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Active Vibration Control Strategy to Prevent

Nonlinearly Coupled Rotor-Stator Whirl Responses

in Multi-mode Rotordynamic Systems
Chakkapong Chamroon, Matthew O. T. Cole and Theeraphong Wongratanaphisan

Abstract—This paper describes an active control method to
prevent unwanted nonlinear vibration response modes of a rotor-
dynamic system. Nonlinear stiffness of components that support
or surround a machine rotor can cause a response branch that
extends critical vibration (resonance) over a wide interval of
rotational speeds. Within this interval, jump transitions between
alternative low amplitude and high amplitude response modes
become possible. This paper explains how such behavior can
be eliminated by applying control forces to the rotor based on
dynamic feedback of strains measured in the stator structure.
An optimal model-based controller synthesis is considered that
combines a Lur’e-type Lyapunov function with a quadratic cost
measure to penalize controller gain and bandwidth. Results
are presented for an experimental flexible rotor system where
nonlinear rotor-stator interaction occurs through a bearing with
radial clearance. An active magnetic bearing applies control
forces to the rotor in a separate plane. The results show the
control technique can eliminate jump response modes and can
significantly reduce mechanical stress associated with rub inter-
action of the rotor and stator. The influence of key parameters
in the model and controller formulation are shown.

Index Terms—Rotordynamics, nonlinear vibration, rotor stator
rub, magnetic bearing

I. INTRODUCTION

V IBRATION in rotating machines has various causes.

These include mass-eccentricity of rotor parts, misalign-

ment of couplings or sleeves, trapped fluid and thermal bends.

Typical vibration involves synchronous orbital motions of the

rotor around the axis of rotation and is most severe at critical

speeds, i.e. when the frequency of rotation coincides with the

natural frequency of vibration for a structural mode.

Linear response behavior is a common assumption for rotor

balancing procedures as well as established methods for active

control of unbalance-induced vibration [1]-[6]. Importantly,

however, when bearings or other supporting parts have non-

linear stiffness characteristics (or when radial clearances are

present within parts such as bearings, bushes or seals), a jump

to a nonlinear vibratory state can occur even when residual

excitation of the rotor is relatively low. This paper considers
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a problematic case of such bistable response behavior. Specif-

ically, it considers how the application of control forces to a

rotor can prevent critical states of coupled rotor-stator whirl.

For passive systems, an analysis of this problem was first

reported by Black [7] and was more recently extended for

the case of multiple rotor-stator interaction planes in [8].

Previous work on active control of vibration in nonlinear

rotordynamic systems covers quite diverse situations. Unbal-

ance compensation in a single-disk rotor with nonlinear sup-

ports was considered in [9]. Adaptive control of synchronous

vibration for a rotor supported by magnetic bearings when

contacting with touchdown bearings is covered in [10]. The

use of actuated clearance bearings has been proposed for

alleviating rub interaction [11], and for recovering stable

levitation in magnetic bearing systems [12]. In other work,

destabilizing nonlinear effects are accounted for in controller

designs through linear approximations [13]-[16].

For the control problem considered herein, linearization

techniques cannot be applied. Instead, dynamic feedback of

measured variables must be used to intrinsically alter the

nonlinear dynamics of the system and thereby achieve global

stabilization of a desired vibration response mode.

II. CONSIDERED NONLINEAR VIBRATION PROBLEM

A flexible or compliantly supported rotor may be prone to

contact interaction with surrounding/supporting parts at certain

locations along its length, as shown schematically in Fig. 1.

Vibration due to unbalance involves lateral deflection of the

rotor z(t) with an orbital motion that is synchronous with

rotation. Interaction is avoided if the orbit radius satisfies

ρ = ‖z‖/c < 1 where c is the radial clearance. In this

situation, however, the possibility of an alternative vibration

response mode involving coupled rotor-stator whirl may also

exist. This can be shown graphically by a whirl mode map

[8]. Fig. 2 shows an example map for a rotor having critical

speed Ωc (for linear vibration). For a given rotational speed

Ω, a jump response can occur if ρ exceeds the critical value

indicated by the boundary Γ(Ω). Thus, a linear response

within region A has the potential to jump to an alternative

response within region B. Typical linear response curves

CP and CQ are also shown in Fig. 2. Curve CP , which

corresponds to unbalance vibration only, avoids region A

and is therefore a unique response. For curve CQ, which

corresponds to unbalance plus geometric eccentricity, there is a

speed interval where a jump in vibration amplitude from region
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Fig. 1. Schematic diagram of a flexible rotor-stator system showing cross-
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Fig. 2. Illustrative whirl mode map showing potential for nonlinear jump
behaviour in rotor synchronous vibration

A to region B is possible. Example degenerate response modes

are indicated by points Q1 and Q2. Note that a jump transition

between alternative response modes must usually involve some

transient disturbances acting on the system, examples of which

will be given later.

When the system is rotationally symmetric (radially

isotropic), a whirl mode map can be calculated directly from

frequency response data for the rotor-stator structure. For an

initial linear response with orbit radius ρ < 1, the magnitude of

rotor-stator interaction force for an alternative response mode

involving constant rub is given by (see [7] or [8]):

‖f‖ =
− cos∠H(Ω) +

√
ρ2 − sin2 ∠H(Ω)

|H(Ω)|
(1)

Here, H(Ω) is the dynamic compliance (polar receptance) of

the rotor-stator structure in the plane of interaction. A jump

response exists only if ‖f‖ is real and positive, requiring that

ρ ≥ sin∠H(Ω), cos∠H(Ω) < 0 (2)

For a typical multi-mode rotor system, cos∠H(Ω) < 0 will

hold for a finite speed interval above each critical speed.

Region A then has a U-shaped boundary, as seen in Fig. 2.

For machines with active bearings, or some form of active

structure, it is possible that controllers can be designed to

eliminate the region A (and thus B) so that critical vibration

as a nonlinear jump response is avoided. An initial study of

this problem considered static feedback control of a magnetic

bearing [17]. This approach is not generally applicable to

multi-mode systems if actuation forces and nonlinear elements

are not collocated. Also, static feedback lacks high frequency

attenuation properties and this incurs a risk of control force

saturation if hard impacts occur between the rotor and sur-

round.

III. CONTROLLER DESIGN

A. Modeling and Controller Formulation

A state-space model for lateral vibration of a rotor-stator

structure may be considered in the form:

ẋ = Ax+Buu+Bff +Bdd (3)

f = β(z), z = Czx (4)

Here, the state vector x comprises linear displacement and

velocity states for the structure in either local or generalized

coordinates. The vector u represents control forces applied

by active elements, while d models disturbances acting on

the structure (nominally unbalance forces). The vector f =
[fx fy]

T represents internal forces used to model nonlinear

interaction of the rotor and surround. These forces are assumed

to arise at an interface/component having elastic properties and

so depend on local relative displacement states z = [zx zy]
T

through a static (time-invariant) mapping β : R2 → R
2. A

linear model with the form (3) can be derived theoretically

using finite element techniques, which are well-covered in the

rotordynamics literature (see [18] or [19]). Note that (3) and

(4) may also be appropriate for an actively controlled system

if linear controller dynamics are incorporated in (3). In what

follows it will be assumed that the ‘uncontrolled’ linearized

model ((3) with f = 0) is stable, i.e. A is a stability matrix.

To further specify β it will be assumed that, within the plane

of interaction, both the rotor and surround are circular in cross-

section. A vector is then defined for the rotor radial deflection

(penetration) beyond the clearance, as shown in Fig. 1:

p =

{
0, ‖r‖ ≤ c
(1− c/‖r‖)r, ‖r‖ > c

(5)

where r = z + e, with e being the fixed position of the

rotor equilibrium point relative to the clearance circle center.

Adopting a general compliant contact model, the interaction

force may be defined in terms of a bounded stiffness relation:

f = −κ(‖p‖)p, 0 ≤ κ(‖p‖) < k (6)

Thus, k specifies an upper bound for ‖f‖/‖p‖. Further

discussion of this type of nonlinear interaction model and its

effect on rotor vibration behavior can be found in [8] and [19].

It can be verified using (5) and (6) that, provided ‖e‖ < c,
the following constraint holds whenever f 6= 0:

fTf + kfTz < 0 (7)
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As it is difficult to treat the nonlinear relations (5) and (6)

explicitly within a controller design procedure, the constraint

(7) may be used in an alternative approach [19]: if stability

can be established subject to (7), it is also implied for the

specific case defined by (5) and (6).

Consider now the structure in Fig. 3 with controller

ẋc = (A+BuK)xc +Bff

u = Kxc
(8)

For this form of controller, the states xc can be viewed as

estimates of the components of x due to the interaction force

f . Note that implementation requires that measurement, or

inference, of the interaction force is possible. This will be

discussed later. The controlled dynamics are given by (4) and
[

ẋ

ẇ

]
=

[
A+BuK −BuK

0 A

] [
x

w

]
+

[
Bf

0

]
f

(9)

where w = x−xc. Given that A is a stability matrix, w will

converge to zero. Therefore, a stability-performance analysis

can be based on the following reduced-order model:

ẋ = (A+BuK)x+Bff

f = β(z), z = Czx

y = Cyx

(10)

The output y is defined for the purpose of controller design

and includes weighted components of vibration states and

control forces:

y =

[
αz
u

]
⇒ Cy =

[
αCz

K

]
(11)

The scalar α ≥ 0 may be selected in the design.

Although alternative, and more general, feedback control

structures could be considered, the scheme described here

has a number of attractive features. Firstly, the use of direct

measurements of the contact force circumvents the need for an

exact nonlinear model for rotor-stator interaction. In addition:

1) The estimator-based design leads to reduced-order sta-

bility analysis and controller synthesis problems.

2) The parametrization (and synthesis) of controller solu-

tions is made over the gain matrix K.

3) The linear part of the system dynamics has a feed-

forward structure and is intrinsically stable.

4) The controller acts only when limits of linear behavior

are exceeded. Therefore, an initial system/controller

design can be made based on linear operation and the

globally stabilizing controller applied in parallel without

affecting performance during linear operation.

The following subsections deal with how to obtain a suitable

stabilizing gain matrix K for the proposed controller. Section

III.B develops mathematical conditions for global stability

of a fixed equilibrium point for the controlled system (10).

These conditions may be viewed as minimum requirements

for stability. However, they do not guarantee global stability of

a forced response, which must be established if the possibility

of a jump response is also to be eliminated. Therefore, section

III.C extends the stability conditions to the case of global

stabilization of a periodic forced response. These are the actual

conditions used in the synthesis of the controller gain K.

B. Conditions for Global Stability of a Fixed Equilibrium

The controller design will be made subject to minimization

of the generalized H2 norm of the nonlinear system (10). This

is evaluated as the worst-case L2 norm of the output signal y

over a specified set of initial values for the state vector (arising

nominally due to the injection of impulse disturbances when

t = 0). The norm-bound condition ‖y‖2 < γ holds if

lim
τ→∞

∫ τ

0

yTy dt < γ2 (12)

It is well known that this condition holds if there exists a

Lyapunov function V (x) satisfying [20], [21]

V̇ (x) + yTy < 0 ∀x 6= 0 (13)

V (x(0)) < γ2 (14)

A Lyapunov function will be considered in the form

V (x) = xTPx− 2ν

∫
z

0

fTdz (15)

This function combines a quadratic term in the system states

with a 2-dimensional Lur’e-type term associated with the

elastic energy storage at the rotor-stator contact (as proposed in

[19]). The condition V (x) > 0,x 6= 0 holds if P = P T > 0
and ν ≥ 0. These parameters must be determined so that

(13) and (14) are also satisfied. To account for the nonlinear

relation between f and z, the constraint (7) may be augmented

with the constraint (13) via the scalar S−procedure [20]. The

resulting requirement is that σ > 0 exists such that

V̇ (x)−2σ(k−1fTf+fTz)+yTy < 0 ∀

[
x

f

]
6= 0 (16)

where V̇ (x) = ẋTPx+ xTP ẋ− 2νfT ż.

The stability condition (16) has the quadratic form

[
x

f

]T
M0

[
x

f

]
< 0 ∀

[
x

f

]
6= 0 (17)
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which is equivalent to

M0 =

[
M11 M12

M21 M22

]
< 0 (18)

where, with the assumption CzBu = 0,

M11 = P (A+BuK)+(A+BuK)TP+KTK+α2CT
z Cz ,

M21 = MT
12

= BT
f P

T−νCzA−σCz , M22 = −2σk−1I .

For a given initial condition x(0) = x0, assumed to be

interaction-free (i.e. f(0) = 0), we have V (x0) = xT
0
Px0.

Therefore, from (14), the H2 gain-bound is satisfied if

xT
0
Px0 − γ2I < 0 (19)

C. Conditions for Global Stability of a Steady Orbit

In this section we consider that there is some system

response xd(t) arising due to the disturbances d(t) and that

this response is contact-free. Thus, x(t) = xd(t) satisfies (3)-

(4) with f(t) = 0. We will now derive conditions that can

determine whether this response is also globally stable, thereby

eliminating the possibility of an alternative (jump) response

for which f(t) 6= 0. This requires that all state trajectories

converge to xd(t) (including trajectories for which f 6= 0).

Defining X(t) = x(t)−xd(t) and W (t) = w(t)−xd(t), the

global dynamics of the controlled system are given by

[
Ẋ

Ẇ

]
=

[
A+BuK −BuK

0 A

] [
X

W

]
+

[
Bf

0

]
f

f = β(z), z = CzX + zd (20)

where zd(t) = Czxd(t).
Although the system defined by (20) is time-varying (due to

the dependence of z(t) on zd(t)), Lyapunov’s direct method

can still be readily applied [21]. To establish global stability of

xd(t), meaning that X(t) → 0, t → ∞ for all X(0) = X0,

a Lyapunov function is defined in the form

V (t,X) = XTPX − 2ν

∫
z

zd

fT dz (21)

So that

V̇ (t,X) = XTPẊ + Ẋ
T
PX − 2νfT ż (22)

Here, the variable ż depends on both X and zd(t). It can be

shown (see Appendix A) that if zd is a circular orbit then, for

the form of β defined by equations (5) and (6),

fT ż = fT (CzẊ +ΩΠCzX), Π =

[
0 1
−1 0

]
(23)

Similar to the procedure in Section III.C, the basic stability

condition V̇ (t,X) < 0 can be combined with the constraint

(7) and the H2 norm-bound (12) to give the condition

N0(Ω) =

[
N11 N12

N21 N22

]
< 0, (24)

N11 = P (A+BuK)+(A+BuK)TP+KTK+α2CT
z Cz ,

N21 = NT
12

= BT
f P

T − ν(CzA+ΩΠCz)− σCz ,

N22 = −2σk−1I .

To allow a controller solution to be obtained using standard

LMI solvers, bilinear terms can first be eliminated from (24),

as detailed in Appendix B. The resulting condition is

Ñ0(Ω) =




Ñ11 Ñ12 Ñ13

Ñ21 Ñ22 Ñ23

Ñ31 Ñ32 Ñ33


 < 0, (25)

Ñ11 = AS + SAT −BuB
T
u ,

Ñ21 = Ñ
T

12
= ζBT

f − η(CzA+ΩΠCz)S −CzS,

Ñ22 = −2ζk−1I , Ñ31 = Ñ
T

13
= CzS, Ñ33 = −α−2I.

For a nominal angular speed Ω, the optimal controller is

found by solving the following LMI optimization problem:

Controller synthesis problem. Minimize γ over S, ζ and

η subject to S = ST > 0, ζ > 0, η > 0, Ñ0(Ω) < 0 and
[

−γ2I XT
0

X0 −S

]
< 0.

From the solution to this problem, the optimal controller

gain is calculated as K∗ = −BT
uS

−1.

IV. TEST SYSTEM

A. Experimental Rotor-AMB System

An experimental flexible rotor system has been constructed

for testing and evaluating active vibration control methods

(Fig. 4). The rotor consists of a 10 mm diameter shaft of length

700 mm supported by ball bearings at both ends. Two disks

are mounted on the shaft. An active magnetic bearing (AMB)

is located at disk 1 (0.36 kg). Disk 2 (1.12 kg) may undergo

contact interaction with a surrounding stator part having mass

0.40 kg and compliantly supported by four horizontal rods

(Fig. 5(a)). A ball bearing with radial clearance of 600 µm

to the stator is fitted on disk 2, the main purpose of which is

to reduce tangential friction force at the rotor-stator interface

and thereby prevent friction-driven response modes (which

are not the focus of the present study). A flexible coupling

connects the shaft to a timing pulley and belt, driven by a d.c.

motor. The designed speed range is 0-3,600 rpm (0-60 Hz).

Non-contact displacement sensors are installed to measure

rotor lateral vibration at both disks. Synchronous vibration is

associated with physical unbalance of the two disks. Although

the exact unbalance condition is unknown, eccentricity of each

disk is of the order of 100 µm (∼ 20% of the clearance).

The AMB is a standard design having opposing pole pairs

with coils driven by PWM switching amplifiers. Proportional

and derivative feedback of displacements measured at disk 1

is used to overcome the negative stiffness characteristics of

the bearing and achieve moderate damping of rotor flexure.

The AMB is used to apply additional control forces from

the globally stabilizing feedback controller. These forces are

limited to below 15 N to ensure linear operation of the AMB.

B. Interaction Force Sensing Device

As the proposed control strategy requires measurements

of rotor-stator interaction forces, a specially designed contact
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force sensor was manufactured and fitted within the stator unit.

This device consists of a contact ring (having clearance to

rotor) mounted on four sensing elements, as shown in Fig. 5.

Each sensing element consists of one cantilever with strain

gauges, connected in series with another cantilever designed

to give compliance to the element in an orthogonal (non-

sensing) direction. The four sensing elements are arranged

circumferentially in opposing pairs to maximize symmetry

of the device. Measured strains are converted to lateral (x-

y) force components via a linear transformation (identified by

calibration procedures). The contact ring and sensing elements

are designed to have low mass in order to maximize bandwidth

of the device, which is limited by the natural modes of

vibration of the contact ring. Finite element modeling was

used to optimize sensitivity of the device while maintaining a

sufficiently high natural frequency (> 400 Hz). The maximum

force that the device can withstand is estimated to be 50 N.

V. NUMERICAL ANALYSIS AND SIMULATION RESULTS

The results in this section are based on a numerical model

of the test rig defined in the form of (3)-(6). Model parameters

were determined using frequency response data for the rotor

and stator structures obtained by impact tests. The resulting

state-space model has a total of twelve states and includes

first and second modes of vibration of the rotor (with natural

frequencies of 22 Hz and 75 Hz and damping ratios of
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Fig. 6. Whirl mode map for test rig calculated from model. Region A is
calculated from H(Ω), as given by equation (26)

0.023 and 0.024 respectively). The stator is modeled as a

compliantly supported lumped mass with natural frequency

of vibration 120 Hz and damping ratio 0.008. It is important

to recognize that all three structural modes contribute to the

dynamic response during rotor-stator interaction and must be

accounted for in the controller design. The contact stiffness

for rotor-stator interaction κ depends on the radial stiffness of

the force-sensor, which is estimated to be 39 kN/m (although

only an upper limit is required for the controller synthesis).

For the uncontrolled system, the dynamic compliance of the

rotor-stator structure H(Ω) can be calculated according to

H(Ω) =
[
1 0

]
T (jΩ)

[
1 −j

]T
+ k−1 (26)

where T (jΩ) = Cz (jΩI −A)
−1

Bf . From equations (2),

calculation of the whirl mode map shown in Fig. 6 is then

possible. This indicates that a jump response is possible for

rotational frequencies between 22 and 37 Hz.

Controllers were synthesized using the methodology de-

scribed in Section III. A fixed operating speed of 28 Hz was

considered for the synthesis, which falls within the predicted

interval for jump response. Predicted performance of the

controllers can be seen clearly from the hysteresis plots in

Fig. 7. These show how the rotor vibration changes as the

level of unbalance disturbance is slowly increased and then

decreased. For the uncontrolled system there is a large jump

in amplitude when the orbit radius first exceeds the clearance.

The jump response persists until unbalance returns to a low

level. The interval where two possible response modes can

occur is indicated by δ. This corresponds to the vertical extent

of region A, as shown in Fig. 6. Three different controllers

were synthesized with different values of the output weighting

α, but using the same value for the contact stiffness bound

(k = 4×104 N/m). All the controllers eliminate jump response

behavior for operation at 28 Hz and, though not shown,

completely eliminate region A of the whirl mode map.

To demonstrate how a jump response can occur in the

uncontrolled system, results from time-step simulation are

shown in Fig. 8(a). These results are for steady operation

at a frequency of 28 Hz. The rotor unbalance disturbance
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d is initially at a low level so that rotor vibration is well

within clearance limits. A temporary increase in unbalance

after 0.5 seconds causes rotor-stator contacts and this results

in a jump to high amplitude vibration involving coupled rotor-

stator whirl. The unbalance force returns to the original level

after a further 0.5 seconds, but the coupled whirl response

persists indefinitely. In the controlled case (Fig. 8(b)), the jump

response is prevented and the level of contact forces during

interaction is greatly diminished.

Although, in this study, a temporary increase in unbalance

disturbance is used to induce a jump response, other situations

can produce the same outcome. For example, an impulsive

disturbance applied to the stator structure or motion of the

system foundation have the potential to cause rotor-stator con-

tacts leading to sustained coupled whirl. Even when operating

active unbalance control strategies [1]-[6], if there is a sudden

change in unbalance of the rotor (e.g. due to a blade-loss event)

then it may not be possible to suppress the initial vibration

sufficiently to prevent rotor-stator contacts.

Figure 7 indicates that the value of α used in the controller

synthesis influences the level of contact force when interaction

occurs. To explain this influence, the basic equation for jump

response prediction (1) may be considered. The existence of a

jump solution depends on the phase of H(Ω). However, when

contact is unavoidable (ρ > 1), the steady-state contact force

depends on the magnitude of H(Ω). As the design weighting

α is used to penalize ‖z‖, increasing α tends to reduce the

magnitude of H(Ω) and thus give larger contact forces.

The dynamic compliance magnitudes |H(Ω)| for controllers

synthesized with different values of α are presented in Fig.

9. These are calculated from the transfer function matrix

T (jΩ) = Cz (jΩI −A−BuK)
−1

Bf . The plots confirm

that, for the selected frequency, |H(Ω)| is highest with α =
105. Although all these controllers have low pass properties,

increasing α also tends to increase bandwidth and gain. For a

thorough design procedure it would be recommended that α
and k are considered as design variables, with suitable values
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selected by analysis and simulation. For the results in the

remainder of the paper, the controller designs were based on

α = 0 and k = 4× 104 N/m.

VI. EXPERIMENTAL RESULTS

A. Results for Supercritical Operation

Experimental results for identification of the hysteresis be-

havior during increasing and decreasing unbalance are shown

in Fig. 10. Separate graphs show uncontrolled and controlled

cases. For these tests, the rotor was operating at a constant

rotational frequency of 28 Hz and a simulated unbalance force

applied using the magnetic bearing. This acts in addition to

the physical unbalance of the rotor. For the uncontrolled case

(Fig. 10(a)), the interval for occurrence of a jump response δ is

smaller than predicted but, overall, the results show reasonable

agreement with the simulations (Fig. 7). The jump response

can occur at low levels of excitation but causes high levels of

contact forces. The results for operation with control indicate



7

0 2 4 6
0

0.5

1

1.5
or

bi
t r

ad
iu

s 
(m

m
)

0 2 4 6
0

20

40

co
nt

ac
t f

or
ce

 (
N

)

added unbalance (N)

0 2 4 6
0

0.5

1

1.5

0 2 4 6
0

20

40

added unbalance (N)

(a) NO CONTROL (b) WITH CONTROL

Fig. 10. Variation of orbit radius and contact force with unbalance level for
experiments with steady-state operation at 28 Hz. (a) Uncontrolled case (b)
Controlled case (α = 0)

0 0.5 1 1.5
-10

0

10

d x (
N

)

0 0.5 1 1.5
-2

0

2

zR x
 (

m
m

)

0 0.5 1 1.5

-20

0

20

f x (
N

)

time (s)

0 0.5 1 1.5
-10

0

10

0 0.5 1 1.5
-2

0

2

0 0.5 1 1.5

-20

0

20

0 0.5 1 1.5
-10

0

10

time (s)

u x (
N

)

added disturbance added disturbance

rotor deflection rotor deflection

contact force contact force

control force

(b) WITH CONTROL(a) NO CONTROL

Fig. 11. Experimental transient test at 28 Hz involving temporary increase
in unbalance: (a) Uncontrolled case (b) Controlled case

that the jump response is eliminated and that steady-state

interaction forces are much lower than without control.

Figure 11 shows experimental results for transient response

tests that aim to replicate the time-step simulations of Fig. 8.

In practice, the controller was effective in preventing a jump

to the alternative whirl response that occurred without control.

Discrepancies between the experimental and simulation results

are believed to be due mainly to the non-isotropic properties

of the experimental system. In particular, the magnetic bearing

and force sensing device have a cartesian structure which

introduces some radial anisotropy. This causes fluctuations

in the radial force during rub between the rotor and stator,

which is different to the smooth continuous rub seen in the

simulations. An additional cause of inaccuracy may be the ide-

alized nonlinear interaction equations (5) and (6). Importantly,

however, the controller synthesis involves a robust approach

in the sense that an exact model of rotor-stator interaction is

not used and this is believed to contribute to the good control

performance seen in the experiments.
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Fig. 12. Whirl mode map for test rig with modified stator dynamics (low
frequency stator natural mode)

B. Results with Modified Stator Dynamics

It is important to verify that the proposed control technique

can deal with instabilities associated with structural modes of

the stator, as well as those of the rotor. As control forces are

not applied directly to the stator, the stator dynamics are not

controllable by feedback. Nonetheless, the presence of a stator

mode with natural frequency within the running speed range

can lead to amplitude jump and coupled whirl. To investigate

this issue experimentally, mass was added to the stator unit and

the supporting rods extended so that the stator mode natural

frequency decreased from 120 Hz to 30 Hz. For this situation,

two operating ranges are predicted for possible jump response,

as shown by the whirl mode map in Fig. 12. The smaller region

(A1) is associated with the rotor natural mode while the larger

region (A2) is associated with the stator natural mode.

Controllers were designed based on the modified system

dynamics and evaluated by transient response tests at a ro-

tational frequency of 34 Hz. For the uncontrolled case, a

temporary increase in unbalance caused a persistent jump

response involving coupled whirl (Fig. 13(a)). Although the

amplitude of rotor vibration did not change significantly, high

amplitude vibration of the stator caused large contact force

values. With control, amplitude jump was prevented and the

rotor returned to the original vibration state (Fig. 13(b)).

These results confirm that the controller design can deal

with flexural modes associated with either the rotor or stator

structure (or both). They also provide indication that the

control methodology may be applicable to systems where

control forces are not applied through an active bearing but

via other forms of actuation incorporated within the machine

structure.

VII. CONCLUSIONS

A model-based controller design based on dynamic feed-

back of measured rotor-stator interaction forces has been

developed that is effective in eliminating jump-response modes

in the vibration of a nonlinear rotordynamic system. The

design approach is able to deal with a number of complicat-

ing system features including flexible multi-mode dynamics,

noncollocation of actuators and sensors and limited actuator
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capacity/bandwidth. For industrial application, there are still

some issues that would need to be addressed, particularly, how

best to integrate sensors in a real machine structure so that

rotor-stator interaction forces can be measured for use by the

controller. If a number of sensing locations can be incorporated

in a stator structure then the controller could deal with multiple

potential interaction planes. Such capability may prove useful

for improving safety and performance of industrial machines.

APPENDIX A

ROTATING TRANSFORMATION

Under the assumption that the response in the contact plane

involves a circular orbit, we may write zd(t) = T ω(t)z0

where z0 is a static vector and T ω(t) is a rotation matrix:

T ω(t) =

[
cosωt − sinωt
sinωt cosωt

]
(27)

Note that T T
ωT ω = I and Ṫ ω = ωΠTT ω with Π as given in

(23). Defining transformed variables z̄ = T T
ωz and f̄ = T T

ωf

then, from the given form of (6), it follows that

f̄
T ˙̄z = fT ż + ωfT

Πz (28)

Under the assumption e = 0, the second term is always zero.

Now we may also write z̄ = T T
ωCzX + z0 and so ˙̄z =

T T
ωCzẊ + ωT T

ωΠCzX . Thus,

fT ż = f̄
T ˙̄z = fTT ω ˙̄z = fT (CzẊ + ωΠCzX) (29)

APPENDIX B

LMI TRANSFORMATIONS

Defining, from (24)

[
Q

11
Q

12

Q
21

Q
22

]
=

[
P−1

0

0 σ−1I

]T
N0(Ω)

[
P−1

0

0 σ−1I

]

With substitutions S = P−1, K = LS−1, ζ = σ−1, η =
νσ−1 then

Q
11

= AS+SAT +BuL+LTBT
u +LTL+α2SCT

z CzS,

Q
21

= QT
12

= ζBT
f − η(CzA+ΩΠCz)S −CzS,

Q
22

= −2ζk−1I .

By a completion of squares argument Q
11

is minimized

with L = −BT
u . Then, by Schur complement, (25) is obtained.
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