TCPINSEGS) AS

SELECT HOST, TCPINSEGS

FROM MIB_TCP

WHERE HOST_TYPE ='server'

AND (TCPINSEGS- PREVIOUS(TCPINSEGS))

< falling_threshold

Note that, Ql refers to both static configuration data (topology information) and dynamic

MIB data of managed entities. The implementation will evaluate the query over the configuration

database once and filter out the servers. The servers will then be polled for tcplnSegs MIB

variable values and as data arrive the crossing of threshold value will be checked. We assume

that the underlying temporal database supports a temporal operator called previous which

returns the last reported tuple (fetched in the previous poll). ECA rule RLl specifies that the

MIB_TCP tables are polled every two minutes until a deactivate event happens. Event expression

CE4 discussed in the previous section will serve the purpose. We assume that poll{RLJ) event

is generated initially.

Ql can be specified as a trace collection which collects the traces in a table. Rule RL2 defines

this trace collection.

RL2:

Q2:

E:CE4

C:TRUE

A:Q2

INSERT INTO SERV_TCP_TRACE (HOST, TCPINSEGS)

SELECT HOST, TCPINSEGS

FROM MIB_TCP

WHERE HOST_TYPE ='server'

The following rule RL3 then specifies the generation of the S_U events. The insert is a

database manipulation event.

RL3:

An active temporal model for network management databases

Deactiva.teRLl: S_UEventGenerator

Server Underutilized Event (S_U)

Persists 6 Minutes
Poll. Activate RL4 : Congestion Checking

(PSU)

Store PSU as InteiVals

Figure 4: Diagramatic View of RL5

E: insert (SERV _TCP _TRACE, HOST, TCPINSEGS)

C: (TCPINSEGS- PREVIOUS(TCPINSEGS))

::; falling_threshold

A: generate (S_U (HOST, TCPINSEGS))

533

We will now write an ECA rule (RL5) for the specification of the following. Watch for the

persistence of S_U events for, say, 6 minutes. If it persists, then check for congestion on the

routers that are on the way between the server and its clients. To detect congestion start evalu­

ating for 1 hour every 2 minutes the corresponding data pattern event query (the corresponding

rule RL4 is not shown for brevity). Deactivate the generation of S_U events and store the per­

sistence of S_U events (PSU) as intervals in the database. A diagramatic view of RL5 is shown

in Figure 4.

RL5:

E: PSU (int (Self), H, V) =persist (S-U(H, V), 6 minute)

C:TRUE

A: Q5 AND

generate (poll (RL4)) AND

generate (deactivate (RLl)) AND

INSERT INTO SERV _UNDUTILPERSIST PSU

Query Q5 filters out the routers between the server and its clients. We do not show query

Q5 here. Similar query can be found in [CH93]. The routers found are passed to the query

portion of RL4. PSU is defined as an interval. The interval is calculated using the int operator

on the persistent composite event PSU. Operator int returns the timestamps of the end points

of an interval.

5 Related Work

The database issues for network management similar to the ones discussed in this paper have

also been considered in [WSY91]. We provide a more uniform and consistent framework for

specifying data pattern events and trace collections, that is, as ECA rules. They provide a

534 Part Three Practice and Experience

separate mechanism for specifying trace collections. The main difference with our work is in

our proposed composite event specification language, ESL. Their work lacks such an event

specification language. As a result, polling and other composite events can not be specified in

their system, that could control uniformly the collection of data pattern events, traces and other

actions, as is done in our system. We also provide a consistent mechanism to collect events and

traces in a temporal database. The notion of persistence is mentioned in their work, but no formal

definition of it is provided. The MANDATE MIB project [HBNRD93] also addresses similar

network management database issues. But the proposal for a unified framework for incorporating

active and temporal databases concepts in a network management database similar to ours is

lacking in their work. The work in [Shv93] discusses only the issues of a static (historical)

temporal database for network management data.

6 Conclusion

We have proposed a model for network management database where the network management

functions are specified as Event-Condition- Action rules. In proposing the model we have consid­

ered unique properties of NM data and functionalities. We have designed a temporal event and

interval specification language that allows us to specify composite or (temporally) interrelated

events.

Work is in progress to implement efficiently the ESL operators. Visual specification of ESL

expressions and visualization of event detection process will be helpful in many application

domain, including network management. We are working towards that goal. As a future work

we plan to incorporate real-time or hard-deadline issues in the language.

Acknowledgments

I would like to thank Prof. Alberto Mendelzon of University of Toronto for his fruitful suggestions

and support. I also thank Prof. William Cowan of University of Waterloo for his support. I

specially thank Michael Sam Chee of Bell Northern Research, Ottawa, Canada for his many

suggestions.

The work was supported by The Natural Sciences and Engineering Research Council of

Canada and the Information Technology Research Centre of Ontario.

References

[CH93)

[ea93)

[ea94)

[GD94)

Mariano Consens and Masum Hasan. Supporting network management through declara­
tively specified data visualizations. In H.G. Hegering andY. Yemini, editors, Proceedings

of the IEEE/IFIP Third International Symposium on Integrated Network Management, III,

pages 725-738. Elsevier North Holland, April 1993.

C. Jensen et. a!. Proposed temporal database concepts - may 1993. In Proceedings of the

International Workshop On an Infrastructure for Temporal Databases, pages A-1-A-29,
June 1993.

N. Pissinou et. a!. Towards an infrastructure for temporal databases, report of an invitational
ARPA/NSF workshop. Technical Report TR 94-01, Department of Computer Science,
University of Arizona, M:<rch 1994.

S. Gatziu and K. Dittrich. Detecting composite events in active database systems using
petri nets. In Proceedings of the Fourth International Workshop on Research Issues in Data

Engineering, pages 2-9, February 1994.

An active temporal model for network management databases 535

(GJS92] N. Gehani, H. Jagadish, and 0. Shmueli. Composite event specification in active databases:

Model and implementation. In Proceedings of the 18th International Conference on Very

Large Data Bases, 1992.

(Has94] Masum Z. Hasan. Active and temporal issues in dynamic databases. PhD Thesis Proposal,

Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, 1994.

(HBNRD93] J. Haritsa, M. Ball, J. Baras N. Roussopoulas, and A. Datta. Design of the MANDATE MIB.
In H.G. Hegering andY. Yemini, editors, Proceedings of the IEEE/IFIP Third International

Symposium on Integrated Network Management, III, pages 85-96. Elsevier North Holland,

April1993.

(MD89] D. McCarthy and U. Dayal. The architecture of an active data base management system. In

Proceedings of the ACM-SIGMOD 1989 International Conference on Management of Data,

pages 215-224, 1989.

(Shv93] A. A. Shvartsman. An historical object base in an enterprise management director. In
H.G. Hegering and Y. Yemini, editors, Proceedings of the IEEE/IFIP Third International

Symposium on Integrated Network Management, III, pages 123-134. Elsevier North Holland,

April1993.

(Sta93] W. Stallings. SNMP, SNMPv2, and CMIP, The Practical Guide to Network Management

Standards. Addison-Wesley Publishing Company, Inc., 1993.

(Wal] S. Waldbusser. Remote network monitoring management information base. RFC 1271,

Carnegie Mellon University.

[WSY91] 0. Wolfson, S. Sengupta, andY. Yemini. Managing communication net'Yorks by monitoring
databases. IEEE Transactions on Software Engineering, 17(9):944-953, September 1991.

About the Author

Masum Z. Hasan is a Research Associate at the Computer Systems Research Institute, Univer­

sity of Toronto and a Ph.D candidate in the Department of Computer Science, University of

Waterloo. He obtained BEng, MEng in Computer Engineering from former USSR and MMath

in Computer Science from University of Waterloo. His research interests are in active tempo­

ral databases, network management, networked document browsing/searching, distributed and

parallel programming environment, visualization. Mr. Hasan has worked for industry both in

Bangladesh and Canada.

