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Abstract— Running is a complex dynamical task which places
strict design requirements on both the physical components and
software control systems of a robot. This paper explores some of
those requirements and illustrates how a variable compliance
actuation system can satisfy them. We present the design,
analysis, simulation, and benchtop experimental validation of
such an actuator system. We demonstrate, through simulation,
the application of our prototype actuator to the problem of biped
running.

I. I NTRODUCTION

A robot designed specifically for autonomous legged loco-
motion should be capable of highly dynamic running, jumping,
and stumble recovery, and should achieve these capabilities
while being energetically efficient. In order to accomplish
these goals, we believe a leg spring of sufficient capacity to
store the energy of a running gait is a necessity. Furthermore,
we believe variable leg spring stiffness provides an important
means for effective gait control.

One could concieve of two extremes of actuator design that
would create these desirable properties: high-bandwidth actu-
ators with all dynamics described by software control policies,
or carefully designed mechanical systems with tuned natural
dynamics that require no software control. The first method is
flexible, although actuators with sufficiently high bandwidth
and power capacity may not exist for the locomotion task.
The second approach is quite inflexible, and requires extensive
knowledge of the desired behavior before construction, but
there is no bandwidth limit preventing the mechanism from
behaving as intended at high frequencies. This method is task-
specific, and the resulting designs are unlikely to be able to
perform the breadth of tasks required for running.

Our actuator design, shown in Figures 1 and 4, represents
a carefully chosen balance between the two design extremes.
The natural dynamics of the system are carefully designed and
are utilized where possible, while the software controller adds
energy that is lost in the mechanism, and creates behaviors
that are not inherent in the natural dynamics. The actuator
exhibits natural dynamics that are similar to those of animals,
and is based on a previously developed mathematical model
of running, shown in Figure 2, the spring loaded inverted
pendulum (SLIP) [1], [2], [3].

II. BACKGROUND

Most research papers that analyse the mechanics of running
base this analysis on some form of the SLIP model. This model
describes the motion of the center of mass of a running animal
[4], [5] or a running robot. The basic definition of running [6]

Fig. 1. The actuator prototype, mounted rigidly at the hip to an optical table
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Fig. 2. The Spring Loaded Inverted Pendulum model of legged locomotion

is linked to the SLIP idea – energy is transferred from kinetic
energy in the flight phase to spring energy in the stance phase,
and vice versa. The natural physical instantiation of the SLIP
model utilizes passive leg springs for this energy storage.

A. Compliance and Running

Physical series compliance is virtually necessary to achieve
a successful running gait. Simulating compliance using a rigid
actuator such as an electric gearmotor is not feasible for three
reasons: bandwidth limitations, power output limitations, and
energetic efficiency. The bandwidth limitation of an electric
motor is due, in large part, to the high reflected inertia linked
rigidly to the robot leg, making a correct dynamic response
to impacts impossible. The power density of a physical
spring is arbitrarily high, depending on its stiffness, making a
compelling argument for combining the relatively high work
capacity of a motor and power source with the high power
density of a physical spring. Springs are particularly useful in
rhythmic systems, because energy can be stored and released



much more efficiently through a spring than if it were passed
through the motor, transmission, and power electronics with
each transfer. Animals store mechanical spring energy during
a running gait, most likely for these reasons and more [7], [8],
[9], [10].

B. Physically Variable Compliance as a Method of Control

While physical compliance is virtually a necessity for
successful running, varying the compliance provides a useful
tool for gait control. Animals have physically variable leg
compliance (tuneable natural dynamics), and vary it to control
running and hopping in certain situations [3], [4], [11], [12],
[13], [14], [15], [16].

In a running gait, global vertical stiffness of the center of
mass is the important factor [3]. It is influenced by changes
in leg stiffness (caused in animals by muscle co-contraction
and limb geometry) [12], touchdown angle, ground stiffness,
and the number of legs on the ground at once. The global
vertical stiffness is used by animals to control running speed,
and increases with the square of the running speed [16]. Most
research suggests that animals prefer to maintain leg stiffness
over a range of running speeds [3], [13], [17], [18], using other
methods to change global vertical stiffness; however, they do
change leg stiffness when other methods are not available. For
example, hopping or running on a surface of changing stiffness
[4], [11], [13], hopping in place with varying frequency [4],
or running at different speeds with constant stride length [17].

The running gait of a SLIP can be described by three
parameters [1], and leg stiffness directly affects one or more
of these parameters. For mathematical analysis in [1], leg
length and angular velocity at bottom of stance along with
the leg stiffness were chosen as the three parameters. Control
of forward speed, stance duration, and flight duration was
demonstrated experimentally in [19]. Another choice might
be leg stiffness, hopping height, and stride length; there are
many possible parameterizations that could be considered.

III. T HE ACTUATOR DESIGN

The natural dynamics of a system are an inseparable part
of its behavior, therefore the mechanical design is an essential
part of the overall control system design. The actuator pre-
sented here was carefully designed as an integrated system of
mechanism and software controller, with mechanical design
choices made to match the mechanical model upon which
the software controller is based. This model is illustrated in
Figure 3, in two different forms: one rotational, one linear. The
rotational model is physically similar to the prototype actuator,
while the linear model is a simpler form that still captures
the important properties of the system. In both models, the
dynamics of the system controlling the pretension,x3, are
ignored and in the linear model, the spring stiffness,Keff , is
assumed to simply be a programmable value. Throughout the
remainder of this paper we will use the notational conventions
of Table 1.

The actuator is essentially a single compliant joint, endowed
with tuneable natural dynamics. There are two degrees of
freedom, and two corresponding motors. One motor controls
the spring pretension, corresponding to spring stiffness (x3 in
Figure 3(a)), while the other motor controls the spring rest
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Fig. 3. Mechanical models of the physical actuator

variable description
θ1 Motor position
θ2 leg position
J1 motor inertia
J2 leg inertia
x3 pretension

∆x linear leg deflection,r2θ2 − r1θ1

z deflection of the cable after the pulley function:
(x3 + ∆x) or (x3 −∆x)

Feff (x3, ∆x) knee force,τeff /r2

G(z) spiral pulleys; spring position as a function ofz
y deflection of the spring, before the pulleys

Fy(y) force function of the spring
Fz(z) force on the cable after the pulley function

TABLE I

position (θ1 in Figure 3(a) andx1 in Figure 3(b)). These two
parameters, along with the leg angle at touchdown, are the
parameters necessary to control SLIP model running.

Throughout the design process, minimizing weight has been
a priority. The actuator is intended as a prototype leg for
a bipedal robot with approximately 1 meter leg length and
30kg total mass. Of this 30kg, 20kg are reserved for motors,
batteries, and computing. This allotment leaves only 10kg for
the entire framework and mechanism, including springs and
power transmission. To minimize weight, all joints contain
thin-section bearings, which are very light for a given load
rating. All parts are machined aluminum, with the main
structural members (analogous to the femur) made of thin-
wall aluminum tube. The mass of this actuator prototype is
approximately 4kg, and it is nearly 50% oversized.

A. Mechanical Design

Perhaps the most important aspect of the actuator is the
physically variable series compliance. Energy is stored in
fiberglass plates linked to spiral pulleys. The reduction ratio
of the pulleys varies proportionally with the fiberglass spring
deflection, to create a nonlinear spring function. Logarithmic
spiral pulleys were chosen because the spring function of the
bending fiberglass plates was unknown, because the desired
spring function was unknown, and because two logarithmic
spirals mesh correctly and provide a stiffening function [20].
These pulleys are modular components, and new pulleys can
be designed to provide an arbitrary spring function. Given



a general spring force functionFy(y) and a general pulley
transmission functiony = G(z), wherez is the extension of
the cable out of the pulley, the force as a function ofz is

Fz(z) = Fy (G(z))
∂G

∂z
(z),

allowing for suitable shaping of the overall effective spring
function through choice of the pulley transmission function
G(z).

After creating a nonlinear spring function (for example,
Fz = Kz2), placing two such spring/pulley systems in direct
opposition results in a single effective torsional spring whose
stiffness is determined by the pretension on each individual
nonlinear spring. For the example quadratic spring, the result-
ing effective spring force is

Feff = 4Kx3∆x,

where x3 represents the pretension on the two nonlinear
springs and∆x represents the deflection from their rest
position. In this manner, the stiffness of the resulting system
can be changed by adjusting the pretension. In practice, the
rate at which this parameter can be varied depends on the
actuator and transmission used. Our prototype is intended for
relatively slow changes at low force, such as during the flight
phase of a running gait.

Many of the mechanism design challenges are common
ones; for example, minimizing friction, backlash, and inertia.
In order to create a low-friction, zero-backlash system, our
actuator utilizes a high-speed cable drive [21]. Any stretch
in the cable effectively adds series compliance to the system,
and is easily incorporated in the model. The cables may easily
be routed around joints and may flex in two planes, allowing
the motors to be located remotely. They are not constrained
to a single degree of freedom, like standard belts or gears.
Figure 4 shows the cable routing, illustrating the role of each
motor in the tension of the two springs. Also shown is the
fact that a displacement of the leg (θ2 or x2) results in either
displacement of the motor (θ1 or x1) or displacement of the
springs. There is a speed reduction betweenθ1 and θ2, not
shown on the diagram; it is implemented using a combination
of a block-and-tackle pulley mechanism and a difference
in diameters betweenθ1 and θ2. The speed reduction is
physically located near the knee joint, but diagrammatically
located near the motor,θ1. All friction related to the speed
reduction is applied toθ1 and corresponds toB1, while the
inertia corresponds toJ1. A speed reducer also amplifies
the motor inertia by the square of the speed reduction; this
amplification appears in the relatively large values ofM1. The
transmission betweenθ2 and the springs has very low friction,
and no speed reduction. Because the high-frequency behavior
of the system is generally handled by the springs, low friction
and inertia are most important in this part of the actuator.
The low-frequency behaviors of the system are handled by
the motor, and thus friction and inertia can be overcome by
relatively low-bandwidth software compensation.

B. Control System Design

The control system is designed for the mechanical model
shown in figure 3, and is intended to accomplish two basic
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Fig. 5. The ideal case of our actuator, with three parameters: spring rest
length,x∗2 , spring stiffness,K∗, and knee joint damping,B∗.

tasks. The first is to adjust the mechanism configuration so
its physical properties match the commanded spring stiffness
and rest length. The second is to actively control the motor
(x1) to simulate the proper settings, when the mechanism is
either out of adjustment range or in transition to the correct
configuration. In the ideal setting, the motor will have to do
very little work, and will allow the mechanical springs to store
and release most of the energy in a running gait.

Adjusting the spring stiffness is accomplished with a simple
PID position controller on the pretension motor,x3. We ignore
load forces and use a much larger motor than necessary for the
current prototype. Because the specific position of this motor
corresponds to a specific effective stiffnessKeff , no further
control is currently required.

Adjusting spring rest length is accomplished using a simple
PD controller on the position ofx1, with some added com-
plexity when the pretensionx3 is not properly adjusted. In
the ideal case, shown in Fig. 5,x1 is fixed at the desired set
point x∗2, and the spring physically matches the desired spring
stiffnessK∗. There is some damping in the real system, and
it is possible that some damping will be desired in the ideal
system, so it has been added to the model, though it can easily
be set to zero. To simulate this system, we must controlx1 so
that it will simulate the desired spring stiffness if the physical
system does not match our desired system. The torque on the
leg applied by the physical system should match the torque
on the leg applied by the desired system,

Keff (∆x, x3)r2 +
B2

r2
ẋ2 = (x2 − x∗2)K

∗r2 +
B∗

2

r2
ẋ2.

Assuming the dependence ofKeff on ∆x is linear (recall
that ∆x = x2 − x1), we can solve this equation forx1 to
calculate the desired position,x∗1,



x∗1 =
K∗

Keff
(x∗2 − x2)− B∗

2 −B2

Keff r2
2

ẋ2 + x2.

We then apply a PD controller onx1 to move it to the
desired position, along with a spring cancellation force to hold
it against the force applied by the springs:

Fcom = KP (x∗1 − x1) + KD(ẋ∗1 − ẋ1)−Keff (∆x, x3).

With the spring cancellation force, the PD control can adjust
x1 as if it were an independent mass, without the attached
spring and associated dynamics.

There are two limitations in this approach that introduce
error. First, becauseKeff is a function composed of the
logarithmic spiral pulleys and the unknown fiberglass spring
function, it is necessarily an approximation. We used an
approximation ofKeff that is linear in∆x, so our match
of Keff to K∗ will only be as good as our approximation
fits the actual relationship definingKeff . In addition, when
simulating a spring stiffness that is outside the physical range
of the actuator, the calculated locationx∗1 will only be correct
to the accuracy of the approximation.

The second source of error comes from the bandwidth
limitation on x1. When trying to simulate a stiffness at high
frequency, the inertia ofM1 will limit the acceleration of
x1, and the system will revert to the behavior of its natural
dynamics, instead of the desired behavior. However, because
the stiffness of the actuator is adjustable, this error can only
happen when the desired stiffness is outside the range of
the mechanism, or when the mechanism is in the process of
adjusting to the correct stiffness.

IV. SIMULATION , RESULTS AND COMPARISON

Because this actuator is currently bolted to an optical table,
and is not part of a running robot that exhibits all of the desired
dynamic properties, some experimental evidence is required to
support the assertion that it does indeed match the SLIP model
and would work effectively in a dynamic legged robot. We
begin by measuring and testing certain aspects of the physical
prototype, so these measurements may be used in a software
simulation. The actuator is then compared to the simulation
at a range of frequencies, showing that the software-electrical-
mechanical system behaves very similarly to the simulation we
have developed. Further analysis is done using the simulation,
by using tests that would be difficult to apply in the real world.
Finally, the actuator simulation is tested in a simulation of a
bipedal runner, providing evidence that the actuator could be
effectively used on a physical running robot.

A. Static Compliance Characterization

We modeled the spring function of the actuator in order
to create an accurate simulation. The function was measured
using a load cell mounted against the leg of the actuator,
recording applied force of the leg while cycling through a
range of set points at different pretension settings. As can
be seen in Figure 6, the spring functionFeff = Keff (∆x)
gets stiffer as the pretension increases. The slope is not quite
linear, which violates our earlier assumption. This error can be
remedied by manufacturing new spiral pulleys to create a new
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Fig. 7. Measured average hysteresis as a function of pretension,x3

G(z), resulting in the correct desired output function,Fz(z).
As in the earlier example, creating a quadratic spring function
would result in an overall effective spring constantKeff which
is linear and stiffens with pretension changes.

As is shown on the stiffness function graph in Figure 6, there
is some hysteresis due to friction. The friction is caused by the
sliding of the spring guides and the rolling of the bearings on
the nonlinear pulleys, and could be depicted with an additional
damper and stiction model in parallel with the springs in
Figure 3. The level of hysteresis as a function of pretension is
depicted in Figure 7. This figure was created by averaging the
hysteresis at each of a range of pretension settings, because the
hysteresis was relatively constant over a range of deflections
at a given pretension value. As might be expected, hysteresis
increases as the pretension (and forces applied to all bearings
and cables) gets larger. For each pretension value, forces on
the order of180N were applied—so at very high pretension,
hysteresis was nearly 10% of the largest applied force. The
knee frictionB2 is very small, so the spring hysteresis would
account for most of the energy lost to friction in a running gait.
In comparison to air cylinders used in some hopping robots
[22], which can exhibit energy loss due to seal friction on the
order of 25%, this loss is relatively small.
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Fig. 8. Measured and simulated actuator position response to a step command
in spring rest length

B. Dynamic Actuator Simulation

A dynamic simulation of the actuator prototype was created
using the rotational model shown in Figure 3, along with the
measured stiffness function and the values shown in Table 2.
The values in Table 2 were calculated from the SolidWorks1

design of the actuator, the published properties of our motor,
and from several system identification tests. After adding these
values to the computer simulation, its response was tested with
a step-input on the spring set point and compared to the same
input on the physical actuator. Figure 8 shows the response of
both θ1 andθ2.

variable value variable value

J1 0.00134 kg·m2 M1 = J1
r2
1

59.6 kg

J2 0.085 kg·m2 M2 = J2
r2
2

8.5 kg

B1 0.0517 N·m·s/rad r1 0.00474 m
B2 0.38 N·m·s/rad r2 0.1 m

TABLE II

PHYSICAL PROPERTIES USED FOR SIMULATION

To illustrate performance over a range of frequencies, Bode
plots of the actuator gain were created with motor position,x1,
as input and leg position,x2, as output. The motor position,x1,
was commanded to track a sine wave beginning at a frequency
of 1 Hz and cycling through to 6 Hz, and the position ofx2

was recorded. Figure 9 shows the resulting Bode plots, for
both the simulation and the actuator, at three different values
of Keff . Although this test does not provide great insight into
the performance of the actuator, it does serve to compare it and
the simulation and verify that both behave similarly at a range
of frequencies. The basic structure of the graphs between the
simulator and the actuator is very similar. The values do not
match exactly, and we speculate that the most likely reason for
this discrepancy is an inaccurate model of friction and stiction.

One major benefit of this actuator design is that aspects
of its natural dynamics are programmable, and should be
exhibited accurately to a high bandwidth. Figure 10 shows
the ratio of expected to desired impedance of the actuator

1SolidWorks is a registered trademark of SolidWorks Corporation

10
0

−10

0

10

20

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Frequency plots of physical and simulated actuator

K
eff

=3000 N/m
K

eff
=4000 N/m

K
eff

=5000 N/m

Fig. 9. Comparison of the position transfer function (ratio of motor position
to leg position) for the physical and simulated actuators. Data points are
depicted on experimental data from the physical actuator; Circles are 3000
N/m, stars are 4000 N/m, triangles are 5000 N/m.

10
0

10
1

10
2

10
3

−10

−5

0

5

10

M
ag

ni
tu

de
(d

B
)

For all plots, Keff = 5000

K* = 5000
K* = 3000
K* = 7000

10
0

10
1

10
2

10
3

−100

−50

0

50

100

Frequency (Hz)

P
ha

se
 (

de
g)

Fig. 10. Magnitude and phase of the ratio of actual to desired impedance
as a function of frequency, with the commanded spring stiffnessK∗ higher,
lower, and the same as the physical system stiffnessKeff

simulation measured over a range of frequencies. The actuator
stiffnessKeff is a constant for the three plots, with different
values forK∗; one set higher thanKeff , one lower, and one
tuned to the same value. At low frequencies, the motor is
capable of simulating the commanded spring constantK∗ by
compensating actively for the discrepancy. As the frequency
increases, it is apparent from the figure that the phase begins
to lag or lead, while the exhibited stiffness begins to diverge
from the commanded stiffnessK∗. At very high frequencies,
the motor does virtually nothing to affect the exhibited spring
stiffness, which converges to the natural dynamics of the
system,Keff . For the tuned system with natural dynamics
matching the commanded stiffness, the behavior does not
change with frequency.

C. Running Simulation

After the similarity between actuator simulation and actu-
ator prototype was established, we tested the simulation in
a running application. A simulated runner was created using
SD/FAST2, creating basic 2-link legs with a knee and hip
joint attached to a body. An ideal spring was placed at each
knee, with set point and stiffness as programmable variables
that can change instantaneously. Running controllers were

2SD/FAST is a trademark of Symbolic Dynamics, Inc. and ParametricTech-
nology Corporation
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adapted from [22], and calculate the leg touchdown angle and
energy insertion required to stabilize a running gait at a certain
hopping height. Leg stiffness was held constant. After tuning
the controller and adding user-inputs to change running speed
and hopping height, the runner maintained a stable gait within
reasonable bounds. We then replaced the ideal spring at each
knee with the full dynamic simulation of the actuator, as shown
in Figure 11(b). The primary difference between this model
and the original SLIP shown in Figure 2 is the presence of the
reflected motor inertia, depicted asM ′

1 in Figure 11(a). Figure
12 shows the vertical position of the center of mass over time.
The simulated actuator has a slightly lower hopping height
and resulting shorter stride length, caused by lower energy
insertion with each hop. This is because, unlike an ideal spring,
a discrete change to the commanded spring set point does not
cause an instantaneous change the actual spring set point, due
to the motor inertiaM ′

1. However, this discrepancy is relatively
minor, and easily accounted for in future controller revisions.

V. CONCLUSIONS

Physical compliance and mechanical energy storage are
crucial for a successful running gait, while variable compliance
is a useful control parameter for SLIP model running. The
actuator design presented here has mechanical energy storage,
tunable compliance, low friction, and zero backlash. Within
its range of physical compliance, the actuator has virtually no
bandwith limitations and is similar to an ideal SLIP. Based on
the results presented, the concepts embodied in this actuator

prototype could result in an effective actuation method for
highly dynamic legged locomotion.

There are still many unanswered questions for further in-
vestigation. For example, we would like to determine what
stiffness range is required for robust running on various
surfaces, the necessary rate of stiffness adjustment, and the
desired spring function.
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