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ABSTRACT

Assuming that a helicopter rotor in forward flight can be repre-
sented by a flat circular disc with an appropriate steady pressure
discontinuity across it, expressions were developed for relating
the pressure field (1) to the tctal aerodynamic thrust and the
total steady pitching and rolling moments experienced by the rotor
or (2) to the time-dependent aerodynamic flapping moments at the
roots of the blades as they rotate. The selected pressure field
(1) satisfies the requirement of a loss of lift at the center and
periphery of the disc, (2) accounts for first and second azimuthal
harmonic variations in the lift density, and (3) satisfies Laplace's
equation, which is the governing equation for the linearized steady
flow of an incompressible fluid.

A digital computinc program was written for calculating the velocity
field from the selected pressure field and for calculating the
positions of streamlines emanating from points above the disc. Two
sample cases were chosen, corresponding to the UH-l rotor at
advance ratios,A , of 0.26 and 0.08 respectively. The computed
streamlines for both cases show the tip-vortex phenomenon, indicat-
ing Prandtl-Lanchester trailing vortices emanating from the tip
areas of the circular wing.

The geometry of the vortex wake that is shed and trailed from the
blades was predicted from the above-menticned streamline calcula-
tions. The computed deviations from a helical wake were greater
for the/i = 0.08 case than for the/I = 0.26 case.

In order to examine the sensitivity of blade-load calculations to
wake geometry, an existing computer program for calculating blade
airloads was modified to accept the computed wake geometry, as
contrasted to the rigid helix usually assumed. The blade-loads
predictions of this program using the computed wake geometry input
were compared with the predictions resulting from a helical wake-
geometry input and with experimentally measured airloads for the
two cases mentioned above. The comparison indicates that for the
UH-I two-bladed teetering rotor system, the computed airloads are
more sensitive to the wake geometry for the slower flight • = 0.08)
than for the faster one (/S = 0.26). This weaker dependence at
higher forward speeds may be due to (1) the wake being blown farther
behind the rotor and/or (2) the relative predominance of cyclic
pitch input, tangential velocity variation, and blade flapping motion
in the total time-varying environment of the blades at a higher
speed.
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CHAPTER 1

INTRODUCTION

1.1 A First View of the Helicopter Wake-Geometry Problem

The desirability of an accurate determination of the wake geometry
for a helicopter rotor stems primarily from the necessity of pre-
dicting the airloads experienced by the blades. These airloads, in
addition to providing the lift and propulsive force, are a major
source of vibratory excitation and drive the structurally important
oscillatory blade bending moments. Since aerodynamic forces are
determined by the flow field, the relative flow field must be known
if one is to satisfactorily predict the airloads on a prescribed
airfoil executing a prescribed motion.

It has been demonstrated from fixed-wing experience (see, for ex-
ample, the reduced polar diagrams and reduced lift/angle of attack
curves in Reference 1), that for a finite lifting body, the velocity
field perturbation resulting from the distribution of the "free"
vorticity in the wake must be taken into account in order to predict
the aerodynamic forces (aerodynamic force is sufficiently definitive)
on the body. It may be argued that this wake-induced velocity is
even more important for rotary wings since (1) rotation causes the
wake vorticity to remain in the vicinity of the (succeeding) blades
for a much longer time and (even for the " ,hest known advance
ratios) is not blown behind the wing so quickly as with fixed-wing
craft, and (2) as a result of a lower forward speed in the case of
a pure helicopter, the change in angle of attack for a given down-
wash velocity will be larger over most of the disc than in the
fixed-wing case.

In addition to the determination of the rotor airloads, the wake-
induced velocity field is likely to be influential in the determina-
tion of (1) interference effects between rotors, (2) positioning and
effectiveness of auxiliary surfaces, (3) interference with the fuse-
lage and other nonlifting bodies, (4) debris entrainment, (5) pro-
jectile trajectories, etc; hence, the continuing interest in the
study of helicopter wake geometry and in the resultant wake-induced
velocity field.

One of the difficulties in an accurate determination of the wake-
induced velocity should be immediately apparent: the interdepend-
ence of the wake geometry and the induced velocity field. The wake-

1



induced velocity field can be expressed only as an integral (over
the wake) of a fun ction of the wake geometry and the vorticity

strengths, while the wake geometry is obtained by time integrations
of the flow field along particle paths. As can be seen from subse-
quent sections, this one complication alone is sufficient to make

the general wake-geometry determination problem difficult. This
interdependence between wake geometry and induced velocity field
does not arise in the customary treatment of the fixed-wing problem

because one assumes there that the induced velocity is quite small

as compared to the forward speed and hence the trailed vorticity is

assumed to lie on a "rigid, horizontal" surface behind the wing.

Another complicating factor is the flexibility of rotor blades.
Most helicopter blades currently have their first flapwise natural
frequencies within a few percent of rotor speed. Table I summarizes

the flapping natural frequencies for the UH-l and H-34 rotor systems.
It has been demonstrated that significant variations in downwash

exist up to the 4th azimuthal harmonic. Under such circumstances,
the azimuthal variations in aerodynamic loads are almost certain to
excite substantial oscillatory flapping displacements as well as

torsional displacements, and the resulting "plunging" velocities

will affect the aerodynamic loads on the blades to the first order,
while the torsional displacements (i.e., angle of attack changes due

to torsion) will affect them to the zeroth order. Thus, the situa-
tion is not one of a "prescribed blade executing a prescribed motion".
As a final note, it may be mentioned that the rotor control settings

and attitude are themselves affected by th periodic variations in
the hub loads.

Figure 1 indicates the interrelations of these various aspects of
the problem. The figure can be looked upon as an information flow
diagram*, the rectangular blocks representing various phenomena as

customarily treated in isolation. Thus, for example, the airloads

and wake vorticity strengths resulting from the phenomenon of blade

aerodynamics can be calculated if the (1) blade structural displace-
ments and motions, (2) control settings, (3) vehicle attitude and

motion, and (4)/ wake-induced velocity (inflow) are all known as
"inputs" to the blade aerodynamic equations. These equations are,
for unstalled subsonic motion, simple algebraic relations. (The

assumption that makes this possible is the customary strip theory

postulation that each spanwise section of the airfoil has a two-

dimensional pattern of aerodynamic behavior.) We are not so fortu-

nate in regard to some of the other phenomena; e.g., the wake-

*By "information", we mean here "knowledge about the values (steady

or otherwise) of specific physical quantities of interest".
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Figure 1. Schematic Representation of the Helicopter
Rotor Aerodynamics Problem.
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induced velocity relations (i.e., Biot-Savart law integrated over
the wake) and the wake-transport relations. These are integral
expressions, as mentioned above.

1.2 Some Relevant Physical Phenomena

Equations representing some of the phenomena shown in Figure 1 will
be stated in this section. More specific description of these phe-
nomena as represented in the computer program appears in Chapter 3.

1.21 Blade Dynemics

The oscillatory response of a rotor blade to variations in airloads
can usually be satisfactorily represented in terms of its response
in each of a judiciously chosen finite number, N, , of its normal
modes of displacement (rigid as well as elastic). If ¶kCt) is the
generalized displacement in the kV normal mode, the flapwise and
torsional displacements at a point radius r can then be written as*

kA1

(kk)

where Y(v), 9(k) (r) is the mode shape in the k normal mode.

*We are here assuming the blade to be infinitely rigid in the chord-

wise direction. The computations reported herein used the additional
structural simplifications of Reference 2, ignoring the dependence
of torsional displacements on airloads, thus assuming the torsional
response of the blades to be completely known beforehand.
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The differential equation for determining the generalized dis-
placements %(t') is of the form

- .W ( 3 )
Mk jk + ' k9 k k k 1k + Mkk 1k GkG(t) (3)

k.-'-,N,

MkK,•.j and Gk are the generalized mass, structural damping,
natural frequency, and generalized forcing function respectively
in the k0 mode. The first three of these are dynamic "proper-
ties" of the rotating blade, as is the mode shape, and can be pre-
determined for each mode. The forcing function depends on the
airloads experienced by the blade:

re

Gk([) = [F(r-•, (k)(\ + (<_r " t ) (4)

and "P(-,i) represent the time-varying aerodynamic
lift and pitching moment per unit span at radius r .

1.22 Blade Aerodynamics

Consider a blade segment with its leading edge at x •- - and
trailing edge at •- -+-b in a blade-attached coordinate
system; see Figure 2(a). Let the relative airflow have a
"tangential" component V1 in the XI direction and an
"impressed" normal flow component W(X) in the z direction.
W(x) is the combined effect of (1) the component of V,

normal to the blade chord as a result of the geometrical angle of
attack ae and from the local camber of the airfoil section,
(2) the component of the forward speed normal to the blade chord
as a result of shaft tilt, spanwise blade slope, etc., (3) in-

stantaneous flapping velocity of the blade section, (4) instan-
taneous torsional velocity of the blade section (due to blade
flexibility as well as cyclic control inputs), and (5) induced

velocity due to the wake vorticity. We wish to estimate the aero-

dynamic forces experienced by this blade segment.

Since no through-flow can exist on the impermeable airfoil, the
presence of the airfoil must give rise to such a "disturbance"
that its effect will exactly cancel the "impressed" normal
velocity V(x 1in the region -bdX 1 i4o . It can be shown
(see, for example, Reference 3) that for a thin airfoil, this
disturbance can be represented by a vortex sheet over the chord
length, as shown in Figure 2(b). The distribution of the

6



strength r(Xi) of this vortex sheet must be such that

c ,O(5)

--6

z1

(a) blade element and (b) thin airfoil repre-"impressed" normal sentation with bound
velocity distribution vorticity distribution

xo-" h-g, Xo- 4b

(c) Glauert coordinate •

x,. -b CoSO

Figure 2. Physical and Mathematical Blade Element Characteristics.
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In order to uniquely specify the circulation around the airfoil
section, it is customary to further require that the flow be
smooth over the sharp trailing edge (Kutta hypothesis)*. This can
occur only if

Y(+b) = 0 (6)
Subject to the condition (6), equation (5) has now to be solved.

The solution, by Sohngen's formula is

+b

y(X,) = X . ;;(0 .A (7)

-b

After thus determining the bound vorticity strength Y'(,) from the
impressed normal velocity W (x,) , it now remains to deduce the
pressure difference between the two faces of the airfoil. Assuming
that (1) the disturbance velocities are small compared to V/ 1
(2) the flow is irrotationel outside of the vortex sheet, and (3)
the flow is incompressible, the momentum equation for unsteady flow
can be reduced to

V, X, a-(8)

where p is the disturbance pressure and 6 is a velocity

*This is tantamount to requiring a finite velocity at the trailing
edge. It has been corroborated by experiment, in that the pressure
distributions on the surfaces of the airfoil as predicted from
such a choice of the bound vorticity distribution agree with experi-
mental measurements (see, for example, Reference 4).



potential, such that the disturbance velocity U equals -

Changing the order of differentiation in the first term and aiC
integrating from x, .-- to a point on the upper face of the
vortex sheet,

I' + (9)

and similarly at a point on the lower face,

-~~ 0)L 10

I b

But it can be shown (by considering an elemental rectangular con-
tour around a point x, ) that

L!

_'!- ==UU = c

and, by integrating,

X1

9L-U. - P Cie, (12)

-b

Using equations (9) through (12), one gets the aerodynamic pressure
difference across the vortex sheet:

which is the unsteady form of Zhukovskii t s theorem.

9



The total circulation r around the blade section, the aerodynamic
lift F per unit span, and the aerodynamic pitching moment about
mid-chord 1• per unit span are obtained by integration over the
chord:

Y (X,c dI~, (14)

P \X, ax,~dC (15)

+6

PC X\X (16)

The other "output" from the blade aerodynamics block in Figure 1
is the wake vortex strength. The strength of free vortices
trailed and shed from a blade can be deduced by logical extrapola-
tion of the fixed-wing "lifting line" theory. Thus, when the
instantaneous bound vorticity varies along the blade span, trailed
vortex strengths are given by

Xt Jr., -. (17)
;_v,

where YT(Y ) is the strength of the trailed vortex sheet and
n Tv(0) is the strength of the bound vortex at the spanwise loca-
tion 1 . Similarly, for a blade with continuously changing
(tempo•al change) bound vorticity, the shed vortex strength is given
by

7'3 (rt) • (18)

VT Ait
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where 26t',r) is the strength of the shed vortex sheet as a

function of spanwise position r and time t , and V is the
total relative fluid velocity normal to the blade leading edge.

When the strength of the bound vortex varies both along the span
and with time, the above expressions for YT and Y$ will
represent the components of the strength of the vortex sheet in
the chordwise and spanwise directions respectively.

1.23 Wake-Induced Velocity Relations

These relations are used for determining the "induced" velocity
Sa at a field point Q due to a distribution of vorticity
r in a volume V . This is directly analogous to the problem
of determining the magBptic induction field §Q at Q due to a
current distribution - in V . The latter problem has the
solution given by the Biot-Savart field law:

"ga- - .

Y

where Y is the vector distance from the source point to the field
point. See, for example, Reference 5.

Analogously, for our induced velocities,

(The /^o is a characteristic of the units used for the electro-
magnetic quantities such that 17'B x &.-T

If the source distribution of vorticity is over line segments as
in our wake model, our formula is modified to

11 1 x(0
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where -r is the vector from c..to Q , and T is the scalar
vorticity per unit length along JA , an elemental length of vortex
filament in the wake. The integration is over L. , which is the
aggregate of all the wake filaments.

1.24 Wake-Transport Relations

Kelvin's theorem of conservation of circulation (see Reference 6)
states that for an idea) fluid, the substantial derivative of the
circulation I'e fj.Z" around a closed contour C is zero.

S_ (21)

Ot

Now, if C lies on time surface Z of a vortex tube,

, -f. ff (v x .VaCI . (22)

using Stoke's theorem and the fact that V x c is at right angles
to the unit normal 'A on the surface E . Therefore, using
Kelvin's theorem, one concludes that a contour on a vortex-tube
surface will always remain on a vortex-tube surface. Using two
such intersecting surfaces, it is easy to see that vortex lines
always travel with the fluid (Helmholtz theorem; see Reftrence 7).

We may consider all vorticity in the wake model to have originated
from the blades. Thus, if we can calculate the positions of fluid
particles released into the floy field from discrete locations on
the disc*, at all subsequent (for our purposes, discrete) instants,
we will be able to predict the wake geometry (i.e., time-dependent

*The "disc" here means the surface described by the blades as they

rotate. Due to the preconing built into the blades, the steady
deflection under load, and the flapping displacements, this surface
will not, in general, be a plane circular surface.

12



positions of the wake-filament end points in Figure 15(b) ).

1.3 Review of Various Approaches to Handling Rotary-Wing
Aerodynamics

1.31 Analytical

Among existing theoretical approaches are the actuator theories,
the blade element theories, and the wake theories.

a. The early actuator disc theory for a propeller assumed a
uniform pressure distribution and induced velocity over the
disc, and explained their interrelationship through a simple
momentum transfer approach, leading to a relation like

2irR v V1V +,v" (23)

where T, vi , and VP, are the total thrust, the induced
velocity at the disc, and the forward velocity respectively.
Glauert modified this assumption of the uniform pressure
distribution to one increasing linearly from the front to the
rear of the rotor disc (see Reference 8). A modification due
to Kinner (Reference 9) and Mangler (Reference 10) assumes an
aziuiuthally symmetric lift distribution satisfying the
requirement of a loss of lift both at the center and at the
periphery of the disc.

All the actuator disc theories implicitly assume an infinite
number of blades. The inherently unsteady nature of the
aerodynamics associated with a finite number of blades is,
therefore, ignored, as are all effects concerned with the
shape of airfoil sections.

b. The blade element theories, on the other hand, consider
the forces experienced by individual blades in their motion
through the fluid; they are thus intimately concerned with
airfoil section characteristics. The blade is divided into a
number of radial elements, and airfoil properties and momentum
balance are used for each element to yield the thrust and
induced velocity (see Reference 11). An interesting combina-
tion of momentum and blade-element theories for forward flight

13
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has been suggested by Wood and Hermes (Reference 12). They

postulate that the instantaneous induced velocity at a point
on the disc can be obtained by superposition of transient
momentum theory induced velocity distributions corresponding
to the number of blade passages over that point in space.

c. In contrast to the above, the early vortex wake theories
represented the wake by a series of circular vortices. The
geometry, however, was based on an assumed induced velocity
field and on an infinite number of blades. The wake vortex
theories then attempted to obtain the induced velocities with
the aid of the Biot-Savart formnula. Recent modifications
of the vortex wake theories assume helical vortices trailed
from near the blade tips and a "?warped-.pie"? type of mesh-
vortex system that is shed from the blade. These vortex wake

theories may be looked upon as a modification of Prandtl's
theory for a finite fixed wing.

1.32 Experimental

Considerable experimentation has resulted in a good deal of test
data both for structural loads and aerodynamics of rotary wings.

Excellent smoke-trail photographs for a model rotor in a wind
tunnel were obtained by Tararine (Reference 13). Very extensive
blade-load and blade-motion data were presented by Scheimann
(Reference 14) and by Burpo and others (Reference 15). Much of
the experimentation has been carried out primarily to gain insight,
and rigid model rotors have frequently been used (e.g., Tararine).
A recent water-tunnel study of rotary-wing flow visualization was
carried out by Lehman (Reference 16). An interesting electromag-
netic analog was reported by Gray (Reference 17).

1.33 Computational

There appear to be very few numerical solutions of the simultaneous
equations of wake motion resulting from blade loading, vortex
strength, and vortex-induced velocity as described by the Biot-Savart
law. One such calculation was accomplished by Crimi (Reference 18)
with an extensive iterative calculation for the time-varying flow
and the vortex geometry.

Reference 2 (and its subsequent extension, Reference 19) is an
example of the elaborate blade-loads programs that have been
developed in recent years. Reference 19 numerically simulates
most of the phenomena shown in Figure 1. (A notable exclusion is

14



the wake-geometry computation.) We will Cescribe some details of
the Reference 2 program in Chapter 3 of this report. Another
example is the program reported in Reference 20, which compared
the blade-load predictions using the rigid wake-induced velocity
with similar predictions using a uniform inflow velocity at the
disc for a four-bladed, fully articulated rotor.

1.34 Some Complicating Factors* Encountered in the Approaches
Cited

1.341 Physical Aspects

As a result of the inherently unsteady aerodynamics of the rotor
in forward flight, the "shed" vortices are likely to be signifi-
cant, and this requires that considerable detail be retained in
the wake model (see Figure 15(b) ). Also, due to rotation the
wake geometry is more complex than for a fixed wing with a similarly
varying bound vorticity.

The flexibility of the blades, as mentioned earlier, makes unpre-

scribed blade motions inevitable.

" ... For example, a typical blade of a flapping, three-

bladed, 25 foot radius rotor has a first bending
frequency of about 2.5 times the rotational speed for
operating tip speeds; by comparison, a rotating string
or chain has a corresponding frequency of about 2.4 times
its rotational speed. Certainly, for airloads with
frequencies of third harmonic and over, the blade is
quite flexible and will respond elastically. This
interaction between dynamic structural deformations and
airloads is the second sdrious physical complication
in the blade airloads problem." (Reference 21)

1.342 Theoretical Difficulties

Even if the equations were not coupled as regards blade motion and

*Material for this section has been drawn from Reference 21.
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aerodynamics, the problem is difficult to solve because of the
interdependence of the wake geometry and the induced velocity.
To avoid this complication, drastic assumptions have been made
regarding vortex geometry. Momentum theories, which bypass wake
effects completely, have been subject to other limitations. The
Kinner-Mangler theory, for example, which is one of the more
sophisticated actuator disc thecries, ignores the nonuniformity of
lift with azimuthal position.

Another disturbing factor is the questionable validity of small
perturbation assumptions in linearizing the basic flow equations.
For such assumptions to be valid, the downward velocity induced
by the lifting surface, which from the momentum point of view is
the basic source of lift, must be very small compared with forward
speed. This is the case for a fixed wing and makes possible the
assumption that the trailed vorticity lies on a rigid cylindrical
surface through the trailing edge with generators parallel to the
direction of flow. It is much less obvious that this assumption
will give good results when using an "actuator disc" to represent
a lifting rotor at any forward speed. Although the downward flow
component near the blade tip may be small compared to the total
forward velocity of the tip, there are likely to be points on the
rotor where this is not the case. In any event, the "actuator disc"
'ar.;iot recojnize blade rotation, but only free-stream velocities,
-,o that "perturbations" may not be small, and linearized flow

'iuaitlorin could lead to large er'ors.

1. 14 ' Ii;rrimental and Corrputational Difficulties

., iiriiI i I ,tidy of blade airloads has to be very elaborate,
ii, 'If (t i it ,; ftifficult to design a blade which is both aero-

,,i irl- (t dyrnamically similar to the full scale item;
i* ,,,. !. pia',irenments have to be made to define streamlines,

, i, lijt onr'illatory blade pressures, drag, and power;

ili,,,, lri I 'I tunnel wall effect is especially difficult where
-i, ai I kit ion over the rotor disc and unsteady effects

A w, ta-F,,,•v ty ' •ompijt.tion such as that done in Reference 18,

.Ii, ii, f ?,,, -r11,If, . 1': lenqthy even or a high-speed computer because

II IV n i, i(-rt frJi i equations (involving unprescribed velocities)
, , .4 , ,I .

.4 Mut i.'o-t ion for tme Present Work

Tite 'muoe-trail photographs taken by Tararine (Reference 13) for a
Si 1 mo,!el r'otý) in a wind tunnel showed significant departures
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from the traditionally assumed helical tip trail, especially over
the rear of the disc. Numerical results of blade-loads computations
(at the Cornell Aeronautical Laboratory*) reported by Piziali in
Reference 2 suggested that a more accurate description of the wake
geometry might lead to a better correlation between the computed
and measured blade loads. A further modification of the Reference 2
work was performed by Chang at CAL (Reference 19), who incorporated
(1) the adjustments in the pitch control settingsand shaft tilt
for the given flight condition (thus "representing" the pilot in
the steady-state computational algorithm) and (2) torsional degrees
of flexibility of the blades into the computer program. Both
Reference 2 and Reference 19 used a rigid helical representation
for the wake, however. The results of Reference 19

"...are not significantly closer to the measured results
than those obtained in Reference i.** Therefore, it app(
that, at least for these configurations, further improv,_.. c
in the correlations will probably require the establishment
of a better wake model and an even more complete representa-
tion of the blade motions...." (Reference 19)

Further evidence of the possible importance of wake geometry is
reported in Reference 20. This comparison of the results of two
blade-load computations, one using a uniform inflow and the other
using a variable inflow resulting from a CAL type rigid wake, showed
marked differences in the two blade-load predictions.

It was concluded that a blade-load computation using a more realis-
tic wake-geometry input for calculating induced velocities would be
worthwhile. Since an accurate wake-geometry computation (such as
Reference 18) from a time-varying velocity field resulting from
wake interaction, fuselage effects, and blade bound circulation
would be quite extensive, a modified actuator theory approach was
adopted. The approximate method reported here uses a Kinner-Mangler
type actuator disc with an improved lift distribution to get an
approximation to the time-averaged induced velocity field. The lift
distribution is chosen so as to realistically represent the radial
variation typical of helicopter rotors and to accommodate up to the

*Cornell Aeronautical Laboratory, Inc., Buffalo, New York,

hereafter abbreviated as CAL.

"**Meaning Piziali's work, Reference 2, according to our list of

References.
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second harmonic components of the azimuthal variation. The method
then predicts the spatial positioning of individual vortices released
from a finite number of blades, without any a priori assumptions
regarding the wake geometry.
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CHAPTER 2

THEORETICAL MATERIAL

2.1 Theoretical Background

Kinner (Reference 9) noticed that Laplace's equation, which is
the governing equation for the pressure field in case of linearized,
steady, incompressible fluid flow, is separable in the ellipsoidal
coordinates and that it is possible to choose the coordinate system
and the harmonics in such a manner that the solution is discontinuous
across a finite, flat, circular disc. Thus, he related the pressure
field to the total lift developed by a circular wing. He also gave
approximate values of the induced downwash on the disc. His analy-
sis did not allow any disc-incidence angle, however, nor did he
calculate the sideways induced velocities. In addition, the
discontinuities Kinner dealt with yield a variation over the disc
for certain combinations of these solutions that appears quite similar
to the lift distribution on a typical rotor.

Mangler (Reference 10) modified Kinner's work to include the disc-
incidence angle, but he restricted his solutions to azimuthally
symmetric lift distributions. For such a restricted flight condition,
he obtained numerical values of the induced downwash on the disc.
Figures 3 and 4 show the distribution of the induced velocity over
the disc for a disc incidence of 00 and 150 respectively. Figure 5
shows the same results as Figure 4, but they are displayed through
the variation of the induced velocity along three longitudinal lines
on the disc.

2.2 Capsule Statement of the Work Done

In order to evaluate the importance of the details of the wake
geometry, it was decided to compare the blade-load predictions from
an existing blade-load program, using two different wake-geometry
inputs. The program used is that* reported in Reference 2. The two

*Referred to as BLP2 of CAL (Blade-Loads Program 2 of Cornell

Aeronautical Laboratory). Some details of this program appear in
Sections 3.1 and 3.2.
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Lift Distribution, Expressed as Contours for VCt "

For Disc Incidence = 00. (From Mangler,

Reference 10)
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Figure 4. Induced Velocity Over Disc For Azimuthally Symmetric
Lift Distribution, Expressed as Contours fors.--W
For Disc Incidence = 150. (From Mangler, VriCt
Reference 10)
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(From Reference 8)
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wake-geometry inputs were (1) a rigid, helical wake geometry result-
ing from the assumption of a uniform induced velocity. (This is
the type of wake geometry used in the CAL computations in Reference
2 and will be termed the CAL wake geometry.) (2) A distorted wake
geometry resulting from the steady velocity field of an actuator
disc with a lift distribution that includes up to the second azimuth-
al harmonic variations. (This wake geometry will be termed the UR
wake geometry.) The steady velocity field used here includes induced
velocities in all directions. Specifically, it does not ignore the
sideways velocities. This is considered to be a definite advantage,
since even small sideways distortions of the wake may be of impor-
tance, especially where the trailed vortex from one blade passes
near the succeeding blade(s).

No changes were made in BLP2 other than to modify it to suit the IBM
System 360/65 at the Computing Center of the University of Rochester*
and to modify it to interface with the UR wake computing program.
The representation of rotor dynamics, blade aerodynamics, and wake-
induced velocity relations was retained in its entirety.

Section 2.3 describes the theoretical scheme leading to a determina-
tion of the steady induced velocity field (used for calculating the
UR wake geometry) for a given flight condition.

2.3 Theoretical Scheme

2.31 Equations of Fluid Motion

Consider a stationary, flat, circular disc, radius R , in an
infinite expanse of an incompressible fluid. Establish a Cartesian
coordinate system x yz such that the velocity of the fluid at an
infinite distance upstream of the disc is -- Vf at a disc-
incidence angle a (see Figure 6). The equations for incompressi-
ble fluid flow are

momentum: =i 1 (24)

continuity: (25)Ti o ...i,j i ,,

*Hereafter referred to as UR.

23



x ' J •Port Side View

z Z

Wind
Direction

X -- •Plan

Figure 6. Cartesian Coordinate Systems xy' ("Wind System") and
x'yk' ("Disc System") in Dimensional Form.
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where •i are the components of the fluid velocity, /o is the
constant density of the fluid, and P, is the pressure. For steady
flow, the momentum equations become

¶ ,Po,' "' 1- ,2,3 (26)

Noting that the components of A are (-VS÷u,v,w) , where (.,W)
is the velocity perturbation, and assuming a lightly loaded rotor,
i.e., assuming

(u,v,w) << (27)

allows linearizing equation (26) to

Differentiating (28) with respect to

x /0

But the left-hand side of this equation vanishes as a consequence
of the continuity condition (25). Hence,

P0, 0 (29)

i ~i.e., Vp : 0

which is the governing equation for the pressure field in a steady
incompressible fluid flow. Hence, the disturbance pressure field

p must satisfy Laplace's equation.
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2.32 Coordinate Transformations and Solutions of Laplace's Equation

Since we are interested in obtaining a pressure field that satisfies
the boundary conditions of discontinuity across the disc, we attempt
to transform Laplace's equation in 3-space to a coordinate system
suitable for that purpose.

Define a Cartesian coordinate system xy ' z , which is obtained
by rotating the xy'z -system through the angle a about the y'-axis
(see Figure 6). For convenience, let us nondimensionalize our
Cartesian systems on the disc radius R , i.e., define new systems
SXYZ and X'Y'Z' , such that

(x,Y',Z) - xY Z ,, )',
(R (30)

and I I I

The transformations between the wind system XYZ and the disc system
)('y'ZI are:x dos °l 0 -I

[ Cos a]0 VN(31)

Z = 1 (32)

Define a curvilinear coordinate system such that
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y" -- VI (33)

Z- VP

It may be notec that this aiO:VO1 coordinate system will cover the
entire 3-space once, if we restrict v' , and 3 (see
Figure 6) to tl.e ranges

o _ I- : 5,V--< +
0 •~ CC)ý :L0 (34)

Figure 7 shows the O coordinate system viewed in the X)7-Z
plane (pitch plane of the helicopter). The V a constant surfaces
are hyperboloids of one sheet and the r a constant surfaces are
ellipsoids, both families of surfaces being azimuthally symmetric
about the Z' axis. 3t6 is the azimuthal angle measured from
the negative )(' axis, counterclockwise looking along the plus z'
axis. V- 0 represents the two faces of the disc. The coordinate
V, changes sign as one crosses the disc.

The inverse of the transformation (33) is

r ZI (35)

-XI

The matrix of first partials of the Cartesian coordinates X ,Y' Z'

(represented by ti ) with respect to the curvilinear coordinates
V, 7S (represented by ) is

-1/ (36)

-v 0
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Figure 7. Ellipsoidal Coordinate System, Viewed in the
xz'z Plane.
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The metric tensor for the WVJ system is

I -I a

0 W ,,4.2 0
- 1+ ?I (37)

0 0 +

which shows that the a,47" coordinates form an orthcgonal system.
This makes writing out Laplace t s equation especially easy, since
in orthogonal coordinates (see Reference 22),

F ( 1e \ at (eie. * .L3j5

where *k * (no summation).

For our ellipsoidal coordinate system, then, Laplace's equation
VZ• = 0 takes the form

Letting

,,) +,v). . +,(3•) (39)

it is found that (38) separates into the three equations

S + m- 1 = o )o
+ rn (40)

~. [~0(n.] '1 (41)
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S+ 42)

where V" and Y% arc the constants of separation. The single-
valued solutions of (40) are

L=OSml/f, /,r n[ ... Yn= iteger (43)

Equations (41) and (42) are recognized as forms of Legendre's
associated differential equation (see Reference 23), and their
solutions are

P n n (V Owl(44)

12 3) P '7) Q(')]" (45)

Thus, we find that the mos÷ -eneral single-valued solution of
Laplace's equation in our e.lipsoidal coordinate system is

SV [P~ Ccosmi (46)

where mn is an integer.

2.33 Choice of the Pressure Field, Based on Total Thrust and Net
Moments

We shall deal with the disturbance pressure in its nondimensional-
ized form P , normalized on twice the free-stream dynamic pressure,
i.e.,

P (47)
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The general solution of Laplace's equation is given by equation (46).
Appendix I, whizh was prepared using Reference 24, shows some of the
associated functions of Legendre, P ' and 0- , and their proper-
ties. Before concluding that equation (46) is the general solution
for the pressure field, we must examine it for any contradictions
with the physical restrictions on the disturbance pressure P

Thus, we notice from Appendix I that the Q'k'(^) would be infinite
at W 2±1 , since they contain terms with denominators that
vanish at V.-± . This leads to an infinite disturbance pressure
on the Z@ a,.is. Hence, we must discard the Ql'(1i) type of
component from equation (44), thus reducing it to

(48)

This form of eliminates disturbances of infinite magnitude
along the rotor shaft axis.

Similarly, it is noted from Appendix I that P()--e as p-o.
Since this would mean an infinite disturbance at infinity, this
condition must also be ruled out on physical grounds. This reduces
equation (45) to

= (49)

Appendix I shows that (49) tends to zero as Y tends to o

Equations (39), (43), (48), and (49) are combined to obtain the
general form of the disturbance pressure:

Z P''W)CM(-) IC n

whereCP and DO are arbitrary censtants. From among the infinity
of terms in this general form, we will retain only those terms that
are necessary to simulate a reasonable lifting rotor or disc.
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Since over the disc area the lift density should correspond to the
difference in the pressures p just below (9ao, vcO) and above
(y=O.v>O) the disc, we drop all combinations of wi,b in (50) that
result in an even (vw.n). This is because P",w) is an even func-
tion if (Cn ) is even.

Let us set the practical requirements that (1) an integration of the
lift density over the disc area should correspond to the total
(steady) thrust developed by the rotor, (2) the lift density should
vanish at the center and at the periphery of the disc, (3) the
expression for the pressure distribution should be able to represent
net pitching and rolling moments supplied by the lifting disc to
the craft, (4) the pressure distribution should reasonably repre-
sent the first harmonic components of lift density as experienced
by lightly loaded rotor blades, and (5) there should be some pro-
vision for simulating the second harmonic components of the blade
bending moments.

Total Thrust

Using equation (50), the total thrust T is

T sf JA -- 4dA

co w 'b r" sin M 'O I LO:("W ter]

rVA": X c: O: (o P: (.,) rdr

From eouations (33), we find rt.RS(¶-u) for a point on the disc.

Hence, while integrating on the disc,

rdr[
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+1.'T - zi "" E-;S*o: -(-,o) Pn (W.) S)dip

Noting that W) P*(i) and using the orthogonality relations in
Appendix I, only the (noi) term will have a nonvanishing integral,
and we get

T=: uIr Fe 122 (5.1)

Defining a coefficient of thrust Cr,

CT T (52)

we get

0

_ (53)

1 is the rotor speed in radians per second, and,4,& is called
the tip-speed ratio

SWR (54)

Thus, the combination(hi=O, Ii4) is necessary for getting a steady
thrust from the pressure field.

From Figure 8, it is seen that P,0(Z))does not vanish at the center
of the disc, i.e., at V)=t I . In order to have a nonvanishing
thrust, and still to satisfy condition (2) above, we must include
the combination (M=O) t i along with any other combination(s)
having (m= O) . Their coefficients will have to be so related
that the composite lift density vanishes both at r=O and atr=f .
Let us try a combination of(mn-o)tj1)and (rn Ojhi-S). Sincel).Oat
the periphery and -L)a t I at the center, we require that

C P. (tl1) (i0) 4-

P;• cp(a).- U, 0) + c;.; o). 00 U=O) =

CO.c C 9 CT

X (55)
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Figure 8. ,(;C)Plotted as a Function of Radius r on the

Disc.
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Thus, the combinations (t11% 0) r i) and (mO, i -- ) can

together satisfy conditions (1) and (2) on page 32 if

C - C1.

Rolling and Picching Moments

Using equation (50), the rolling moment about the X axis is

mt% rd o (cow IT--uPMeM

Using orthogonality of the circular function over 0 - V

(LLower.-•ter)

while integrating on the disc, we have

•., Mr p~r Oo

Noting that I (JOSE-3.VTbh and using the orthogonality

relations in Appendix I only the (n.2) term will survive inte-

gration, and we ge4

r r 3 1 V5 (56)

Defining a coefficient of rolling moment
Mr (57)

CMr r"
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we get

.5 CMr -Cr

D' 6 ,,p (58)

A similar calculation for the pitching moment MP leads to

MP Aij-rRýpV, s-Ce jY axis (59)

5 Vre -- CZ j• axis

S(60)
2 Ax

c 4P MP (61)

Thus, the combination (raIj t1=Z)will satisfy condition (3) on
page 32.

Figure 9 shows typical plots of the steady and first two harmonic
components of experimentally measured blade loads. Since the radial
variation of Pnj) in Figure 8 is quite similar to the variation
of the first harmonic components in Figure 9, it was decided to
retain the combination(MM-If 4 )in equation (50). Also retained
was the combination(m.2,n,3)--)

Table II shows the combinations ofm and n to which the steady
disturbance pressure field P was restricted.

40 %Q'"ef),c"c'so vsL4"srn, rAV (62)

2.34 Choice of the Pressure Field, Based on Blade Flapping Moments

n a j a
In Section 2.e 3 the coefficients Clt , C; , rpe , and thwere
calculated fromct o, h, andC .afelb The latter represent the "total",
or integrated, effect o the disc as felt by the craft, in the form
of the thrust, rolling moment,and pitching moment respectively.

While this sort of a determination of the pressure field may seem
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Figure 9. Typical Steady and First Two Harmonic Components of
Experimental Biade Loads. (From Scheimann, Reference 14.
H-34, Flight 20, V = 122 Knots.)
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TABLE II. THE TERMS RETAINED IN THE EXPRESSION

(62) FOR THE DISTUJRBANCE PRESSURE P

m nR

0 1 This is the only term that gives rise to a
non-zero total lift (but does not have zero
lift density at the center of the disc).

0 3 Together with the above term, will give zero
lift density at the center of the disc if

1 2 This is the only term that will give rise to
net pitching and rolling moments.

1 4 Although the net moments over the disc are
zero for this term, the radial distribution of
pressure due to this term is quite similar
to experimentally observed pressure distri-
butions.

2 3 To account for second harmonic variations in
lift density and blade-flapping moments.
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quite obvious, .:t certainly is not the only way to relate the
pressure field to physical quantities. For a real helicopter with
a finite number of blades, barring the case for which experimental
measurements of blade differential pressures are available (as in
case of Referenie 14 and 15), it may be quite difficult to accu-
rately determine the steady components of total thrust, rolling, and
pitching moments, because of uncertainties in fuselage drag, vehicle
trim, etc. it would probably be advisable, then, to be able to
base the determination of the steady pressure field on some more
easily (and conFidently) estimable quantity. The flapwise moment
on the blade could be one such quantity. Even for an experimental
case, it is probably as easy, if not easier, to get measurements
of the blade-flapping moments as it is to measure the differential
pressures. In any event, since lift variations higher than the
first harmonic do not result in any "integrated" effect at all, it
is clear that expressing the C.,174min terms of the instantaneous
flapping moments on the blade would be helpful in simulating higher
harmonic variations in lift in any actuator disc approach. This
section deals with this approach.

There are two possible ways in which the coefficients C and D,
can be expressed in terms of the flapping momentsAI(o*) experienced
by the blades at their roots as they rotate:

(1) Assuming that the value (•J"A)-(P(,Pe)7of the theoretical,..a- up$*.

steady lift density at a point fr,$) on the disc is the time
average of the lift supplied to the rotor when there is and is
not a blade at that point, or

(2) Assuming that theM(*)is simply the flapping moment on
a blade, when it is at the azimuthal position 00. , and subjected
to the steady lift dens ityrP, i)-• )at .

It may be noted that with assumption (1), the total momentum trans-
ferred from the fluid to the disc will equal the total momentum
transferred from the fluid to the Nh blades. Assumption (2) does
not satisfy this condition.

Making assumption (1), let us further assume that the time history
of the blade lift density at a point(.r, )of the disc is a series
of pulses as s'hown in Figure 10. ./7 r,;p)represents the pressure
difference experienced by each of the blades at Oý when at
p Crj-)represents the assumed steady lift density at (r, i .

/oweP " lower
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N6 = number of blades
A• = rotor speed, radians/sec
6 = blade semichord

IT --

+4b LI.TT

assumed pulsating lift density for a
finite number of blades

- --------- assumed steady lift density for an
actuator disc

Fiure IQ. Time Histories of the Lif t Density at a Point (P,#)
c f the Disc.
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Assumption (1) requires that the areas under the t-wo time-hiftory
curves be equal.

bAN6  /ower

and M ý. 2h(r -). 2 .dr

0

oo

-4

.f,, r kd .(64)

Using expression (62) fore, we get

Evaluating the integrals for the five combinations of (M, .*)shown
in Table IT tbis red,-•es to

N(*)4 - CM[•.)~ ~ -f-7- Cz -A j- 5 1-0{ •*2/,

IAYY
/6% s a , ?

Or, remembering that C , we nave

" 16N 1



(66)

I SZ W6(67)

D =�. *Al. (68)

I VA . a (69)

2 - A/o A (70)

where . 0 MM, 1 ,,Aeanc Ae are the harmonic components of

M{) M +M~ Cs +M5Sl'ý7 *I 2 MC2 eo i,+M~i T7l)

Equations (65) through (70) relate the steady pressure field to the
flapping moments resulting from the airloads on the blades, and were
so used in the UR wake computations reported herein. These rela-
tions w.re obtained under the assumption (1) of equal average

Smomentum transfer on page 39

if we choose the simpler assumption (2) on page 39 , thus ignoring
the average momentum transfer requirement, we get

N (Y) J', s 9.*' dr(72)

R o

Since on the disc r RV we ha3.e

.. =(, - 00

R2
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Using (C32) for R , we get

M~ 4 hb Rpk L5 /0C YTs S/

Evaluating the five integrals,

jC*4#?7~)O *

.22

Noting that both C Iand C contribute to the first harmonic cosine

flapping moment, Ieneed fn additional. "constraint" to determine
them. Let us choose the total pitching momentM,.b from equation (59)

for the purpose. Similarly, equation (56) will be used to determine

.27. and. 3 
. The results are:

2R

iiS

Co - - (74)

;2 ?7~p -R5

227E
FS

i4
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G (77)

1r. b 1sa (80)

Equations (73), (74) and (77) through (80) do not satisfy the

average n'orentum transfer condition.

2.35 Induced Velocity Field

We shall deal with the induced velocity in its nondimensionalized
form •(uL/,I,) , normalized on the free-stream velocity&/h-6 , i.e. ,

Using (81) and (47), equation (28) becomes

2?, i.. ,~ (79)

which is the complete~ly dimensionless torm of the linearized momentum
equations. Integrating (82) and noting that all disturbances

vanish at an infinite distance upstream of the disc, we get the

in25ue n velocity field
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Q.(xyýY, Z) =f _

The subscript i represents the Cartesian "wind coordinates"X.,Y
and X In order to evaluate (83), then, for, a field point dPo

(X~ ~) we must first obtain the partials 6"a and --
of the pressure field P , and then carry out thie integratio~n from

16 CWo to x . Using the chain rule for first partials,

-,., =k ,2,3 (84)

where Mrepresent the "wind coordinates"? (X,YZ )

f "'represent the "disc coordinates" (X;YZ' )

r~represent the "ellipsoidal coordinates" ~)

The are available from equation (3?2 d.4 h are ob-cained

by inverting the matrix of first partials/ 7  in equation (36):

[i =/ V"'1 0 W 7) & 0 V Z("' (85)

~~/n~C 0.fiz P~~[zl~)1f 0

The ae obtained by using the expression (62) for P and the
formulads for derivatives of Legendre's associated functions in
Appendix I:

2ýC Q"Cas a, ;kV-SyA -W L' (86)
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( 71) 7 Z7COS c /0, In (88)

We now have all the necessary formulas for numerically integrating

equations (83). Some simplification, however, is possible in case

of the X-component of equation (83):

x(x I Y, •Z,) -- d - (' (89)

So long as the path of integration does not pass through points
where P is discontinuous, evaluation of the integral on the right-

hand side yields

4./(x, Y,Z) = P(x,Yz) (90)

Since the only place where the horizontal path of integration

encounters a discontinuity in P is the disc surface, (90) holds for

all points upstream of the disc. For a point (X,YZ ) on a stream-

line which crosses the disc, we use the physical condition that the

fluid velocity at a point on the lower face of the disc is the same

as that at its image on the upper face (i.e., the actuator is

permeable)*, an- cv3luate the integral for U in two parts:

4U(x,Y,z) =J- ,f.rY~Z)d0 #J/(WfZd

he-. U r (x , Y, z) P(x , Y, Z) V re CA,•0ý ýt)'- q,,o !,,,

ijake lmr(91)
Avee lace

*or, "no finite -hanqes in velocity can occur in the infinitesimal
time it takes a particle to cross the disc."
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or, since for our disturbance pressure P of equation ('02), P--P I
we get a~iee lower

U (x, Y,z) = P(xY,-Yz) -2P otewei1, itl
Wak~e /owor eace

The term (intersection point) indicates the point at which the

horizontal path of integration up to the field point (XhYZ )
crosses the disc.

The induced velocity components Y and W are evaluated numerically.

The wake geometry resulting from this steady induced velocity field

is also calculated numerically, as described in Chapter 3.
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CHAPTER 3

THE COMPUTER PROGRAM

3.1 General Description

This section briefly describes the blade-loads program, BLP2 of
CAL, as modified at UR. This program used to calculate blade loads
based on the two different wake geometries.

The BLP2 is in two parts. Part 1 first generates the blade segment
coordinates and the wake element coordinates for the given flight
condition. Using these coordinates, Part 1 then calculates (using
the Biot-Savart field law) the induced velocity coefficients.,Sm
and T7 appearing in equations (105) and (106),

'V" (MO, j; &I -. , N,, ; J isIpg d',, Na). TheseS and
7 coefficients are then written in binary form on TAPE 2. Figure 11

shows the logical flow diagram for Part 1 of the unmodified CAL pro-
grai.t.

Part 2 uses the TAPE 2 data set generated in Part 1 as input. In
addition, all the dynamic properties of the blades and control
inputs to the craft are supplied in Part 2. It then solves the
equations of rotor dynamics, blade aerodynamics, and wake-induced
effects by iteration. (The essential elements of the representation
of these three phenomena in the numerical program are summarized
in Sections 3.21, 3.22, and 3.23 respectively.) After achieving
convergence, the blade loads and other quantities of interest (as
well as -heir harmonic analyses) are written on TAPE 7. Figure 12
shows the major steps in the iterative procedures for solving the
equations. Figure 13 shows the flow diagram for Part 2 of BLP2. It
will be noticed from Figure 12 or 13 that the Part 2 procedure in-
volves two iterations, one "inside" the other. The iterative solu-
tion of the simultaneous equations (109) in the bound circulations
1Z takes place "inside" the iterative solution of the blade dynami-
caI equations (96).

Figure 14 schematically shows the BLP2 as modified at UR. By
comparison with Figure 2, it may be noted that the control settings,
vehicle attitude, and motion have ceased to be unknowns. (This
means that BLP2 ignores the "Pilot" and "Vehicle Dynamics" blocks
in Figure 1) Similarly, the uniform induced velocity is needed if
the CAL rigid wake geometry is used; and some information on the
blade loads is needed if the UR wake geometry is to be computed.
Since the modification to the CAL procedure is essentially the use
of an alternative wake geometry, the necessary changes and/or
additions to the CAL program occur in Part 1 of BLP2, as can be
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noticed from the lower right-hand portion of Figure 14. Appendix II
shows the FORTRAN IV source listings for subroutine SUB14 of Part 2,
as modified at IR, and for subroutines RWAKE, COEFS, STMLN, VLCTS,
CHAMP, FRWRD, ADVNC, and CRSNG, which comprise the UR written wake-
geometry program.

Essentially no changes were made in Part 2 of BLP2.

3.2 Representation of Various Physical Phenomena in the CAL
Program

This section briefly describes the representation of the phenomena
of rotor dynamics, blade aerodynamics, wake-induced effects, and
wake transport in the original BLP2. An alternative to the CAL
wake transport was added at UR, while the other three representations
were left unchanged.

3.21 Rotor Dynamics

For a numerical procedure in which all pertinent quantities are
computed at a finite number Na of discrete instants around the
azimuth for a finite number Ale of blade radial stations, it is
convenient to harmonically analyze the generalized forces
mentioned in Section 1.21:

0,,W)= A (Z(A ,Cos PJ2t7A 5aiý )7 (92)

whreA is the number of harmonics rets. ed. (The maximum number
would be- . The components A,,( NAkNmkl'1,NA) are defined
by equatioffs (4) and (92), except that hereafter, we shall neglect
the torsional displacements @Ot), so that the aerodynamic pitching
moments will not do any "work" on the blade modes, which now involve
only flapping displacements. Thus,

- A
":4 j -r (93)

N.-
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whepre:iio isPe length of the j th spanwise segment about radial
position 'is the flapping displacement atr j in the * th

normal mode; and P 1 1j and Ali are the #? th azimuthal cosine and sine
components of the lift density P at the j th spanwise station,
such that

pc., = j+ (jc.n t•• A,, Zt (94)

n-Z ... j =J, Ne

The equations of motion (3) for the NM,, modes -an now be solved
separately for each of the harmonic components of the steady-state
response, resulting from the corresponding component of the forcing
function, yielding:

(2d 2

4,.. _*L 2 P 4

These define the generalized flapping displacements

Nh

k o1 . A, A

The flapping displacement and corresponding "plunging" velocity of

a blade :,adial station can now be computed according to equation (1):

1 60 (Nh 7 (97)

k', ( Go cos-i z'*+b,,, si

54

ý(.joL Z 4a, cost7J2to l 1.2 t



) () Z, -, ( 72t 
(98)

k -"z ,,

The plunging velocity affects the quasi-steady component 1K of the
bound circulation, as can be seen from Figure 14.

3.22 Blade Aerodynamics

The blade representation of Reference 2 used trigonometric series
expressions for the distributions r(x,)and (*,)me-tioned in Section
1.22:

X.(69) =fA co ZA, (99)

K 1 , ,Na

cp cs i (100)

where 9 is the blade-chord based Glauert coordinate (see Figure

2(c)) defined by

X#4 =-be 09 (101)

The subscript IC refers to the particular discrete disc point to
which the C-,,,AeAnW 8),P 2 above belong. K ranges from
1 toA/ra , where Aeo.ANp.rN. See Figure 15(a). (Note that the
vorticity distribution in equation (99) identically satisfies the
Kutta-condition of equation (6).) In the numerical computations,
the infinite series in equations (99) and (100) were truncated after
the third term, i.e.,/0 ranged from 1 to 3. (It turns out that the
higher harmonic components in Lg(*)do not affect the theoretical
7" , P , andP5/1 as evaluated from equations (14), (15) and (16).)

Substituting equations (99) and (100) into equatiorn_(5), the
coefficientsAve can be related to the components P. of the im-
pressed normal velocity:
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I,,

ii i

A14 z. (102)

A-

The total bound circulation is now obtained by evaluating the
"integral in equation (14):

-' ) 6 (i4#* -A (103)

weheren is the measured lift curve slope for the airfoil

The numerical program also limits the total bound circulation
at disc point K to a maximum value row, , whirh is determined from
the previously known stall angle of attackOC, 0 1 for the particular
blade section:

r"A Id OC A (104)

When the 71( as computed from equation (103) is found to exceed
this l7 p, , it is recognized that the blade is stalled at that
position and the computed rle is replaced by e .. The circulatory
lift, as computed using equation (15), is augmented at the stalled
segment by a cross-flow drag force.

The other "output" from the blade aerodynamics block in Figure 1
is the wake vorticity strengths. The wake configuration used in
the CAL program is shown in Figure 15(b). The wake consists of a
mesh wake behind each blade for A'SV azimuthal segments, as well
as concentrated tip (and root) vortices behind these meshes. The
actual locations in space of the various points in the wake model
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are determined in the computations of the "wake vorticity positions";
see Figure 1. The strengths of the mesh-vortex segments are related
to the bound vorticities ac the/Mr disc points as shown in
Figure 15(c). The strength of a concentrated tip (or root) vortex
segment is taken to be simply the maximum value of the bound vortic-
icy on the corresponding blade when at the appropriate azimuthal
position.

3.23 Wake-Induced Effects

For the purposes of the numerical program, the vorticity strengths
on all the filaments in the mesh wake can be expressed in terms of
theNrpg bound vorticity strengths as shown above. Further, the
wake-induced normal velocities 40P( were needed only at the N,, points
on the disc in the form of components similar to the in equa-
tion (100). For a given wake geometry, therefore, it was possible
to evaluate coefficients SOW,. such that the induced normal velocity
at the •th disc point due tY the mesh wake is given by

Similarly, for the concentrated trailed vortices part of the wake,
coefficients r.. are computed such that the corresponding induced
normal velocity due to the trailed wake is given by

Wr (e) i O7,Cno )? (106)

is the maximum bound vorticity on a blade when at azimuthal
position S . The induced velocity coefficientsS. and 7

b,*.. are
evaluated in Subroutine SUB14 of Part 1 of the CAL program.

The "impressed" normal flow component (e)is broken up into two
parts: one, z(G), resulting from all the contributing quantities
on page 6 except the wake vorticity; and the other, 10(,), resulting
exclusively from the wake vorticity. Thus,

&=, (107)I jo 4ý/;

CJ, N'
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and (6 (1G8)

Combining equations (102), (103), (107), and (108), it is possible
to write

2,, * .O .. , .- ,a J J

which is a set of Yra equations for the Nra unknowns . I is
the bound circulation resulting from the normal flow o K and
represents the bound circulation at disc point AC resu rom

the induced velocity due to the wake vorticity segments whose
strengths depend on the bound circulation at disc point j . It
may be noted that the XK depend on the blade response, since the

A• include the blade-flapping velocities, torsional displacements,
and torsional velocities. Equations (109) are solved by iteration
in subroutine GAMMA of Part 1 of the CAL program.

3.24 Wake Transport

Representation of the wake transport in the CAL program consists of
determining the positions of the points defining the mesh and
trailed vortices in the wake model shown in Figure 15. The rigid-
wake calculations reported in Reference 2 used the following formu-
las for the x',I and Z' coordinates of the point Ri j, in the
wake model,(i, )

51,o= k" - ) 4- " 1 C,?-,',), (2 jr'

"i" ~~Z( z,.• ( 5,, Q(•-_) 7 ,- -ýoc, >2 ..,•
!re~in
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where,1 4 is the azimuthal increment,•'k-•. ha is the azimuthal
position of the blade shedding the wake.#j is the semichord at
the blade segment end point; t (P•') .is the built-in coning plus
steady deflection of the blade segment end points, positive upwards.
_& is the assumed uniform induced velocity (quantity 4" in Figure
14) over the disc. 6' is the fraction of a time interval through
which the wake is advanced with respect to the true blade position
, .• "d•a' ,which is quasi-empirical, was determined in such a waythat for a two-dimensional oscillating airfoil, this discrete

representation of the shed wake gave results that were in "reasona-
ble agreement" in the "reduced frequency range of interest" with
the classical solution of the problem. (See Reference 2 for details
of this determination of 6".) For i = 1, the coordinates (X4,Z')i•k
are simply the points on the trailing edge of the blade at azimuthal
position ka

It will be noticed that this wake transport ignores the displace-
ments in the sideways direction. Also neglected is the variation,
over the disc, in the induced velocity in the Z" direction.

3.3 Algorithm for Computing the OR Wake Geometry

It can be seen from equations (110) that the point on the disc*
(•t-', Pz')9 where the fluid particle now at the point Rijk&

'lij*4 in the wake used co be ('-7o'J) time intervals beforethe blades assumed the azimuthal position *a, has the coordinates

x 0 =- r. CO.sfrka, if') A V,7- b Shl, s/(_k4-*

=~ ~ i 6), s"''k "A' V7 ~cf~~~6ji7

0/Z. . = 

"/

Sh'"isc'" is not a flat surface, since blade steady deflection
an(! built-in coning are accounted for, through

,6, 6D



The difference between the expressions (110) and (;.ll) Jefines
the movement of this fluid particle from RQl. (x, F •Z) to

under the influence of and LU, in (s--)
time intervals.

In the UR wake-geometry computations, the points of "injection",
1"k4  , can be retained* as in (111), but the movement under the

influence of both Vlxs and the induced velocity was computed differ-
ently, through an actual calculation of the streamlines through the
injection points. The steady pressure field used for calculating
the streamlines always had the pressure discontinuity on the flat
disc.

3.31 Subroutine RWAKE

Subroutine RWAKE, which is the entry point for calculating the UR
wake geometry, first chooses the steady pressure field through
formulas such as those developed in Sections 2.33 and 2.34. Figure
16 shows the flow diagram for subroutine RWAKE. Table III shows
the various options for the choice of the steady pressure field
based on various physical quantities.

It may be noticed from Appendix I that the values of are

purely imaginary quantities when n is even. The correspondi. C,-
and' & also turn out to be purely imaginary quantities. (P (.)
are a¶ways real.) In such cases, the quantities actually handled
under QMN MJ) were e" . To offset this factor " , the corre-
spondirg uantities CMN(J) and DMN(J) in core were set equal to-C'"
and-z'V., respectively. Thus, all the computations were done in
"reals" , and the products CMN(J)*QMN(J), DMN(J)*QMN(J) always agreed
with their theoretical counterparts Con'(_vm B" ,_ 7i,) for all

~J; i.e., for all combinations of w an'ln. 07 0

After choosing the steady pressure field, RWAKE sequentially calcu-
lates, using equations (111), the disc-injection points 'Jk, for
the mesh and trailed wake grid positions (see Figure 15(b) ); it
then calls subrcutine STMLN, which calculates the streamline through
a given disc point. At the end of 1MAKE, all the wake coordinates,
disc inj-ction point coordinates, total normal velocity values at
disc points, and induced velocity values at the disc points are
written on TAPE8.

*An option in the UR wake computation program also enables the
particles to be injected on the flat disc, thus ignoring
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TABLE III. VARIOUS OPTIONS FOR CHOOSING THE STEADY PRESSURE
FIELD P THROUGH THE COEFFICIENTS C' AND D"

P ,;' a Cos.

KKSW Remarks

I Subroutine COEFS bypassed. C'and •, remain
unchanged.

2 .C1 and D. to be read in as input to sub-
routine COEFS.

3 " anc-Dm calculated from CT , Cf and
A (See Sec~ion 2.33.)

4 C: and.P calculated from TrX1,Me),R,Prs V
and A n(See Section 2.33)

5 CZ'• and.Vm calculated from input in the form
of harmonic components of the flapping moment
experienced by the blade as it rotates. (See
Section 2.34.) Average momentum transfer con-
dition satisfied.

6 CZ' and.D calculated from input in the form
of harmonic components of the blade flapping
moments, plus Rpf, V'.,b,M,. Average
momentum transfer condition not satisfied.

7 C0 and.V' calculated from R.f, Vo'., N/6b,
plus the harmonic components of the blade flap-
ping moments which are computed from the har-
monic components of the experimentally measured
lift density on instrumented blades. Average
momentum transfer condiCion satisfied.

8 C and." calculated from the same inputs as
7 above, plus Mdp and Af . Average momentum
transfer condition not satisfied.
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3.32 Subroutine STMLN(KEND)

Subroutine STMLN(KEND) follows the fluid injected from a given disc
injection point for a number (KEND-l) of time intervals, saving the
coordinates of the position after each time interval. The field is
assumed steady, and the particle paths and streamlines are identical.
A time interval is equivalent to the rotation of a blade from one
azimuthal position to the next. Thus,

A2.: 5' secoloO' (112)

To nondimensionalize time, we must use a normalization that is com-
patible with the normalizations (30) and (81) for distance and veloc-
ity respectively. This calls for normalizing t on the time taken
by V,- to travel a distance R ; i.e.,

-4f= • V...±L = . (113)

whereA1*is the angle (radians) between two azimuthal positions and
A is, again, the tip-speed ratio. For accurate streamline calcu-
lations, the program has the provision for further reducing the time
increment through a factor NINC. Thus, each time increment TINC is
(I/NINC) times the time interval, and

T/INC = 43 (114)

Equation (114) represents the "usual" time increment value. ALL
exception is the very first interval of a streamline. (See Figure 13)
For a fraotional wake advance6d, the TINC for the first NINC incre-
rents of each streamline will be (1-d) times that in equation (114).
NINC is one of the accuracy parameters read in at the beginning of
RWAKE.

Subroutine VLCTS numerically calculates the induced-velocity com-
ponents V and W at a given point (X, Y, Z) by the procedure indica-
ted in Section 2.35. XUP (the location of "infinity" upstream of
the disc) and XINC (the value of the incremental length used for the
numerical integration of (83) ) are the accuracy parameters used in
VLCTS. Both XUP and XINC are also read in at the beginning of RWAKE.
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The quantities KFWD and KRVRS appearing in Figure 17 are "counters"
for the number of flat-disc crossings made by -he particle being
followed, in the forward (i.e., normal, or downward) and reverse
(i.e., upward) directions respectively.ap 1)P
Subroutine CHAMP computes P , -•-at a given point( ,

.Vand (ata ivn oit
using the formulas from Section 2.35. It he noticed that the
multiplier appearin- in equation (87) ftr U will make the quantity
real since, as explained in Section 3.31, qntherCt 1,i or iQ7 ,
but not both, will be imaginary for each value of n. The quanrtity
handled in QMNMI(J) will always be real, being equal toi Q1,'"'/) if
12 is odd, and equal toog ' (07)if n is even. his leads to agree-
ment between the products CM'Ni(J)*QMNMi(J), DMN(J)*qMiM(J) and their
theoretical counterparts

3.33 Subroutine FRWRD

Subroutine FRWRD, which is called in subroutine STMLN, computes the
next position on the streamline by invoking the (call ADVNC - call
CHAMP) cycle NINC times. Figure 18 shows the flow chart for sub-
routine FRWRD. Subroutine ADVNC saves the current values of
coordinates, velocities, pressure, etc., and calculates the coordi-
nates of the particle after a time increment TINC, using the current
values of the velocity. If a flat-disc crossing is recognized on
ADVNC-ing, FRWRD compensates for it by calling CRSNG. Subroutine
CRSNG assures that the values of the velocity are continuous across
the flat disc, although the pressure has a discontinuity at the
flat-disc surface. This is achieved in CRSNG by first finding out
the exact point of crossing, and then modifying the L/ component of
the velocity through an operation similar to equation (91).

3.4 Integration With the CAL Program

It is seen from Figure 11 that the CAL wake coordinates are generated
in subroutine SUB14 of Part 1 of the original BLP2. (SUB14 calls
another subroutine COORD for actually computing these coordinates.)
Since our modifications to the BLP2 essentially consist of generat-
ing and using an alternate wake geometry, the interfacing between
the UR-written wake-computing part of the program and the BLP2
occurs in subroutine SUP14. The FORTRAN IV source listing for
SUB14 appears in Appendix II. Figure 19 shows the flow diagram
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Figure 18. Flow Diagram for Subroutine FRWRD.

67



r r

1111.10

r 9-4u

I~ yuA

WAD ALL PUS1V

Figure~~~~--.- 19. JlwDarmfrSuruieSB4a
Modifie Mt UF.

1468



for subroutine SUB14 as modified at UR. The changes and addi-
tions to the original program are shown in dotted lines. The
changes were made so as to make it possible to compute and use
either of the two wake geometries. The UR wake geometry is gener-
ated (and written on TAPE8) in subroutine RWAKE. Provision was
also made to make it possible to generate just the mR wake and then
terminate the job. Conversely, a UR wake generated in a previous
run can be directly read off TAPE8 and used for computing the
induced velocity coefficients in Fart 1. All these options are
accomplished through an input integer variable MMSW. (See the
source listing for subroutine RWAKE in Appendix II for a description
of these options.)

3.5 Peripheral Program

Two peripheral programs had to be written in addition to the UR
wake computation described in Section 3.3. These were named
RWAKEPIC and RSLTSPLT. Both make extensive use of the plotter
subroutines package e ailable on the University of Rochester disc
library.

RWAKEPIC reads the UR-Lco.nputed wake geometry from the TAPE8 data
set generated in subroutine RWAKE of Part 1 and, using the plotting
routines, pictorially displays the wake geometry. Three options
are available as to the type of picture produced: pictures of
streamlines, instantaneous pictures of the wake generated by a fi-
nite number of blades, and progressive distortion of stream-tubes
originating (from points equispaced around the azimuth) on the disc.
RWAKEPIC, which is a separate main program, was found to be useful
in interpreting the UR wake geometry.

RSLTSPLT, which is also a separate main program, reads the con-
verged airloads, blade-bending moments, bound vorticity strengths,
etc., from the TAPE3 data set generated toward the end of Part 2
(see page 48). Using the plotter routines, RSLTSPLT then creates
curves showing the time histories as well as harmonic analyses of
these converged quantities which are the results of the BLP2.
RSLTSPLT was found to be helpful in comparing the blade-loads
predictions resulting from a UR wake geometry with those from theCAL wake geometry and with experimentally measured blade loads.
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CHAPTER 4

COMPUTED RESULTS AND INTERPRETATION

The UR-written wake-geometry program described in Chapter 3 was
first used for calculating the induced velocity at a small number

of points on a flat, lifting disc at an angle of attack of 2.50
Figure 20 shows the computed Z -component of this velocity. The
induced velocity is upward on a crescent-shap ci area near the
leading edge of the disc and on an area immediately behind the
center. These results agree well with the results of Mangler's
computations shown in Figiures 3 and 4.

The wake-geometry program was then used to predict three wake

geometries for two flight conditions of the UH-l rotor:

(1).A 0.26. (Wake geometry computed from streamlines
emanating from the flat disc, thus ignoring the steady

deflections j(PC) See footnote, page 61.)

(2,U= 0.26. (Streamlines emanating from the steady
deflected positions of the blades.)

(3)A, = 0.08. (Streamlines emanating from the steady
deflected positions of the blades.)

The CAL-computed values for the airloads and blade flapping moments
are available (Reference 2) for these flight conditions. (These
were computed using a wake geometry inpu~t calculated from a uniform
downwash.) Also available are experimental measurements for the
airloads and flapping moments.

The modified BLP2 was then used to obtain the blade-loads predic-
tions resulting from the UR-computed wake geometries. Except for

the wake-geometry inputs, all other inputs for these computations
were identical to those in the corresponding CAL runs. Even for
the wake-geometry inputs, the wake models used were the same.

4.1 UH-l atA =0.26 (Condition 67 of Reference 15), Injection

on Flat Disc

j~rs =188 feet per second (forward speed)

0( - 5.8 negrees (disc angle of attack)
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Comparison with Mangler's induced velocity
values from Figure 3

location Mangler's UR

number W
-Yet l .

0.2 0.194

0.24 0.182
0.06 0.04
0.34 0.24

Figure 20. . -Component of the Induced Velocity on a Lifting

Disc, Using the UR Program.
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III

/V• = 2 (number of revolutions of wake)

0.7 (wake advance)

The induced velocity on the disc, as computed by RWAKE, showed an
upwash area near the forward edge and just behind the center of the
disc. Figure 21 shows a typical instantaneous "picture" of wake
trails. It is clear that the trails deviate appreciably from a
skewed circular helix. Figure 22 shows streamlines starting from
90% radius on the flat disc. All the streamlines leave the disc
in the downward direction, but those in the region /Y/> 0.8
soon come under the influence of a tip vortex effect, the ones
farther out doing so sooner. Streamlines in the /Y>< 0.8
region continue downward. The result is a separation of the
streamlines into two wing-tip type systems emanating from the tip
areas, and a body of streamlines emanating from the inboard area
of the circular wing. The "wing-tip" grouping of streamlines
exhibited a tendency to go higher (and move laterally) relative
to the latter group, which moves downward comparatively undis-
turbed by the presence of the disc. Similar separation was
observed in the water-tunnel experiments reported in Reference 16.
The rolling up of the tip vortices is clearly visible in Figures 23
and 24, which show the progressive distortion of an initially
circular fluid contour, released from 90% radius on the flat disc,
one and two rotor revolutions after release, respectively.

Figure 25 shows a comparison of the unsteady parts of the airloads
(time histories), computed from this UR wake geometry, with the
CAL-computed airloads and with experimentally observed values. It
can be seen that the airloads predictions from the two different
wake geometries are only slightly different. The UR wake airloads
do not seem to suggest a decidedly better (or worse) agreement with
experiment.

In Figure 21, a tip-trailed vortex is seen passing c;ose to about
the 75% radial station when the blade is at 3 = 75 . The induced
velocity at that station due to the nearest tip-vortex trail seg-
ment was -10.13 fps(CAL)/-3.93 fps(UR). (The negative sign indicates
an upward velocity, since our convention has positive Z downward.
See Figure 6) The induced velocity at this station due to the entire
wake was +9.48 fps(CAL)/+5.745 fps(UR). As compared to these, the
normal component Y' OC• due to the control input was 92,0 fps at
that station. The to~al normal component* was +43.74 fps(CAL)/+48.60
fps(UR).

jnormal to the blade chord. See Figure 2(a).
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Conversely, at 21.2% radius and 2550 azimuth, where significant
differences between the two computed airloads are apparent in
Figure 25, the induced velocity due to the three nearest segments
of the tip-trail from the preceding blade is found to be -4.85
fps(CAL)/-3.41 fps(UR). By comparison, the induced velocity due
to the entire wake is -25.1 fps(CAL)/-9.918 fps(UR). This differ-
ence of about 15 fps is probably due to the closeness of the
mesh wake, which curls around close to the retreating blade at
small radii, combined with the fact that this UR wake computation
used streamlines emanating from the flat disc, thus placing the
wake lower than the CAL computation which accounted forgoe .

The slight differences between the airload predictions from the
two wake geometries are more observable at smaller radii. This is
probably attributable to the smaller flapping (plunging) velocities
and smaller tangential velocities (and hence smaller ".9*Og contri-
bution) at small radii, which would make differences in t?e wake-
induced velocity more noticeable as seen at the blade aerodynamic
section. Contributions to induced velocity by specific vortex
filament segments are given in Appendix III.

Figure 26 shows a comparison of harmonic breakdowns of the air-
loads. Figures 27 and 28 show the flapwise bending moments
(time histories of unsteady parts and harmonic components, respec-
tively) for the two computations and the experimental results.

4.2 UH-1 at 4 = 0.26 (Condition 67 of Reference 15), Injection
at Steady Deflected Positions of Blades

J/. = 188 feet per second (forward speed)

S= 5.8 degrees (disc angle of attack)

NW = 2 (number of revolutions of wake)

C = 0.7 (wake advance)

The computed wake geometry for this case showed all the qualitative
features of Figures 21 through 24. The tip-vortex effect, however,
was delayed (i.e., became discernible farther downstream) since
the streamlines, which emanated from the "coned" blade surface this
time, had to travel some distance before they entered the regime
influenced by the pressure discontinuity on the flat disc which is
the source of the tip vortices.

SWhen the computed geometry was used as input to BLP2, the blade
motions did not converge. The iterative procedure in Part 2
exhibited a sustained-oscillations type of behavior. These itera-
tion-to-iteration oscillations in the generalized blade displacements
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were less than 1.5% for all structural modes except the high est
(2nd antisymmetric), for which they were about 8.60%. The noncon-
verged loads, however, were 0found to be quite close to the CAL-
computed loads. At the 255 azimuth of the 21.2% radial station,
the airload prediction agreed better with the CAL-computed value
than did the prediction of Section 4.1 (see Figure 25).

4.3 UH-1- at& = 0.08 (Condition 65 of Reference 15), Injection
at Steady Deflected Positions of Blades

X =55.1 feet per second (forward speed)

=2.5 degrees (disc angle of attack)

NW = 6 (number of revolutions of wake)

6'ý = 0.7 (wake advance)

Realizing that the diffarences in the com~puted airloads for the

,,"= 0.26 flight condition from the tw,.o wake-geometry' inputs were
only slight, it was decided to carry out a similar comparison for
a slower Q,0U 0.08) flight condition. For this ca.se, the induced
velocity-to-forward speed ratio should be higher than for the
faster flight case (with comparab~e disc loading). Airload pre-
dictions for this slower flight condition, therefore, would be
expected to show more marked differences for one wake geometry as
compared to the other.

During the wake-geometry computation, the coownwash-to-forward

speed ratio was found to be as high as 1.11 in certain regions
toward the rear of the disc. T1his makes the ent-re calculation
of the induced velocity field (and the resultant streamlines and
wake geometry) suspect, since the theory was baseci on a lineariza-
tion of the momentum equations. By way of comparison, the highest
value of the downwash-to-forward speed ratio was about 0.12 for the

,A= 0.26 flight condition. lhus-, the degree of confidence in the
computed wake geometry for theA,&= 0.08 fflight condition must be
lower than for.,,,= 0.26.

As expected, the upwash area of the disc was about the same as
before, viz., a thin crescent near the leading edge and a small
area behind the disc center. Many of the streamlines emanating
from these regions started in the upward direction. (This did not
happen in the,,a =0.26 case because the induced upwash, being truly
a small perturbation, to the fluid velocity, was more than compen-
sated for by V-'j -5/9'hO' , which is the niormnal (downward) component
of the forward speed. For the/ 0.26 case, not only was ~hi~gher,
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but O was also somewhat larger, 5.80, than the 2.50 for the..,&

0.08 flight.)

Figures 29 and 30 show typical wake trails for the A = 0.08 flight
condition. The deviations from a helical wake are more prominent
in this case because of the higher ratios of all the induced veloc-
ity components to the forward speed. Figure 31 shows the stream-
lines starting from 90% radius. The wing-tip phenomenon is again
evident. (The upward-starting streamlines mentioned above are not
noticeable in this picture because the leading edge crescent with
large induced upwash was located outboard of about 92% radius,
and the upwash region behind the center of the disc extended only
up to about 50% radius.) This rolling-up-of-the-tip-vortex effect
is more clearly seen in Figures 32 through 35, which show the
progressive distortion of an originally circular fluid contour
released from 90% radius, one through four rotor revolutions after
release, respectively.

Figures 36 and 37 show plots of the unsteady parts of the airloads
and bending moments, respectively, for A = 0.08. It can be seen
that the airload predictions from the two different wake geometries
differ sigrificantly. The airload predictions from the UR wake
seem to be in better agreement with experiment in the region around
900 azimuth. While the rest of the azimuthal positions show the
airload histories to be qualitatively similar, the increase in
higher harmonic content with the UR wake seems clear. This is
emphasized in the blade response in Figure 37.

The wake-induced velocity at the 75% radius, when the blade is at
) = 750, is found to be 14.17 fps, and the total normal velocity

at that point is +55.81 fps. Thus, for this slower flight condi-
tion, the wake-induced velocity is, as expected, a more significant
fraction of the normal velocity experienced at the blade section.
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CHAPTER 5

CONCLUSIONS AND POSSIBILITIES FOR FURTHER WORK

The wake-geometry computations reported in Chapter 4 show that the
flow field behind a lifting actuator disc features tip vortices
similar to those from a lifting wing.

The computed airloads for the& = 0.26 flight condition of the
UH-l teetering rotor seem to be less sensitive to wake geometry
than are those for the,/t = 0.08 flight condition. This is indicat-
ed by the slight differences between the airload predictions result-
ing from two different wake geometries (CAL rigid helical wake and
UR distorted wake) for the, = 0.26 condition and by the signifi-
cant differences between similar predictions for theA = 0.08
condition. The accuracy of the UR-computed wake geometry for
the slower (,,& = 0.08) flight condition is questionable because
of applying linearized equations to an inapplicable amplitude
regime. Still, the airload predictions of the blade-loads program,
even if this wake geometry input is considered "arbitrary", are
useful in providing some insight as to the differences which will
result from wake-geometry differences.

This stronger sensitivity to wake geometry in the case of a
slower flight condition calls for some quantitative discussion. As
suggested near the end of Chapter 4, the wake-induced velocity in
the case of theA= 0.08 condition forms a more significant fraction
of the normal velocity experienced by the blades. This suggests
an examination of the variation of contributions due to wake effects
and those due to all other effects.

The faster flight condition certainly has larger contributions from
the geometric pitch input and of the blade flapping to the total
normal velocity at the blades. Thus, for example, at the 85% radial
station, the collective pitch was 0.2011 rad at = 0.26, as
compared to 0.1209 rad at/ = 0.08. The amplitude of the cyclic
pitch input was 0.1195 rad at,. = 0.26, as compared to 0.04 rad
at,, = 0.09. Similarly, the amplitude of the first azimuthal
harmonic component of the displacement in the rigid flapping of the
teetering blade (normalized on tip deflection) was 0.6096 at
A = 0.26, as compared to 0.1830 at/ = 0.08. At the rotor speed
of 33 rad/sec, this flapping component results in a maximum flapping
velocity of 20.1 fps at/Z = 0.26, as compared to 6.04 fps at ,a
0.08.
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The corresponding quasi-steady bound vorticity strength IK compari-
sons (see Figure 14 and equation (109) ) for the 85% radial station
are (sq ft/Sec):

steady component 331.3 (.A = 0.26) as compared to 249.9 (,M = 0.08)
first harmonic 158.3 (,4 = 0.26) as compared to 75.34 (A = 0.08)
second harmonic 33.2 (A = 0.26) as compared to 8.9 (& = 0.08)
third harmonic 28.91 = 0.026) as compared to 13.75 (U = 0.08)

These values show that in the case of the faster flight condition,
the variations in the quasi-steady bound vorticity are larger. This
same point is illustrated in another way in T..ble IV, which com-
pares the contributions of the two terms on the right-hand side of
equation (109). The ratio of the influences of the quasi-steady
and wake-induced quantities on the bound vorticity is quite high
for the first two harmonic variations ata = 0.26, but not so in
the case ofd = 0.08. For the 3rd, 4th,and 5th harmonics, the
ratio is q-nller at either value of,& , because there are no cyclic
variations in 01.0 or Vf above the 1st harmonic, and the blade
flapping displacements are smaller in harmonic components above the
2nd.

TABLE IV. COMPARISON OF CONTRIBUTIONS OF THE QUASI-STEADY
AND WAKE-INDUCED QUANTITTES TO THE BOUND
VORTICUTY STRENGTH COMPONENTS AT THE 85% RADIAL
STATION, UH-l,/A = 0.26 AND/ = 0.08

The Ratio 1 4*- ;. 1 (See Equation (109))
Pg c--

Harmonic Component = 0.26 A = 0.08

Steady 1.17: -0.17 1.16: -0.16
1st harmonic 1.34: -0.34 2.7: -1.7
2nd harmonic 1.25: -0.25 0.497: 0.503
3rd harmonic 1.76: -0.76 2.94: -1.94
4th harmonic 0.684: 0.316 0.157: 0.843
5th harmonic 0.204: 0.796 3.59: -2.59

As regards the amount of wake vorticity remaining close to the blades,
Figures 21, 29, and 30 show how much more rapidly the distance
between a given blade and the wake increases for the higher speed
case. The strength of the wake vorticity, of course, also enters
these considerations, but this is a more complex and less influ-
ential variable as regards the effects of forward speed.
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It can therefore be concluded that the relative insensitivity of
the blade loads to wake geometry in the case of the faster flight
condition (,X = 0.26) is due mainly to (1) the wake being blown
away relatively quickly and (2) a predominance of the cyclic pitch
input, tangential velocity variation, and blade flapping displace-
ments in the total time-varying aerodynamic environment at the
blade sections.

It may be note- that all the computations reported here pertained
to the UH-1 two-bladed teetering rotor. It would probably be
worthwhile to carry out similar comparative airload computations
for a fully articulated rotor such as the four-bladed Sikorsky H-34.
This might facilitate comparisons of the importance of blade
displacements, cyclic pitch and tangential velocity variations
and wake-induced effects. Since the H-34 has four blades, there
will be more wake vorticity near the disc, and hence wake geometry
could be more influential than it seemed in theA = 0.25 case
for the UH-l. If this does seem worthwhile, the wake computation
can be repeated using the converged blade loads to establish the
time-average pressure field which is the basic input to the UR
wake geometry determination.

If the UR wake-computing program is to be extensively used with
the CAL BLP2, considerable saving in running time could be
achieved by writing the UR wake geometry onto a temporary direct-
access data set at the beginning of subroutine SUB14 (see Figure 19)
and reading it from this data set instead of repeatedly reading
it sequentially from TAPE8.

As alluded to earlier, a fundamental difficulty exists in tl.e work
reported here. Linearizing the equations of motion on the basis of
disturbance velocities being small compared to forward speed means
that the wake computations will be more reliable, for a given tip
speed, at the higher advance ratios. On the other hand, since we
are using an assumed s pressure field for calculating the paths
of particles which are rea ly unsteady, sufficient time must elapse
to allow an averaging of the unsteady effects to take place. Thus,
the streamline positions--and the wake geometry obtained therefrom--
will be most realistic (in the case of a finite number of blades)
only when each vorticity element leaving the blades is subjected to
the effect of a large number of blade passages. For a given number
of blades and a given tip speed, this calls for a small advance
ratio,,&. Put another way, the method explored here will be most
accurate for a lightly loaded rotor (i.e., low thrust per disc
area) with many blades at high forward speed and high tip speed.
Like all other rotor vortex aerodynamic theories, the results will
reflect changes in vortex strength and position only when the number
of blades is sufficiently high to leave vortices close to succeeding
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blades and yet low enough to keep the strength of the vortices
from becoming too low. The scope of this research has not
allowed definition of these limits, if in fact they exist. It
has suggested, however, that wake details are important for tip
speed ratios of 0.1 and below, and are unimportant at around

= 0.25 and above.
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APPENDIX I

ASSOCIATED FUNCTIONS OF LEGENDRE AND SOME OF THEIR PROPERTIES*

I-1 Legendre Functions of the First Kind, R (z)

P '(j) - (-3p

zz

Particular values:

( -IY• __-,_ ... n even

) ... n odd

Asymptotic values for lzl- " Do:

Reference 24.
**(2n..l)!A 1*3*5o....(2n-1), with i1. (Schuster's notation).
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1-2 Legendre Functions of the Second Kind, 4,,(Z)

For t outside the segment (-l, +-):

7 e(Z)- -3Z 1 I

~ j-7

For -1 < 4 +1, replace/ 7 -A in the above formulas by.1.

Particular values for 6-eQ (6>0):

Asymptotic values for/Z/-. 00

(Note: from the above formulas, Q,,(,~take the forms:

of)= -t'"' -
7

.00



and the values on the disc ( 0-O) are:

i•, (I'V) = -,?

1-3 Associated Functions of Legendre of the First Kind,Por(Z)

For -:•4 :

'0"• d"'Pdz) (Hobson's notation)

"di '

N'z - 1 iT7

pz, 'Cz)= -(1r-Z)

i (Z) - -5Z(7-,-

ForZ outside the segment (-1* '1), replace (-1) (1-1 Wk

in the above formulas by (a-1)"VI

Par'ticular values:

4010

S.. 
-,odd
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For Lo)

A symptot ic va lue s f or /c/ooa

1-4 Associated Functions of Legendre of the Second Kind,

For Z outside the segment (-1, +1):

A"I A Zý 
' 

'A

-~ ~ L VIZ- 7 XYY__

7 Z1,-

-__ -,
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For -1 < Z ( +1, replace the rnultip~ic tive factor (Z2-1)o/2

in the above formulas by (-i)S (1-Z )m/2; and replace log X24

by log U'A. 7-7
I-z

Particular values fore-PO, (6 O,9P)O :

Asymptotic values for/Z/-- do:

Note: From the above formulas, (4"(i,) take the forms:

i(, Jeo vrr,-.7 0 tow,-'Q,; (*7) - v',? ,• top. '-' '- -f"--- ,,•,

j~ ~ ~~V oe• V - 17p SAS) -,, o • ,,-7R &o, -? • -5

(.e.

Q ,;C~~ 7 - • (,÷ 'Vta, " -, -' /57'i"7O- -•--10
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and the values on the disc (7 0) are:

(iiv

Z (eo) = -1 z

P,7(• - ) ( 1)

J 0" 7~~j~~ d7 10'rI
of

Normalization

I4 0

ae
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Differentiation

:=. _ F - p ."'

dz - *

For Z outside the segment (-1, +1),

dz- ,

* da,,eL. 7 (,')'10
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APPENDIX II

FORTRAN IV SOURCE LISTINGS

Page

Subroutine SUB14 (as modified at UR) .. .. ....................107

Subroutine RWAKE. .. ........................................ 118

Subroutine COEFS. .. ........................................ 127

Subroutine SIMLN. .. .. ......................................137

Subroutine VLCTS. .. .. ........................... ...........145

Subroutine CHA14P. .. .. ......................................iso

Subroutine FRWRD. .. .. .................................. . .155

Subroutine ADVNC. .. .. ......................................159

Subroutine CRSN.G. .. ........................................162

Subroutine VARFMT .. .. ......................................166

Mainprog RWAKEPIC .. .. ......................................167

Mainprog RSLTSPLT .............................................. 180
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APPENDIX III

INDUCED VELOCITY AT SELECTED POSITIONS ON THE DISC DUE TO

SELECTED SEGMENTS OF THE NEAREST TIP TRAIL

Table V shows the induced velocity due to nearby filaments of the

trailed vorticity. Five instantaneous positions were chosen for

points on the blades (see Figure 38), and the induced velocities

resulting at these points due to selected short segments of the

tip vortices (as positioned by the two geometries, CAL and UR)

were computed for the /4: 0.26 flight condition of UH-1.
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Coordinates (x', y, z') of blade stations 1, 2, 3:

1. (+1.514, -4.434, -0.-44)

2. (-3.649, +12.40, -0.679)

3. (-4.574, +15.86, -0.854)

See Table V for coordinates of wake segments as represented

in the two wake geometries.

Figure 38. Positions of Selected Blade Stations and Selected
Wake Trail Segments (UH-1, AL = 0.26).
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