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Abstract—This paper shows that pattern classification based on
machine learning is a powerful tool for analyzing human brain
activity data obtained by magnetoencephalography (MEG). In
our previous work, a weighting method using multiple kernel
learning was proposed, but this method had a high computational
cost. In this paper, we propose a novel and fast weighting method
using an AdaBoost algorithm to find the sensor area contribut-
ing to the accurate discrimination of vowels. Our AdaBoost
simultaneously estimates both the classification boundary and
the weight to each MEG sensor, with MEG amplitude obtained
from each pair of sensors being an element of the feature vector.
The estimated weight indicates how the corresponding sensor is
useful for classifying the MEG response patterns. Our results for
vowel recognition show the large-weight MEG sensors mainly in
a language area of the brain and the high classification accuracy
(91.0%) in the latency range between 50 and 150 ms.

I. INTRODUCTION

Non-invasive measurements using magnetoencephalography
(MEG) have recently been used to study how stimulus features
are processed in the human brain. In particular, because the
neural electric activity of the brain that is associated with
speech and language stimuli happens in a time frame of
milliseconds, high temporal resolution of MEG is required
for measuring rapid changes in brain activity during speech
perception. Research carried out with MEG has reported left
hemisphere dominance for processing of vowels in right-
handed subjects [1], and the prominent N1m wave of the
auditory-evoked field has been shown to exhibit sensitivity
to a variety of acoustic attributes of the speech signal [2], as
well.

Recently, the application of pattern recognition methods to
neuromagnetic responses has been garnering much interest,
and progress has been made through the use of machine learn-
ing, such as support vector machines (SVMs) [3][4][5]. SVMs
are efficient tools for automatic recognition, but neuroscience
research requires not only high-accuracy classification tools
but also analysis tools that can locate both the dominant area
of the brain (which shows strong activity related to speech and
language), and the significant time frame (which exhibits this
increased brain activity).

In our previous work [6], we presented a MEG-sensor
weighting method using a multiple kernel learning (MKL)
algorithm for analyzing areas of the brain that contribute to

the accurate decoding of two vowels. Our subject-independent
(subject-open) analysis results showed that the brain area
covered by the MEG sensors with the larger weight obtained
by the MKL method corresponded to the language area of
the left hemisphere, and a high classification accuracy was
obtained in the latency range between 100 and 200 ms. The
method has a high computation cost because of the non-linear
kernel process, however.

A boosting algorithm is a machine-learning-based technique
for data classification in which fast and effective classifiers are
produced [7]. Since 1999, several variants have been proposed,
such as Real AdaBoost [8], Gentle AdaBoost [9], FloatBoost
[10], and so on [11].

Boosting-based algorithms have recently been developed on
a wide range of area, such as text processing [12][13], image
processing [14][15], speech recognition [16][17], and so on
[18]. In this paper, we present a novel and fast weighting
method for the AdaBoost algorithm, where the weight is
associated with each MEG sensor. In our approach, AdaBoost
was applied to MEG responses or amplitudes, to localize brain
areas that contribute to the accurate decoding of vowels. Sixty-
one MEG amplitudes, each calculated from each of 61 pairs
of MEG sensors (in total 122 MEG sensors), constituting a
61-dimension feature vector, are separately weighted. Each
weight value calculated by AdaBoost indicates how useful
each MEG-sensor pair is for classifying the MEG responses
to vowel recognition. To identify the MEG sensors or brain
areas important for vowel recognition in a subject-independent
(subject-open) fashion, the weights were averaged across sub-
jects.

II. RECORDING OF MEG RESPONSES TO VOWELS

Four right-handed volunteers (21-25 years old) were re-
cruited as subjects after obtaining consent forms from them.
All were native Japanese speakers with normal hearing.

We used two speech sounds (Japanese vowels), /a/ and /o/,
to explore the subject’s vowel recognition process in the brain.
These 200-ms auditory stimuli were delivered to the subject’s
right ear through a plastic tube with a random interstimulus
interval between 1,300 and 1,500 ms. The subject’s task was
to press a reaction key with the index finger when the subject



identified the stimulus /a/ and another reaction key with the
middle finger when the subject identified the stimulus /o/.

Neuromagnetic data were recorded by a 122-channel whole-
scalp Neuromag MEG system in a magnetically shielded
room. The MEG signal was sampled at 497 Hz for 1,200 ms
including a 100-ms pre-stimulus baseline, and more than 80
epochs were averaged to increase the S/N ratio. A low-pass
filter with a cutoff frequency of 40 Hz was used to calculate
the feature vector. Epochs in which the magnetic signal
exceeded an absolute amplitude variation of 3,000 fT/cm were
discarded. Eye-movement artifacts were also automatically
removed (threshold = 150 μV).

Feature extraction was applied to a 996-ms MEG signal. The
mean reaction times for /a/ and /o/ were 495.1 ms (SD = 51.7)
and 497.3 ms (SD = 46.8), respectively. The MEG feature
vectors up to 450 ms were used to analyze the MEG response
pattern to localize the brain activation during recognizing
vowels.

III. FEATURE EXTRACTION

The signal obtained by averaging over 80 MEG epochs was
converted (using a feature extraction transformation) into a
representation more amenable to subject-independent recog-
nition. As inter-subject variability in MEG signals degrades
the recognition accuracy of a machine learning system, MEG
magnitude was normalized by the following statistical method.

The MEG signal at time t is represented by

x(t) = [x1(t), · · · , xm(t), · · · , xM (t)]T (1)

where xm(t) denotes the observation at the m-th sensor, and
the symbol M denotes the total number of MEG sensors.
To avoid canceling problems due to the polarity difference
between subjects, the MEG magnitude was first calculated by
Eq. (2), which is a vector magnitude of paired vertical and
horizontal sensors.

yj(t) =
√
x2
i (t) + x2

i+1(t) (2)

where yj(t) (1 ≤ j ≤ M/2) is the magnitude feature.
To reduce the inter-subject variability problems in MEG

magnitudes, the magnitude feature is normalized to have zero
mean and unit variance.

ŷj(t) = (yj(t)− ȳj)

σj
(3)

ȳj =
1

T

∑
t yj(t), σj =

√
1
T

∑
t(yj(t)− ȳj)

2 (4)

where ȳj denotes the mean magnitude feature, T denotes the
total number of samples for each averaged epoch, and σj

denotes the standard deviation. Fig. 1 shows average MEG
response magnitudes from a sensor over the left language area
(top figure) and the right back area (bottom figure) of a typical
subject. The deflection at 100 ms is clearly strong for both
stimuli /a/ and /o/, but the difference between /a/ and /o/ is
also seen between 150 and 250 ms.
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Fig. 1. Normalized MEG-magnitude features obtained at a single MEG-sensor
site with a pair of MEG sensors over the left language area (top figure) and
the right back area (bottom figure) of a typical subject.

The normalized MEG magnitude feature at each MEG
sensor, obtained from Eq. (3), constituted a 61-dimension
MEG-magnitude feature vector, as shown in Eq. (5), for further
analysis or classification using an AdaBoost algorithm.

ŷ(t) = [ŷ1(t), · · · , ŷM ′(t)]T , M ′ = M/2 (5)

IV. MEG-SENSOR WEIGHTING AND CLASSIFICATION
BASED ON ADABOOST

“Boosting” is a technique in which a set of weak classifiers
is combined to form one high-performance prediction rule,
and AdaBoost [7] serves as an adaptive boosting algorithm in
which the rule for combining the weak classifiers adapts to
the problem and is able to yield extremely efficient classifiers.

In this paper, AdaBoost is developed to localize brain
areas associated with the subject’s task, namely the accurate
decoding of vowels, by assigning independent weights to each
MEG sensor, where the larger the MEG-sensor weight is,
the more important the role the brain activity underneath the
MEG-sensor plays is.

The AdaBoost algorithm uses a set of training data,

{(ŷ(1), c(1)), . . . , (ŷ(T ), c(T ))} (6)



where ŷ(t) is the t-th feature vector of the observed signal,
and c is a set of possible labels. For our task, we consider just
two possible labels, c = {−1, 1}, where the label, 1, means
a stimulus /a/, and the label, −1, means a stimulus /o/. Next,
the training data weight for the t-th training data is initialized
as follows:

d1(t) =

⎧⎨
⎩

1
2p , c(t) = 1

1
2q , c(t) = −1

where p and q are the total frame number for the stimulus /a/
and for the stimulus /o/, respectively.

The weak learner on the n-th iteration generates a hypoth-
esis hn: ŷ(t) → {−1, 1} that has a small error. In this paper,
single-level decision trees (also known as decision stumps)
are used as the base classifiers. To analyze areas of the brain
that contributed to the accurate decoding of vowels, a decision
stump is built for each dimension of the feature vector in our
approach, where a dimension corresponds to an MEG sensor.

After training the weak learner of the j-th dimension on the
n-th iteration, the error of hn,j is calculated by

en,j =
∑

t:hn,j(yj(t)) �=c(t)

dn(t) (7)

The decision stump which outputs the minimum error among
all dimensions is defined as the n-th weak learner. Then, the
dimension index which outputs the minimum error is preserved
as jn in order to calculate the weight to each MEG sensor.

jn = argmin
j

en,j (8)

Next, AdaBoost sets a parameter as follows:

αn =
1

2
· log

[
(1− en)

en

]
(9)

Intuitively, αn measures the importance that is assigned to hn.
Then the training data weight dn is updated.

dn+1(t) =
dn(t) exp{−αn · c(t) · hn(ŷ(t))}∑T
t=1 dn(t) exp{−αn · c(t) · hn(ŷ(t))}

(10)

Equation (10) leads to an increase in the training data weight
for the data misclassified by hn. Therefore, the training data
weight tends to concentrate on “hard” data.

In our approach, the weight for the feature (MEG-sensor
weight) is calculated using

wj =
∑

n αnδjn,j (11)

where δjn,j is the Kronecker’s delta, which has the value 1 if
jn is j, and 0 otherwise.

In order to classify MEG response patterns, after N -th
iteration, the final hypothesis, H(ŷ(t)), combines the outputs
of the N weak hypotheses using a weighted majority vote.

H(ŷ(t)) = sign
{∑N

n=1 αnhn(ŷ(t))
}

(12)
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Fig. 2. Classification accuracy using AdaBoost in each 100-ms latency range.

V. ANALYSIS OF RECORDED MEG DATA

A. Analysis conditions

The AdaBoost-based analysis was evaluated on neuromag-
netic responses to recognition of the vowel sounds /a/ and /o/.
The total number of subjects was 4. All subjects were used
for both the training and test data. The AdaBoost algorithm
was independently applied to every latency range, where a
single latency range contains 50 samples (about 100 ms with
a sampling frequency of 497 Hz). The classification decision
was made for each time instance. The frame period was set
to 25 samples, meaning that the 100-ms latency range moves
about every 50 ms from 0 ms until 350 ms. Since the reaction
times for both speech sounds were about 500 ms, we assumed
the discrimination was finished by 400 ms at latest, resulting
in the final latency range from 200 ms to 300 ms for further
analysis.

B. Analysis results

Fig. 2 shows the average classification accuracies. As can be
seen in this figure, the classification accuracy first increased
as a function of time, reached a maximum value of 91.0%
in the latency range between 50 and 150 ms. The AdaBoost
method gives significantly better classification performance,
compared with that at the 100-ms pre-stimulus baseline, where
no stimulus was presented, resulting in the resting state of the
brain.

To localize the MEG sensors that are important (considered
to have contributed to the processing of vowel recognition) for
MEG activity pattern classification using AdaBoost, the MEG-
sensor weights (wj in Eq. (11)) obtained from the AdaBoost
method are displayed on a topological plot of the scalp in
Fig. 3. They show color-coded average weights for each MEG
sensor in each latency range. The more important or more
highly weighted MEG sensors for classifying neuromagnetic
responses are shown in darker colors. The black areas indicate
that this area of the brain played an important role in classifi-
cation of neuromagnetic responses to vowel recognition. The
larger weights in the latency range both between 50 and 150
ms and between 100 and 200 ms, where high accuracy was



Fig. 3. MEG-sensor weighting based on AdaBoost for the subject-independent
case.

achieved, are seen to be in the left language area. The weight
estimated using AdaBoost seemed to be a sparse distribution,
compared with that using MKL [6], but for both approaches,
the larger weights in the latency range between 50 and 150
ms, between 100 and 200 ms, and between 150 and 250 ms
were seen to be in the language area of the left hemisphere.
Also, our AdaBoost-based weighting method could reduce the
computation cost to about half that of the MKL method in this
experiment.

VI. CONCLUSION

We presented a new MEG-sensor weighting method using
an AdaBoost algorithm for analyzing areas of the brain that
contributed to the accurate decoding of two vowels. Our
subject-independent analysis results showed a high classifica-
tion accuracy of 91.0% obtained in the latency range between
50 and 150 ms for a two-vowel recognition task. The brain area
covered by the MEG sensors with the larger weight obtained
by our AdaBoost method corresponded to the language area
of the left hemisphere. Some differences in the brain activity

area obtained from other machine learning systems will be
investigated. Also, as the magnetic fields generated by brain
activity are extremely weak and usually largely contaminated
by external magnetic noises, we will have to develop a noise-
robust feature extraction method. In addition, we will have
to employ an adaptation approach to overcome the inter-
subject variability, especially for the discrepancies between
the subjects for training and testing.
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