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Received: 31 December 2008 / Accepted: 5 October 2009 / Published online: 26 February 2010

� The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract An activity monitoring system allows many

applications to assist in care giving for elderly in their

homes. In this paper we present a wireless sensor network

for unintrusive observations in the home and show the

potential of generative and discriminative models for rec-

ognizing activities from such observations. Through a large

number of experiments using four real world datasets we

show the effectiveness of the generative hidden Markov

model and the discriminative conditional random fields in

activity recognition.

Keywords Activity recognition � Machine learning �
Wireless sensor networks

1 Introduction

As the number of elderly people in our society increases so

does the need for assistive technology in the home. Elderly

people run into all sorts of barriers in performing their daily

routines as they get older. Activities of daily living

(ADLs), such as bathing, toileting and cooking, are good

indicators of the cognitive and physical capabilities of

elderly [10]. Therefore, a system that automatically rec-

ognizes these activities allows automatic health monitoring

[3, 18, 19, 26, 35], evidence-based nursing [7] and provides

an objective measure for nursing personnel [1, 36]. Such a

system can also be used to support people with dementia by

reminding them which steps to take to complete an activity

[24]. An activity monitoring system is therefore a crucial

step in future care giving.

An activity monitoring system consists of sensors that

observe what goes on in the house and a recognition model

to infer the activities from sensor data. In previous work a

variety of sensing modalities has been used. One approach

is to tag a large number of objects in a house with RFID

tags. An RFID reader in the form of a bracelet is worn by

the user to detect which objects are used [6]. The observed

objects are used as input for activity recognition [12, 21].

Another approach is to use video. Duong et al. [5] use four

cameras to capture a scene from different angles. From the

videos they extract the location of a user and use it for

activity recognition. Wu et al. [37] use a single camera

combined with an RFID bracelet. Experiments compare the

performance of a model using only video and a model

using both video and RFID. The results show equal per-

formance suggesting RFID does not add any information.

A similar conclusion can be drawn from Logan et al. [16]

in which RFID is compared to sensors installed in the

Placelab. The Placelab is a custom-built house equipped

with several hundred wall-mounted sensors, such as reed

switches on doors and cupboards, temperature sensors and

water flow detectors [9]. Both the RFID bracelet and the

wall-mounted sensors were used to record a large dataset

annotated with activities. The performance of a naive

Bayes classifier using only wall-mounted sensors is higher

than the performance of the same model using only RFID

for almost all activities in this dataset [16].

Although RFID does not seem to give very good results,

both video and wall-mounted sensors appear to be suitable

sensing modalities. However, because an activity moni-

toring system is installed in a home setting it is important

that a non-intrusive sensing modality is used. Because the

acceptance of video cameras in a home is still questionable,
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we do not use video. Furthermore, to deploy the system on

a large scale it needs to be easily installable in existing

houses. Therefore, in this work we use a wireless sensor

network which satisfies these criteria. We provide a

detailed description of our approach and present two

datasets that were recorded using this system.

The most difficult element of an activity monitoring

system is the activity recognition model. This model

interprets the observed sensor patterns and recognizes the

activities performed. This is a challenging task because

sensor data is noisy and the start and end point of an

activity are not known. Typical approaches include the

naive Bayes model in which sensors are modeled inde-

pendently and no temporal information is incorporated

[16, 27]. The hidden Markov model (HMM) adds temporal

information by modeling the transition from one activity to

the next [21, 32]. Several extensions on the classic hidden

Markov model have been introduced, such as tracking a

person’s location and using that information as an addi-

tional input for activity recognition [34]. Further extensions

include a switching semi-hidden Markov model [5] and a

hierarchical hidden Markov model [20]. These are all

generative probabilistic models that require an explicit

model of the dependencies between the observed sensor

data and the activities. However, in activity recognition

there are long-term dependencies which are difficult to

model. This problem occurs in many other fields as well,

which is why recently a discriminative probabilistic model

known as conditional random fields (CRF) has become

very popular [11, 14, 17, 30, 33]. It has been applied to

activity recognition in a home from video [28, 29] and

from wall-mounted sensors [8]. However, in these works

either the datasets were recorded in a lab setting or consist

of only four hours of real world data. In this paper we give

a comparison of generative HMMs and discriminative

CRFs using several real world datasets consisting of at

least 10 days of data.

This paper is organized as follows: Section 2 describes

the difference between generative and discriminative

probabilistic models. Section 3 presents our system for

activity monitoring in detail. Section 4 describes the

experiments, datasets and results for evaluating our

approach. Finally, Sect. 5 sums up our conclusions.

2 Generative versus discriminative models

In temporal classification problems, like activity recogni-

tion, we typically have a sequence of observations x1:T ¼
x1; x2; . . .;xTf g and wish to infer the matching sequence of

class labels y1:T ¼ y1; y2; . . .; yTf g. Generative models, like

hidden Markov models and dynamic Bayesian networks,

deal with this problem by explicitly modeling the relations

between the observations and the class labels. More spe-

cifically, in generative models we express the dependencies

among variables (x and y). For example, the Markov

assumption states that the current state yt depends only on

the previous state yt-1. As a result we can express our

belief in yt based only on yt-1 and ignore all the other

variables (i.e., xt, yt-2, etc.) These dependencies, or rather

the independence assumptions with respect to the other

variables, therefore greatly reduce the number of parame-

ters that specify the model [2, 4]. However, a violation of

dependencies, meaning there exist dependencies in the

actual data that we do not model, can strongly affect the

performance of the model [30].

The use of dependencies can lead to very elegant and

well-performing models when a process is well understood.

However, in complicated tasks it is often difficult to find

the proper dependencies. Discriminative models, therefore,

avoid making independence assumptions among the

observations. The idea is, because observations are always

given during inference anyway, there is no need to model

them explicitly. Instead discriminative models directly

model the discriminative boundary between the different

class labels [2]. The advantage of this approach is that we

can incorporate all sorts of rich overlapping features

without violating any independence assumptions [25].

Conditional random fields (CRF) are temporal dis-

criminative probabilistic models that have this property.

They were first applied in language problems where

features such as capitalization of a word and the pres-

ence of particular suffixes significantly improved per-

formance [11]. Since then they have been applied to a

variety of domains such as gesture recognition [17],

scene segmentation [33] and the activity recognition of

robots in a game setting [30]. They have also been

applied to human activity recognition from video, in

which primitive actions such as ‘go from fridge to stove’

are recognized in a lab-like kitchen setup [28, 29]. A

variation of CRFs known as skip-chain CRFs has been

applied to an activity dataset consisting of 4 h of sensor

data [8]. In an outside setting CRFs have been applied

on activity recognition from GPS data [14] in which

activities such as ‘going to work’ and ‘visiting a friend’

were distinguished.

3 Activity monitoring system

Our activity monitoring system consists of a wireless

sensor network and a recognition model. We give a

detailed description of the wireless network nodes and the

sensors used. Furthermore, we describe the generative

hidden Markov model and the discriminative conditional

random field for activity recognition.
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3.1 Wireless sensor network

Our wireless sensor network consists of wireless network

nodes to which sensors can be attached. The network nodes

are manufactured by RFM and come with a firmware that

includes an energy efficient network protocol allowing a

long battery life. The nodes can be equipped with an analog

or digital sensor and communicate wireless with a central

gateway attached to a server on which all data are logged

(Fig. 1). An event is sent when the digital input changes

state or when a threshold on the analog input is violated.

Sensors we used are: reed switches to measure open–close

states of doors and cupboards; pressure mats to measure

sitting on a couch or lying in bed; mercury contacts for

movement of objects (e.g., drawers); passive infrared (PIR)

to detect motion in a specific area; float sensors to measure

the toilet being flushed; temperature sensors to measure the

use of the stove or shower. Because our system is wireless

the nodes and sensors can be installed using tape, allowing

an easy installation.

We have recorded two datasets using our system. One

consisting of 4 weeks of fully annotated data in the

apartment of a 26-year-old male and another one consisting

of 2 weeks of fully annotated data in the house of a 57-

year-old male. Further details on the datasets can be found

in the Sect. 4.

3.2 Probabilistic models for activity recognition

The sensor data obtained from the wireless sensor network

need to be processed by the activity recognition models to

determine which activities took place. We first present the

notation we use in describing the models, then describe the

hidden Markov model and then the conditional random

fields.

3.2.1 Notation

The time series data obtained from the sensors are divided

in time slices of constant length Dt . We denote a sensor

reading for time t as xi
t , indicating whether sensor i fired at

least once between time t and time t þ Dt , with xi
t 2 f0; 1g

. In a house with N sensors installed, we define a binary

observation vector xt ¼ x1
t ; x

2
t ; . . .; xN

t

� �T
. An activity at

time slice t is denoted by yt with yt2f1. . .Kg, therefore, the

recognition task is to find a sequence of labels y1:T ¼
y1; y2; . . .; yTf g that best explains the sequence of obser-

vations x1:T ¼ x1; x2; . . .;xTf g for a total of T time steps.

3.2.2 Hidden Markov model

The hidden Markov Model (HMM) is a generative proba-

bilistic model consisting of a hidden variable y and an

observable variable x at each time step (Fig. 2). In our case

the hidden variable is the activity performed, and the

observable variable is the vector of sensor readings. Gen-

erative models provide an explicit representation of

dependencies by specifying the factorization of the joint

probability of the hidden and observable variables p(y1:T,

x1:T). In the case of HMMs there are two dependency

assumptions that define this model, represented with the

directed arrows in the figure.

• The hidden variable at time t, namely yt, depends only

on the previous hidden variable yt-1 (Markov assump-

tion [22]).

Fig. 1 Wireless sensor network

installed in a home setting: a

reed switch, float sensor and

pressure mat communicate with

a gateway which stores the

incoming data on a server
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• The observable variable at time t, namely xt, depends

only on the hidden variable yt at that time slice.

The joint probability therefore factorizes as follows

pðy1:T ; x1:TÞ ¼ pðy1Þpðx1jy1Þ
YT

t¼2

pðytjyt�1ÞpðxtjytÞ: ð1Þ

The different factors further specify the workings of the

model. The initial state distribution p(y1) is a probability

table with individual values denoted as follows

pðy1 ¼ iÞ � pi: ð2Þ

The observation distribution p(xt|yt) indicating the

probability that the state yt would generate observation

x_t. In our case each sensor observation is modeled as an

independent Bernoulli distribution, giving

pðxtjytÞ ¼
YN

n¼1

p xn
t jyt

� �
ð3Þ

p xn
t ¼ vjyt ¼ i

� �
¼ ðlinÞvð1� linÞ1�v: ð4Þ

The transition probability distribution p(yt|yt-1)

represents the probability of going from one state to the

next. This is given by a conditional probability table where

individual transition probabilities are denoted as follows:

pðyt ¼ jjyt�1 ¼ iÞ � aij: ð5Þ

Our HMM is therefore fully specified by the following

parameters A = {aij}, B = {lin} and p = {pi}. The

parameters are learned from training data using maximum

likelihood. This is done for each class separately. Using these

parameters we can find the sequence of activities that best fit

to a novel sequence of observations. This is done by

calculating p(y1:T|x1:T), which can be easily calculated from

the joint probability. We can efficiently find the sequence of

activities that maximizes this probability using the

commonly used Viterbi algorithm [22].

3.2.3 Conditional random fields

The parameters of generative models, discussed in the

previous section, are learned by maximizing the joint

probability p(x1:T, y1:T). While, to infer the best fit to a

novel sequence of observations we calculate p(y1:T|x1:T). In

discriminative models, like CRFs (Fig. 3), we learn the

parameters by maximizing the conditional probability

p(y1:T|x1:T) directly. Thus, in discriminative models we

learn the parameters by maximizing the same quantity used

for inference. In CRFs this is calculated as follows:

pðy1:T jx1:TÞ ¼
1

ZðhÞ exp
XK

k¼1

hk

XT

t¼1

/kðx; y; tÞ ð6Þ

where /k are the so-called feature functions and are chosen

to model properties of the observations and transitions

between states. The nominator of this function is

straightforward and fast to compute; the complexity of

the model lies in the computation of the normalisation term

ZðhÞ, which takes into account all possible state sequences

corresponding to the given observation sequence. Since in

an unconstrained model the number of state sequences

would grow exponentially in the length of the sequence,

CRFs restrict the feature functions to model nth order

Markov chains only, where n is typically 1. That is, the

feature functions can be written in the from

/kðx; y; tÞ ¼ /0kðx; yt�1; yt; tÞ ð7Þ

The probability of the current state then only depends on

the previous state, so that the probability of all possible state

sequences depends only on all possible pairwise state

combinations. This allows us to compute ZðhÞ in linear time.

The parameters of the CRF can be efficiently optimised

by any variant of gradient descent, the gradients can be

computed in linear time. We optimise the parameters h
with limited memory BFGS [15], an efficient quasi-New-

ton iterative optimisation method. For a novel sequence of

data the sequence of activities that best fits to the data is

found using the Viterbi algorithm [22].

4 Experiments

In this section we present the experimental results acquired

in this work. We start by describing the objectives of our

Fig. 2 The graphical representation of a HMM. The shaded nodes
represent observable variables, while the white nodes represent

hidden ones

Fig. 3 The graphical representation of a CRF. The shaded nodes
represent observable variables, while the white nodes represent

hidden ones
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experiments, then the experimental setup and the realworld

datasets. This section concludes with a presentation of the

acquired results and a discussion.

4.1 Objective

The goal of our experiments is to show the effectiveness of

generative and discriminative models for activity recogni-

tion in a real world setting. We compare the performance

of the hidden Markov model and the conditional random

fields on datasets recorded in four different homes. Fur-

thermore, we show the effectiveness of using other sensor

data representations than the raw sensor data.

4.2 Setup

In our experiments the sensor readings are discretized in

data segments of length Dt ¼ 60 s. This time slice duration

is long enough to be discriminative and short enough to

provide high-accuracy labeling results. We separate our

data into a test and training set using a ‘leave one day out’

approach. In this approach, one full day of sensor readings

is used for testing and the remaining days are used for

training. We cycle over all the days and report the average

accuracy.

We evaluate the performance of our models by two

measures, the time slice accuracy and the class accuracy.

The timeslice accuracy shows the percentage of correctly

classified timeslices, the class accuracy shows the average

percentage of correctly classified timeslices per class.

These measures are defined as follows:

Time slice :

PN
n¼1½inferredðnÞ ¼ trueðnÞ�

N

Class :
1

C

XC

c¼1

PNc

n¼1 inferredcðnÞ ¼ truecðnÞ½ �
Nc

( )

in which [a = b] is a binary indicator giving 1 when true

and 0 when false. N is the total number of time slices and C

is the number of classes.

Measuring the time-slice accuracy is a typical way of

evaluating time-series analysis. However, we also report

the class average accuracy, which is a common technique

in datasets with a dominant class. In these cases classifying

all the test data as the dominant class yields good time-slice

accuracy, but no useful output. The class average, however,

would remain low, and therefore be representative of the

actual model performance.

We experiment using three different sensor representa-

tions. The raw sensor representation gives a 1 when the

sensor is firing and a 0 otherwise. The change point rep-

resentation gives a 1 to timeslices where the sensor changes

state and a 0 otherwise. Finally, the last sensor fired

representation continues to give a 1 to the last sensor that

changed state and changes to 0 when a different sensor

changes state [32].

4.3 Datasets

We used four datasets in our experiments. Two datasets

were recorded using our sensing system described in

Sect. 3. The other two datasets were introduced in [27] and

used reed switch sensors on doors, cupboards and drawers.

The details of all the datasets are shown in Table 1. The

floorplan of one of the apartments together with the loca-

tion of the sensors is shown in Fig. 4.

Annotation in the TK26M dataset was done using a

Bluetooth headset, the user recorded the start and end point

of an activity by speaking into the headset. The TK57M

dataset was annotated using activity diaries on several

locations in the house. Both the Tap30F and Tap80F

dataset were annotated using a PDA that asked the user the

performed activity every 15 min, annotation was later

corrected by inspection of the sensor data. The activities

that were annotated in the datasets mainly consist of the

basic activities of daily living (ADLs) as defined by [10].

These include bathing, dressing and toileting. Additionally,

instrumental ADLs [13] such as preparing meals and taking

medications were annotated. A complete list of the activ-

ities together with the number of times they occur and the

percentage of time they take up in the dataset is given in

Table 2.

The TK26M dataset is publicly available for download

from http://www.science.uva.nl/*tlmkaste.

4.4 Results

We compared the performance of the HMM and CRF on

the four datasets. Experiments were run using the ‘raw’,

‘changepoint’, ‘last’ and ‘Changepoint?Last’ sensor rep-

resentation. The ‘Changepoint?Last’ representation is a

Table 1 Information about the various datasets. Two of the datasets

were recorded by us, for the other two a reference is given where the

dataset was introduced

Dataset TK26M TK57M Tap30F Tap80F

Age 26 57 30 80

Gender Male Male Female Female

Setting Apartment House Apartment Apartment

Duration 28 days 13 days 16 days 14 days

Sensors 14 21 77 84

Activities 10 11 14 10

Recorded by Authors Authors [27] [27]

Pers Ubiquit Comput (2010) 14:489–498 493
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concatenation of the changepoint and last representations.

The results are shown in Table 3.

The table shows that CRFs mainly outperform HMMs

on the timeslice accuracy measure, but HMMs mainly

outperform CRFs on the class accuracy measure. When

comparing the sensor representations we see the ‘change-

point?last’ sensor representation gives the best results in

the case of the TK26M and TK57M datasets, but the

‘changepoint’ representation mainly gives the best results

on the Tap30F and Tap80F datasets. The ‘raw’ sensor

representation gives by far the worst results. Out of the

datasets used the accuracies for both models are higher on

the TK26M and TK57M datasets than on the Tap30F and

Tap80F datasets.

These differences are better understood by looking at the

confusion matrices, which show the accuracy results for

each activity separately. Table 4 shows the confusion

matrix for the HMM and Table 5 for the CRF, both using

the ‘changepoint?last’ representation on the TK26M

dataset. The tables show CRFs mainly perform better on

the ‘other’ activity, while HMMs do better on the various

kitchen activities.

To compare the sensor representations Table 6 shows

the confusion matrix for the changepoint representation

and Table 7 for the changepoint?last representation, both

for HMMs on the Tap80F dataset. In the case of the

‘changepoint’ representation the highest accuracy is

achieved for the ‘other’ activity. However, this activity is

also mostly confused with the remaining activities meaning

the majority of the timeslices were labeled as ‘other’. The

‘changepoint?last’ representation outperforms the

‘changepoint’ representation on all but the ‘other’ and

‘lunch’ activity.

4.5 Discussion

The difference in performance between CRFs and HMMs

is due to the different ways these models are trained. CRFs

are trained by maximizing the likelihood over the entire

sequence of training data. HMMs are trained by splitting

the training data according to the class labels and optimise

the parameters for each class separately. As a result classes

that are more dominantly present in the data have a bigger

weight in the CRF optimisation. The HMM on the other

hand treats each class equally, as parameters are learned for

each class separately. This explains why CRFs perform so

much better on the ‘other’ activity, since this activity takes

up 12.7% of the data in the TK26M dataset. In other words,

CRFs overfit on the ‘other’ activity since it occurs more

often in the dataset. On the other hand, HMMs perform

Fig. 4 Floorplan of the house

of dataset TK26M, small
rectangle boxes with an X-mark

in the middle indicate sensor

nodes. (created using

http://www.floorplanner.com/)
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better at classifying the kitchen activities. Because

parameters are learned for each class separately, there is no

overfitting on one particular class. However, this comes at

the cost of missclassifying some of the often occurring

‘other’ activity. This explains why CRFs perform better in

terms of the timeslice accuracy measure, while HMMs

perform better in terms of the class accuracy measure.

Performance differences using the various sensor rep-

resentations are due to the resulting feature spaces. We see

that the ‘raw’ sensor representation gives by far the worst

results, the ‘changepoint’ and ‘changepoint?last’ repre-

sentation work best. The reason for this is that the actual

state of a sensor (represented by the ‘raw’ representation) is

not very informative, it is more useful to know when a

sensor changes state (represented by the ‘changepoint’

representation). For example, if we want to recognize when

somebody is sleeping it will be informative to know the

bedroom door opened. However, many times people leave

the door open once they get out of bed. The raw sensor

representation will continue to give a 1 as long as the door

is open, even though somebody might already be involved

in a different activity. The changepoint representation

solves this by only giving a 1 when the state of a sensor

changes. This indicates something happened with the

Table 2 The activities that were annotated in the different datasets

TK26M TK57M Tap30F Tap80F

Activity Num. Time (%) Activity Num. Time (%) Activity Num. Time (%) Activity Num. Time

Leave 34 51.3 Leave 29 50.5 Leave 12 0.4 Meds. 14 0.8

Toilet 114 1.1 Toilet 1 33 0.6 Toilet 85 3.6 Toilet 40 2.8

Shower 23 0.7 Toilet 2 22 0.4 Bathe 18 2.0 TV 15 3.2

Sleep 24 32.5 Shower 10 0.5 Groom 37 2.1 Music 18 4.8

Breakf. 20 0.3 Sleep 12 27.2 Breakf. 14 1.0 Breakf. 18 2.0

Dinner 10 1.0 Dress 15 0.4 Dinner 8 0.8 Dinner 14 2.2

Snack 11 0.1 Breakf. 10 0.5 Snack 14 0.6 Snack 16 1.4

Drink 20 0.2 Dinner 9 1.6 Drink 15 0.7 Dishes 21 1.5

Dishw. 5 0.1 Groom 28 0.8 Lunch 17 3.0 Lunch 20 3.7

Other – 12.7 Relax 26 8.4 Dishes 7 0.3 Other – 77.6

Other – 9.1 Clean 8 0.8

Laundry 19 1.1

Dress 24 0.7

Other – 82.9

The TK57M dataset contains two toileting activities because the house has two toilets

Num. number of times the activity occurs in the dataset, Time percentage of time the activity takes up in the dataset. Abbreviated activity names

are: Leave leaving the house, meds. taking medication, Breakf. preparing breakfast, Dishw. using the dishwasher, TV watching TV, Music
listening to music. All unannotated timeslices are collected in a single activity named Other

Table 3 Timeslice and class accuracies for hidden Markov model (HMM) and conditional random field (CRF) using various sensor

representations

Model Representation TK26M TK57M Tap30F Tap80F

Timeslice (%) Class (%) Timeslice (%) Class (%) Timeslice (%) Class (%) Timeslice (%) Class (%)

HMM Raw 57.3 49.5 32.6 20.5 57.4 24.0 14.9 17.1

Changepoint 81.7 67.2 75.9 51.2 85.1 29.2 80.0 30.1

Last 87.2 71.0 79.8 60.0 55.9 32.7 31.3 34.4

Changepoint?Last 91.2 76.0 80.3 60.4 64.7 35.6 40.2 33.9

CRF Raw 83.9 53.0 37.6 22.4 66.7 21.2 51.3 16.4

Changepoint 91.6 62.6 82.9 47.9 85.6 28.5 79.8 29.3

Last 94.0 59.4 86.1 49.3 83.9 24.0 74.9 17.6

Changepoint?Last 95.1 68.4 86.6 49.8 83.7 26.3 77.2 27.1

Experiments were performed on four different datasets: TK26M, TK57M, Tap30F and Tap80F. Bold values the highest value in a column
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bedroom door, however, it remains unclear whether

someone entered the room or left the room. The ‘last’

sensor representation helps there. If someone enters the

room the last sensor that fires is either the door to that room

or any sensor inside the room. While if someone exits the

room any of the other sensors outside the room are likely to

fire.

Out of all the datasets used the TK26M gave the best

results. The reason the results are better than the TK57M

dataset is due to the layout of the house and due to the

Table 4 Confusion matrix for the HMM using changepoint?last representation on the TK26M dataset

Other Leaving Toileting Showering Sleeping Breakfast Dinner Snack Drink Dishwasher

Other 52.1 6.4 0.7 12.4 4.6 0.1 20.2 0.2 0.6 2.7

Leaving 1.6 98.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0

Toileting 4.2 0.5 86.0 4.5 3.4 0.0 0.8 0.3 0.3 0.0

Showering 6.4 0.4 3.4 89.1 0.0 0.0 0.0 0.0 0.0 0.8

Sleeping 2.6 0.0 0.4 0.1 96.9 0.0 0.0 0.0 0.0 0.0

Breakfast 23.6 0.0 0.9 0.0 0.0 49.1 5.7 12.3 5.7 2.8

Dinner 7.7 0.3 0.6 0.0 0.6 6.0 74.6 8.0 1.4 0.9

Snack 9.1 0.0 0.0 2.3 0.0 18.2 11.4 59.1 0.0 0.0

Drink 3.7 0.0 0.0 0.0 0.0 9.3 11.1 0.0 75.9 0.0

Dishwasher 0.0 0.0 0.0 0.0 0.0 0.0 21.4 0.0 0.0 78.6

The values are percentages

Table 5 Confusion matrix for the CRF using changepoint?last representation on the TK26M dataset

Other Leaving Toileting Showering Sleeping Breakfast Dinner Snack Drink Dishwasher

Other 84.6 5.5 0.5 0.4 7.0 0.3 1.4 0.0 0.2 0.1

Leaving 1.4 98.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Toileting 6.9 2.6 76.5 2.9 10.8 0.3 0.0 0.0 0.0 0.0

Showering 25.6 1.9 2.3 70.3 0.0 0.0 0.0 0.0 0.0 0.0

Sleeping 0.8 1.9 0.3 0.0 97.0 0.0 0.0 0.0 0.0 0.0

Breakfast 24.5 0.0 0.9 0.0 0.9 55.7 6.6 8.5 2.8 0.0

Dinner 34.9 1.1 0.6 0.0 0.0 1.7 58.9 0.9 0.9 1.1

Snack 20.5 4.5 0.0 0.0 0.0 13.6 15.9 45.5 0.0 0.0

Drink 27.8 1.9 3.7 0.0 0.0 3.7 13.0 0.0 50.0 0.0

Dishwasher 50.0 0.0 0.0 0.0 0.0 0.0 2.4 0.0 0.0 47.6

The values are percentages

Table 6 Confusion Matrix for the HMM using changepoint representation on the Tap80F dataset

Other Toileting Take medication Breakfast Lunch Dinner Snack Dishes Watching TV Listen to music

Other 94.6 0.8 0.2 1.5 0.7 0.4 0.6 0.4 0.2 0.6

Toileting 73.7 11.7 1.4 7.9 0.5 0.0 1.4 2.5 0.5 0.3

Take medication 82.2 0.0 5.4 7.6 0.0 0.0 4.9 0.0 0.0 0.0

Breakfast 52.8 0.0 0.0 30.9 15.2 1.1 0.0 0.0 0.0 0.0

Lunch 31.4 0.4 0.0 7.9 41.8 12.5 1.5 2.5 0.0 2.0

Dinner 29.4 1.4 0.0 14.2 26.1 20.2 6.1 2.0 0.0 0.6

Snack 38.4 0.0 0.0 5.9 25.3 0.9 8.1 1.6 4.7 15.0

Dishes 42.7 2.1 0.0 0.0 26.5 4.3 2.4 12.8 3.4 5.8

Watching TV 65.1 4.9 0.0 0.6 0.0 0.0 1.3 1.8 26.4 0.0

Listen to music 47.2 0.0 0.0 0.0 2.5 0.0 0.4 0.5 0.0 49.5

The values are percentages
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annotation method. As the floorplan of the TK26M house

in Fig. 4 shows, there is a separate room for almost every

activity. The kitchen is the only place where multiple

activities are performed in a single room. This means for

most activities the door sensor to the room the activity is

performed in is very informative. The method of annotation

used for the dataset is also relevant. For the TK26M a

Bluetooth headset was used which communicated with the

same server the sensor data was logged on. This means the

timestamps of the annotation were synchronized with the

timestamps of the sensors. In the TK57M activity diaries

were used, this is more error prone because time might not

always be written down correctly and the diaries have to be

typed over afterwards. The large difference in performance

between the two TK datasets and the two Tap datasets is

most likely also because of the annotation methods used. In

the Tap datasets activities were annotated using a PDA that

asks the user every 15 min which activity is performed.

Since our classification is done using timeslices of 60 s

there can be large deviations between the time the actual

activity took place (represented by the sensor data) and the

time the activity was annotated. Furthermore, it was

reported that the labels obtained using the PDA were not

sufficient for training a classifier and annotation was added

later by inspecting the sensor data [27].

In terms of future work it would be interesting to per-

form activity recognition using hybrid generative–dis-

criminative models, combining the best of both worlds. It

has been shown that hybrid models can provide better

accuracy than their purely generative or purely discrimi-

native counterparts [23]. Furthermore, the model parame-

ters learned during training are specific to the house the

labeled training data was recorded in. Applying the system

in another house would require re-estimation of the

parameters, which typically means labeled training data

needs to be recorded in the new house. Since this is

problematic for deploying such a system on a large scale, it

is interesting to use transfer learning techniques to transfer

the knowledge about activity recognition from one house to

the next [31].

5 Conclusions

This paper presents an activity monitoring system con-

sisting of sensors and an activity recognition model. We

presented an unintrusive wireless sensor network and

described two datasets that were recorded using this net-

work. Furthermore, we showed the potential of generative

and discriminative models for activity recognition, by

comparing their performance on four real world datasets

consisting of at least 10 days of data. Our experiments

show three things. First, that CRFs are more sensitive to

overfitting on a dominant class than HMMs. Second, that

the use of raw sensor data gives bad results and that a

‘changepoint’ or ‘changepoint?last’ sensor representations

gives much better results. And third, that differences in the

layout of houses and the way a dataset was annotated can

greatly affect the performance in activity recognition.
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