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An Adaptable Robot Vision System Performing
Manipulation Actions with Flexible Objects

Leon Bodenhagen, Andreas R. Fugl, Andreas Jordt, Morten Willatzen, Knud A. Andersen,

Martin M. Olsen, Reinhard Koch, Henrik G. Petersen, and Norbert Krüger

Abstract—This paper describes an adaptable system which is
able to perform manipulation operations (such as Peg-in-Hole
or Laying-Down actions) with flexible objects. As such objects
easily change their shape significantly during the execution of
an action, traditional strategies, e.g. for solve path-planning
problems, are often not applicable. It is therefore required
to integrate visual tracking and shape reconstruction with a
physical modeling of the materials and their deformations as well
as action learning techniques. All these different sub-modules
have been integrated into a demonstration platform, operating
in real-time. Simulations have been used to bootstrap the
learning of optimal actions, which are subsequently improved
through real-world executions. To achieve reproducible results,
we demonstrate this for casted silicone test objects of regular
shape.

Note to Practitioners— The aim of this work was to facilitate
the setup of robot-based automation of delicate handling of
flexible objects consisting of a uniform material. As examples,
we have considered how to optimally maneuver flexible objects
through a hole without colliding and how to place flexible objects
on a flat surface with minimal introduction of internal stresses in
the object. Given the material properties of the object, we have
demonstrated in these two applications how the system can be
programmed with minimal requirements of human intervention.

Rather than being an integrated system with the drawbacks
in terms of lacking flexibility, our system should be viewed as a
library of new technologies that have been proven to work in close
to industrial conditions. As a rather basic, but necessary part,
we provide a technology for determining the shape of the object
when passing on e.g. a conveyor belt prior to being handled. The
main technologies applicable for the manipulated objects are:
A method for real-time tracking of the flexible objects during
manipulation, a method for model-based offline prediction of
the static deformation of grasped, flexible objects and finally a
method for optimizing specific tasks based on both simulated and
real-world executions.

Index Terms—Flexible objects, deformation modeling, action
learning, 3D-modeling, shape tracking.
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Fig. 1: a) Whole set-up. b) Grasping process. c) Peg-in-Hole

action d) Laying-Down action.

I. INTRODUCTION

In the last decade, visual sensors have become a more

and more important factor in industrial production as they

allow for the handling of uncertainties of object poses in

the manipulation process. For static objects, this has led for

example to pick and place robot systems that can operate in

reasonably constrained scenarios. Bin picking systems that are

able to operate in more complex contexts, such as major clutter

in a bin of randomly distributed rigid objects, have now entered

the market [1]. Recently, work was performed on learning and

fine-tuning of manipulation actions by means of experience

gathered in simulation as well as in the real production

context [2]. This provides additional means for increasing the

flexibility in production. In addition it reduces the need to

design highly tuned systems with close to 100% performance

which usually requires a large amount of engineering expertise

which leads to high setup costs of a robot solution.

The manipulation of flexible objects in a dynamic and

unconstrained situation poses a number of additional chal-

lenges on robotics when compared to the manipulation of

rigid objects. First, the configurations of rather complex object

shapes need to be sensed in ’real–time’, i.e. computed fast

enough to allow for a robot action. Second, properties of

the material relevant for the modeling of the deformation

process must be sensed visually or haptically. Third, the actual

deformation of the object under external forces is difficult to
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Fig. 2: Overview of the manipulation approach and the four modules.

model precisely and depends on the actual properties of the

material. Fourth, optimal manipulation trajectories need to be

computed and performed in a real system. In this context, it

is unlikely that all parameters of the system can be estimated

by analytic modeling only and hence it will be important to

integrate some kind of adaptability in such a system.

In this paper, we describe a system which tackles all

four problems mentioned above to perform grasping and

two manipulation tasks (a Peg-in-Hole insertion action and

a Laying-Down operation) with flexible objects. Fig. 1 shows

the physical set-up along with the grasping and manipulation

tasks.

The different steps of the process are illustrated on Fig. 2

and addressed in the following way:

1) Sensing of Object Shape: The acquisition process is

split into two separate problems: (1) Capturing the 3D shape

of the object in one stage and (2) tracking its deformation

and movement during the interaction with the robot in a

second stage. The 3D data is first acquired while the object

remains static on the conveyor (see Fig. 3a) providing an

optimal environment to retrieve the object shape accurately.

In a second stage, the object is tracked while it is deformed

and manipulated, using the already known shape provided by

the previous stage as a reference object.

2) Sensing of Material Properties: Material properties are

estimated using 3D shape tracking and physical modeling. A

search for the best fit to material properties to an underlying

physics model is performed, while fitting deformation param-

eters and object pose to visual data.

3) Physical Modeling and Prediction: We use a mathemat-

ical representation of flexible objects based on the general

elasticity equations of an isotropic medium. Depending on the

accuracy required for a particular part of the system, we use

either linear beam models [3] or employ more complex mod-

els incorporating non-linear geometric strains and volumetric

effects [3], [4].

4) Manipulation and Learning: Learning is applied in two

situations: for computing close to optimal Peg-in-Hole action

(see Fig. 1c) and the Laying-Down action trajectories first in

simulation and then in a fine-tuning step in the real world

system (see Fig. 1d). The learning tasks are addressed by

extensions of the concept of Grasp Densities [5] which is

based on Kernel Density Estimation (KDE) [6]. The densities

are bootstrapped using simulated experiments as subsequently

refined based on real experiments.

In this paper, we will show results for the different sub-

modules as well as the overall system. Finding stable solutions

for the first three problems and a successful integration into

an embodied system opens possibilities in a number of ap-

plication fields from industrial robotics (e.g., food production,

manufacturing, etc.) to service robotics (e.g., feeding robots,

helpers in kitchens, etc.). Earlier attempts have been made

to create robot systems for the handling of flexible objects

(see, e.g., [7]–[9] and section II). However, by specializing

the underlying physical model they were often restricted to

a narrow class of objects, e.g. for handling cables [10], or

handling sheets of paper [11]. We envision the ability to model

and handle a much broader range of objects by the use of

3D vision, general continuum elasticity and learning. By that,

this paper presents an example of a manipulation system in

which real-time vision, modeling and learning first take place

in simulation and then are combined in the real application

context. This gives new perspectives for establishing manipu-

lation systems in production by reducing engineering costs in

the design process of the automated solution by the integrative

use of sensing, modeling and learning.
The structure of the paper is as follows: In section II,

the current state of the art is outlined with respect to the

individual modules. Detailed descriptions of the modules are

given in section III and results as well as an outline of the

overall system is provided in section IV. Prior versions of

the sub-modules of the system – which are presented in a

very condensed way in this paper – have been published at

conferences in [12]–[17]. We refer in this paper to these works



BODENHAGEN et al.: AN ADAPTABLE ROBOT VISION SYSTEM PERFORMING MANIPULATION ACTIONS WITH FLEXIBLE OBJECTS 3

(a) (b) (c)

Fig. 3: From left to right: Photo of the real object during the

scan; The colored 3D scan of the object; 3D data from the

Kinect camera showing the object; The object mesh (black)

and the deformation surface (green).

for more detailed descriptions of the sub-modules. In contrast

to [12]–[17], the main topic of this paper is the process as

a whole and a proper quantification of this process. Also it

turned out that some of the submodules need to be further

extended to integrate them properly in the overall process.

Hence in this journal paper, we present the final, mature

system.

II. STATE OF THE ART AND OWN CONTRIBUTIONS

Creating a system that is able to handle flexible objects re-

quires the integration of a variety of different disciplines such

as computer vision, solid mechanics and machine learning. In

the following an overview of the relevant related work as well

as the contributions of this paper is provided separately for

the four challenges outlined above.

A. Sensing of Object Shape

Acquiring a 3D shape of a static object has been subject to

research for a long time [18]. For the task at hand, we generate

a 3D model from the depth image of a Kinect that is mounted

above the conveyor.

Tracking the 3D deformation of objects is a task far more

complex. The research performed in this area has been done

with a wide range of applied hardware and algorithms. In-

corporated sensors range from multi-projector [19] and multi-

camera systems [20] [21], active range cameras [14] down to

stereo [22] and even monocular camera systems [23], from

which the deformation has to be computed. For the task at

hand, we will not be able to observe the object from all

sides because of the interaction with the robot. Hence we will

stick to an approach similar to [12], an approach for tracking

flexible objects directly in the input data that does not require

any form of data preprocessing (as e.g. feature detection [23]

or background subtraction [24]) or the utilization of markers

[25]. In our test setup, we use a Microsoft Kinect to acquire

color and depth information. In a first step, a single frame is

used to generate a static 3D shape (Fig. 3b). In a second step,

the deformation of the model is tracked using non-uniform

rational B-splines (NURBS) [26] (Fig. 3c) function in the

generic case [12] or a simple bending deformation in the

special case to track the object deformation as it is grasped

by a robot gripper on one end [16]. The deformation tracking

uses an efficient optimization scheme to search for deformation

parameters which fit the range- and color images of the Kinect

best.

B. Sensing of Material Properties

Elastic moduli, such as Young’s modulus and Poisson’s

ratio, are central to describe the elastic properties of an object.

E.g. Young’s modulus can be seen as the stiffness of the

object, while Poisson’s ratio characterizes its compressiblity.

For any simulation it is necessary to have the elastic moduli

reliably determined. There is a wide range of methods for

determining the elastic moduli for a deformable object, but

not all are applicable in a robotics workcell. The most direct

way to measure the elastic moduli of an isotropic material

is to homogeneously deform a regularly shaped sample and

measure the resulting force. Given careful control of boundary

conditions, this can be done very accurately [27]. Similarly

indentation tests are performed by pressing a small rod onto

the elastic surface and from this infer the stress-strain relation-

ship. Indentation tests have been used successfully to measure

soft elastomeric materials [28]. Ultrasound imaging was used

in [29], however, large relative errors in estimating Young’s

modulus were present.

Few authors have presented work directly relating to

robotics workcells. Howard and Bekey [30] proposed how

to learn parameters for a damped-spring model in order to

calculate the minimum lifting force required to manipulate

deformable objects. In [31], Frank et al. used a robot manipu-

lator equipped with a force-torque sensor and a stereo camera

to observe the deformation of flexible objects. By obtaining

the deformation by vision along with the force reading from

the sensor when using an indenter, they used a volumetric

model to search for Young’s modulus and Poisson’s ratio.

However, no validation of the elastic moduli was made. In our

system, we use a similar approach, in that we fit an underlying

deformation model to the observed data. Instead of a classical

regression setup, however, we extend the tracking concept

applied to address the first challenge (see section III-A) with a

simultaneous search for the material properties. Observing the

object deforming under gravity, we simultaneously estimate

material properties and pose.

C. Physical Modeling and Prediction

The underlying elasticity equations for a general elastic

material are well-known and solutions exist for many special

cases [3], [32]. However, a complete and numerically tractable

physical model of a flexible object subject to a comprehensive

set of relevant boundary conditions (as often would be required

in the context of manipulation operation) is not available in

the literature today.

Much work has been done to tailor mass-spring models to

suit the physical parameters of real material. In [33] mass-

spring models are used to mimic elasticity in cloth and thread

handling using robots and in performing real-time surgery

simulation. The approach however was manually tuned for

both spring topology and spring constants and no track of
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modeling errors was presented. In [8] a system for the charac-

teristics of grasping flexible objects is outlined based on mass-

spring models. The model was intended to supply estimates for

the required grasping force, to reliably manipulate an object.

However, not many simulation results were presented, and no

measure on modeling errors has been provided. The same

approach to employ mass-spring models was used in [34].

They showed realistic contact behaviour for pure compression,

but admitted problems with handling shear strain due to their

spring topology.

In our system we use the general equations of elasticity

and reduce dimensionality where applicable. For low accuracy

tasks and moderate deformations we employ fast, linear mod-

els and for high-accuracy tasks involving larger deformations

we employ geometrical non-linearity. This leads to a richer

and more complete spatio-temporal description of the elastic

state as compared to mass-spring models.

D. Manipulation and Learning

An analytic definition of optimal actions quickly becomes

intractable as the space of actions often is high-dimensional.

Also the actual actions can only be modelled to a certain

degree due to required approximation in the actual modeling

and sensorial uncertainty. Hence, in addition to modeling,

learning can be used to identify robust actions. Grasp poses

can for instance be learned by exploring the space of grasp

affordances of an object [5], [35]. More generic types of

actions can be learned by demonstration [36], [37]. However,

these approaches do not allow for a generalization of actions

across different objects. Although it could be considered that

it is possible to learn an action for a specific flexible object

using existing methods, one has to remember that a non-rigid

object can behave fundamentally differently depending on the

current external forces acting on the object. Therefore not only

the action and the object as such need to be addressed in the

learning schema, but also the current state of the object. To

account for these complexities, we apply a learning approach

based on Kernel Density Estimation (KDE), [5], [6] estimating

the distribution of successful actions and characteristics of the

object in the current situation.

To our knowledge, little work addressing the manipulation

of non-rigid objects has been done in an industrial domain so

far (see also [38]) and there exist only few adaptable systems

in industrial settings. Both facts might be tightly connected

since the complexities involved in the manipulation of flexible

objects do not allow a full modeling and hence require some

kind of learning to be applicable in an industrial context.

Therefore, we think that the exploration of the potential of

such adaptable systems is an important step towards more

intelligent production systems in future production.

III. DESCRIPTION OF THE FOUR MODULES OF THE

SYSTEM

The overall architecture of our system is sketched in Fig. 2.

Starting with the visual extraction process as outlined in

section III-A (see Fig. 2-1 ’Sensing object shape’) and the

estimation process as outlined in section III-B (see Fig. 2-2

Fig. 4: The transition from (x, y, z) (left) to (u,w, o) (right).

A vertex is described by the parameters (u,w) for the closest

nearest point on the NURBS surface and an offset w.

’Sensing material properties’), the physical modeling of the

material is performed which leads to the prediction of the

state of the flexible object at the moment of manipulation

(see section III-C and Fig. 2-3 ’Modeling and prediction’).

This allows then also for the computation and evaluation

of action trajectories in simulation which can be utilized

to learn promising actions (see section III-D and Fig. 2-4

’Manipulation and learning’). Appropriate actions are then

executed and evaluated on the real platform and are then used

for further fine-tuning. This is described in section IV-B and

IV-C.

A. Sensing of Object Shape

There are multiple ways to describe the deformation of

a 3D shape. The most intuitive and the most common way

for representing shapes given as triangle meshes is to simply

displace the vertices of a mesh in 3D space. It is widely used in

deformation tracking (e.g. [21]–[23]). But as a side effect, this

very high dimensional degree of freedom entails ambiguities

and under-determined equation systems, so every approach

fitting vertex positions directly to the data usually comes with

a set of additional side constraints and regularization terms

attached to it. For an approach aiming at producing results in

real-time, a search space of much lower dimension is required,

containing regularization and additional constraints implicitly

in the domain reduction of the search space.

In our setup, NURBS surfaces [26] can be used to ap-

proximate the object surface very roughly and serve as a

deformation function [12]. Its degree of freedom does not

accommodate the actual surface shape of the object but its de-

formation, which leads to a surface function described by only

a few control points. The missing high-frequency information

on the object’s surface is added to the NURBS surface function

for each mesh vertex separately with a displacement value. For

the special case of an object being held by the robot gripper,

a dedicated, even lower dimensional deformation function can

be used [16].
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(a) (b)

Fig. 5: The object model is divided into zones. Each zone is

subject to a constant curvature, allowing to simulate defor-

mations caused by gravity when one end is grasped by the

robot.

To register a set of vertices to a NURBS surface, for each

vertex the parameter of the NURBS surface point closest to

this vertex is saved, along with its offset from the surface.

This registration can be seen as a conversion of the vertex

coordinates from the world coordinate system (x, y, z) to the

NURBS coordinate system (u,w, o), where u and w are the

parameters of a NURBS surface point and o is the offset

perpendicular to the surface (see Fig. 4). The NURBS surface

is only used as a deformation function, not as a surface

to match to, only the set of vertices is considered in the

following optimization, i.e. the NURBS surface does not have

to resemble the object’s outline but only needs to enclose it so

every (x, y, z) can be expressed as (u,w, o). Also, the (inner)

NURBS surface does not necessarily have to approximate the

objects surface, as deviations between the NURBS and a vertex

are compensated by o.

Given the projection information of the calibrated [39]

setup and the object position, the deformation tracking can

be expressed as a minimization problem.

Let V be the set of mesh vertices vi ∈ R
3, i = 0, ..., |V | and

let C0 be the set of the initial control points of the NURBS

function. To bind the scanned object to the NURBS function,

the corresponding parameter pi ∈ [0, 1]2 in the parameter

domain of the initial NURBS function NC0
is stored for every

vertex vi of the scanned mesh, along with the displacement

information oi ∈ R which is the distance between this vertex

and the NURBS surface such that

oi = ‖vi −NC0
(pi)‖. (1)

If N̄ denotes the surface normal function for N , then each

of the original scanned mesh vertices vi can be expressed as

vi = NC0
(pi) + oi · N̄C0

(pi). (2)

This way, low resolution deformation can be applied to the

high resolution mesh by manipulating the control points C of

the NURBS NC while keeping the deformation domain small

and implicitly smooth.

For gripper based interaction, we are able to reduce the set

of generic deformations to deflections typical for this scenario,

described by a simple bending transformation [16]. Let B be

this deformation function. The undeformed object is divided

into zones as shown in Fig. 5. While leaving the white zone

unchanged (as it represents the part of the object that is within

the gripper), B applies a curvature to the object that is constant

within each of these colored zones. For a single zone, the

corresponding deformation curvature is applied by

B :







x

y

z






7→







x cos(α)− (z − r) sin(α)

y

(z − r) cos(α) + x sin(α) + r






(3)

where α = x
2π(r−z) follows a curvature with radius r = xsize

β
,

bending the x component with xsize being the size of the

section in x-direction. β 6= 0 determines the amount of

curvature applied. If more than one zone is used, each zone

has its own parameter β, describing its curvature. Additionally,

a twist around the x axis allows us to describe asymmetric

bending (see Fig. 5b) and an affine transformation T allows us

to change the position and the orientation of the bended object.

Let B be the vector, containing all βs, t and the components

of the affine transformation.

Let D ∈ R
2 → R, (x, y) 7→ depth be the depth image

of the Kinect camera mapping each pixel to its depth value.

Let P ∈ R
3 → R

2 be the corresponding projection function

from the world coordinate system into the camera image. Let

k ∈ R
3 be the Kinect depth camera center in the world coor-

dinate system. The difference between the surface deformed

by N or B and the observations of the depth camera can now

be formulated as the difference between the depth in the depth

camera measurement and the actual distance of the vertex to

the depth camera center for each vertex vi. Using the NURBS

function, it can be written as:

δ = D
(

P
(

NC(pi) + oi · N̄C(pi)
))

−‖NC(pi) + oi · N̄C(pi)− k‖.
(4)

The latter can be also expressed using the bending param-

eters B for the bending function B:

δ = D (P (BB(pi)))− ‖BB(pi)− k‖. (5)

Hence, the search for the NURBS parameters C∗ producing

the smallest RMS in the observation can be denoted as

C∗ = argmin
C

√

∑

i

δ2 (6)

or for the bending B, the best parameters B∗ can be denoted

as

B∗ = argmin
B

√

∑

i

δ2. (7)

For a more detailed description of the NURBS deformation

model, please refer to [12]. For more information on the

bending model, please refer to [16].

The minimization task is solved using the CMA-ES [40]

optimization method (Covariance Matrix Adaptation - Evolu-

tion Strategy), a particle filter like algorithm which is able to

circumvent possible local minima in the consistency costs.
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Fig. 6: Results from an artificial pick-up and bend sequence

using NURBS tracking, simulated with various noise levels.

Left: the RMS depth error between input data and synthesis.

Right: The actual RMS difference of each object vertex

between the simulation and the tracking results (Note the

different scales of the right and the left plot).

Results: To validate the tracking method, tests on simulated

and real data were performed. The absolute accuracy was

tested by rendering a depth and color image sequence (40 cm
distance between camera and object, 640 × 480 pixel resolu-

tion) from a deforming 3D model (15 cm× 6 cm× 0.8 cm),

simulating a pick-up and bend action (similar to the real object

depicted in Fig. 7). This image sequence was used as input for

the tracking algorithm using the NURBS deformation function.

To test the robustness to noisy image data, different levels of

noise were added to the depth image.

Fig. 6a depicts the RMS depth error for each frame of

the tracking sequence when Gaussian noise is added with a

deviation of 2, 4 and 6 mm The RMS depth error was calcu-

lated regarding all object pixel depth values of the synthesized

object. The plot shows a clear dependency between the input

noise level and the RMS depth error. Since ground truth data is

available for the given input image, the tracking result was also

compared to the object the image sequence was rendered from.

Fig. 6b plots the RMS distance between the tracking result

and the original object for the same sequence. The influence of

noise in individual measurements to a global optimization goal

calculated from many measurements can be small if the noise

is not systematic or highly correlated; the more measurements

available or the more restrictive the optimized model, the more

robust the optimization goal becomes. It shows that the actual

tracking error is below the RMS depth error and that the

algorithm is far less sensitive to noise than the RMS depth

error might suggest.

To test the algorithm on real input data, a deformation se-

quence similar to the synthetic test was recorded with a Kinect

camera. Fig. 7 depicts 3D renderings of the input footage

along with the NURBS deformation function approximating

the surface very roughly. The resulting depth error is depicted

in Fig. 8 (red line). Fig. 8 also displays the quantization step

size of the Kinect camera at the average object distance (blue

line) giving a hint on the depth sensor accuracy. The green line

in Fig. 8 plots the RMS depth error when results are calculated

in real-time with less iterations. A study on how to speed up

the CMA-ES search for realtime usage of this algorithm can

Fig. 7: The tracking sequence from real input data. The images

show a colored 3D mesh, based directly on the Kinect input

data along with the deformation function (green grid) roughly

approximating the object surface.
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Fig. 8: Results from a real tracking sequence. The blue line

depicts the quantization of the Kinect camera at the average

object distance. The red line shows the RMS depth error when

the object is tracked offline, the green line depicts the RMS

depth error of the online tracking results.

be found in [13].

The evaluation of the tracking algorithm using a bending-

deformation function instead of the NURBS function can be

found in section III-B.

Conclusion and relation to other modules: The described

Kinect based vision system is able to track the deformation

of flexible objects in real time with an excellent handling of

sensor noise. The tracking directly yields the parameters of a

deformation and is easily extended with additional constraints

or physical models as e.g. discussed in section III-B to sense

material properties.

B. Sensing of Material Properties

A linearly elastic, isotropic material may be characterized

by two position-dependent stiffness parameters, e.g. Young’s

modulus Y (r) and Poisson’s ratio ν(r) [3]. When these

parameters are known, along with the mass density ρ(r), the

geometry of the object and a relevant and consistent set of

boundary conditions, it is possible to solve for the deformation

by the means of analytical or numerical methods. To solve

the problem of estimating the material properties, along with

other important parameters, the sensing of material properties

combines vision (section III-A) and modeling (section III-C).
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Fig. 9: Depth camera image of the object showing the synthe-

sized version (left) and the real input data (right) as used in the

estimation of material properties. Each image pixel represents

a distance measurement, the brighter the pixel, the farther away

the observed surface. Black pixel are labeled as undefined.

To evaluate physical correctness for a deformation, a residual

function is formulated.

With a parameterizable deformation model at hand (as

outlined in section III-A) and a residual function that provides

a measure for physical plausibility for given deformation

parameters B and material property Y , an overall measure

can be defined that also takes the optical depth and color input

into account. Similar to [12], an error function is defined which

synthesizes a view of the deformed model and compares it to

the input data (analysis by synthesis). The synthesis is done

by rendering the object subject to the deformation BB with

projection parameters equivalent to the projection of the real

camera (see Fig. 9).

The joint error value of the physical model and camera data

is constructed by combining the color error ec, the depth error

ed (see [12] for more details) as well as a physical error er.

The physical error is given by the difference between the z-

component of the deformation state BB(s) (as introduced in

section III-A) and the 1D deformation curve calculated by the

physical model ηY (s) (see section III-C):

er =
1

|S|

∑

s∈S

(ηY (s)− BB(s))
2, (8)

where S is the set of all slices in the mesh (see Fig. 5). The

error er is thus a measure on how well the current guess

for a deformation state B and material property Y match the

physical model.

A joint error function mapping B and Y to its overall

plausibility can now be defined, by the combination of the

error values er, ec, and ed:

f(B, Y ) =
√

λre2r + λce2c + λde2d . (9)

As in [12], the error function (9) is minimized using

CMA-ES. The resulting parameters provide the deformation

parameters most suitable to the given input data.
Results: To evaluate the performance of our estimation we

perform tests on synthetic and real data. For the synthetic

data we render a triangle mesh using ground-truth data from a

large-deformation finite-element simulation, allowing different

Young’s modulus to be simulated. For the real data, we

estimate the Young’s modulus for differently sized objects, for

which we as a reference use an uniaxial tensile test establishing

the relationship between the tension and the elongation in the

test specimen.

Y (N/mm2) offset error (mm) Y error (N/mm2)

0.5 4.945 0.062
2.0 2.638 0.116
8.0 11.10 1.98

TABLE I: Estimation results for synthetic data.

The results for our tests on synthetic data can be seen

in table I. In our experiments with the synthetic data we

see a low RMS error of both Young’s modulus Y and the

offset distance for objects that have a high deflection. For

objects that do not provide much deformation, such as the

one with Y = 8.0 N/mm2, our estimation does not converge

to the correct results. This is reasonable as for higher values

of Y there is little change in the object movement and as

a result little change in the physical error er which in turn

makes optimization difficult due to various error sources. As

a consequence it can be expected that for stiffer objects, our

estimation diverges from the true result.

Object Y (N/mm2) Y estimated (N/mm2)

7 mm 0.50 0.40
10 mm 0.45 0.45
13 mm 0.45 0.45

TABLE II: Estimation results for real data.

The results for the tests on real data is summarized in table

II. From our results for the real data it can be seen that Youngs

modulus have been acquired with an average error of Y =
0.1 N/mm2 and below, compared to tensile tests.

While we have shown how to estimate Young’s modulus

and pose for a homogeneous object using visual data, there

are issues that should be addressed for practical applications.

First, objects encountered in the real world may be non-

homogeneous e.g. a piece of tissue may have hard pieces of

bone in it. While our system supports a position-dependent

Young’s modulus, the estimation will be non-unique as we

derive an average mass density from the measured volume and

weight of the object. Second, the simple Euler-Bernoulli beam

equation used in the estimation algorithm does not incorporate

the Poisson effect. Therefore for non-zero ν we are actually

estimating an effective Young’s modulus rather than the true

material constant. Using a more accurate model, e.g. the non-

linear beam model presented in section III-C, will obviously

incorporate the effect. However, [31] demonstrated that the

Poisson effect has very little influence on the observable result

for volumetric measurements using visual data. Since we in

our case are only observing and fitting our model to 2D

deformation we will not be able to uniquely identify both Y
and ν.

For a more detailed description of the estimation process

and the experimental verification, please refer to [16].

Conclusion and relation to other modules: In this subsec-

tion, we described the sensing of material properties from the
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visual data computed in section III-A. The estimated material

properties are then used to find optimal action trajectories

(as described in section III-D) based on the simulations as

described in the next sub-section.

C. Modeling and Prediction

The full numerical solution of a continuous 3D object is

in general a computationally hard problem [31]. Physically

discretized models such as mass-spring models are often very

fast and efficient, but it can be difficult to relate physical pa-

rameters to the stiffness of the springs [33], something which

makes it harder to validate and switch to different models.

In our work, we choose the class of realistic, mathematically

discretized models of 2D deformation commonly known as

beam models.

1) Linear Beam Models: To facilitate the different precision

and runtime needs required by the individual stages of the

system, we employ models of different degree of complexity.

For instance, the stage performing the initial picking of

the deformable object (Fig. 1b) requires only low-precision,

however, there is a time constraint for the object to not

drop off the conveyor. This stage calculates the path that the

object will take, and as such requires several calls to the

deformation model. For this, we use an analytical solution of

the homogeneous, constant cross-section Euler-Bernoulli beam

solved for fixed-free boundary conditions [3].

For medium-precision tasks, which are still required to be

used in an online manner we use the static Euler-Bernoulli

beam model [41] formulated for inhomogeneous materials

with non-constant cross-sections:

∂2

∂x2

(

Y (x)J(x)
∂2η(x)

∂x2

)

= q(x), (10)

where η(x) is the transverse deflection (see Fig. 10), Y (x) is

Young’s modulus as previously described, J(x) is the second

moment of area and q(x) = g2ρ(x)A(x) where g2 is the

vertical component of the directional vector of gravity and

ρ(x) and A(x) respectively is the mass density and area for

the cross-section.

The non-constant material parameters, varying cross section

and varying body load in the governing equation, require the

usage of a numerical method to solve the differential equation.

For that equation (10) is discretized by means of second-

order accurate, centered finite differences and solved using an

implicit scheme. The output of the numerical method is the

deformation η(x) for the neutral surface of each mesh slice. To

reduce the artifacts resulting from the usage of a linear strain

tensor with larger deformations in the free-hanging case, a

simple length compensation approach [42] is used for post-

processing. This also recovers the deformation in x namely

ξ(x), assuming no-stretch in the longitudinal direction.

2) Non-linear Beam Model: For larger deformations the

linear models are not sufficient as they do not capture higher-

order effects. In particular they make the simplifying assump-

tion of a linear strain tensor. A non-linear beam model, based

upon [4], is formulated by the following deformation function

Fig. 10: Left: A gripper grasps a deformable object, with a

gripper offset of a. Right: A triangle mesh as used in the

system.

[

u1

u2

]

=

[

ξ(x)− y sin(a(x))− x

η(x) + y cos(a(x))− y

]

(11)

where ξ(x) and η(x) are deformations of the neutral surface

in the x and y directions respectively and a(x) is the angle

of the neutral surface wrt. the undeformed configuration. With

ξ′(x) = cos(a(x)) and η′(x) = sin(a(x)) we now write the

total gravitational potential energy for a beam of length L as

Eg =

∫ L

0

{g1[b0(x)(ξ(x)− x)− b1(x)η
′(x)]

+ g2[b0(x)η(x) + b1(x)(ξ
′(x)− 1)]} dx (12)

where b0(x), b1(x) are constants that depend on the integral

of mass density over the cross section. The constants g1 and

g2 are the components of the directional vector of gravity e.g.

for a horizontal placement of the gripper, g = (0,−9.82).
We include geometric non-linearities by using the large-

deformation strain tensor including higher-order terms [3]

uik =
1

2

(

∂ui

∂xk

+
∂uk

∂xi

+
∂ul

∂xi

∂ul

∂xk

)

(13)

where ui are the components of the deformation function (11).

The elastic free energy for a unit volume of an isotropic

material is generally defined [3] as

ee =
1

2
λu2

ii + µu2
ik (14)

where λ = Y ν
(1+ν)(1−2ν) and µ = Y

2(1+ν) are the Lamé

coefficients [3], and uik the strain tensor defined in (13).

With our deformation functions of (11) we have that the

only non-zero element of the strain tensor is u11. Assuming

conditions of plane stress the total elastic potential energy in

the beam becomes

Ee =

∫ L

0

(

4c2(x)a
′(x)2 + 4c3(x)a

′(x)3 + c4(x)a
′(x)4

)

dx

(15)

where c2(x), c3(x), c4(x) are constants which depend on the

integral of the elastic moduli over the cross section.

By direct computation we can now eliminate the terms of

ξ(x) and η(x) and formulate the total potential energy Et =
Eg + Ee as a function of the angle a(x) only:
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Et =

∫ L

0

{(g1B0(x) + g2b1(x)) cos(a(x))

+ (g2B0(x)− g1b1(x)) sin(a(x))

+ 4c2(x)a
′(x)2 + 4c3(x)a

′(x)3

+ c4(x)a
′(x)4 − g1b0(x)x− g2b1(x)

}

dx

≡

∫ L

0

f(x)dx (16)

where B0(x) = B∗

0(L)−B∗

0(x) with B∗

0(x) =
∫ x

0
b0(s)ds.

By the principle of stationary action, we determine the

deformed beam shape by minimizing the total potential en-

ergy of (16) and subsequently integrating the solution vector

ai for i ∈ [0;M ] with ai ≈ a(ih) where h is the step

size. To approximate the derivatives we employ second-order

accurate, centered FD expressions for the internal points and

forward/backward differences at the endpoints. Using the

trapezoid rule we approximate (16) by

Et =
h

2

[

f(0) + f(Mh) + 2
M−1
∑

i=1

f(ih)

]

(17)

where f is the integrand from (16) and M is the number of

points in the discretization.

The boundary conditions are satisfied by formulating suit-

able constraints for the optimization. E.g. to simulate contact

with the table in the Laying-Down task, a constraint is added

to the optimization which ensures that no points on the beam

are allowed to penetrate1.

3) Results: For our experiments presented in this paper we

have employed the robot framework RobWork [43] and the

IPOPT optimization package [44] using the MUMPS direct

solver [45], [46]. For the high-precision, offline learning of

the Laying-Down task, we build a database of known objects.

We perform a sweep over the height and the angle of the

gripper and for each configuration we calculate the deformed

shape of the object and the total elastic energy. Should a new

object be introduced into the system, new tables are generated

and the learning is trained again. The results from this task

are presented in section IV-C.

To estimate the actual elastic energy in objects during

the Laying-Down task, we capture a 3D point cloud using

the Kinect camera during path execution. Outliers are subse-

quently filtered and the data is fitted by linear least squares to

third-degree polynomials. These polynomials are then inserted

into (15) and the energy is evaluated by numerical integration.

A comparison between the estimated energies and those ob-

tained from the simulation, can be found in section IV-C.

In order to evaluate the accuracy of the simulation, we have

compared the output of the simulation with Kinect surface

data. We used the estimated value for Young’s modulus of

Y = 0.40N/mm2 for the 7 mm thin object. Fig. 11 shows

the comparison for 4 different poses in a Laying-Down action.

In general we had good correspondence between the sim-

ulation and observed surface data for poses with the object

1For more details about the non-linear beam model, please refer to [42].

-0.22 -0.20 -0.18 -0.16 -0.14 -0.12 -0.10 -0.08

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

x HmL

y
Hm
L

1

2

3

4

Fig. 11: Plot of raw Kinect 3D vertex data versus simulated

deformation for 4 different poses in a Laying-Down action.

The blue points show the vertex surface data and the red area is

the corresponding simulated deformation. The cluster of points

at y = 0 are boundary artifacts in the Kinect data.

being either free-hanging or relatively horizontal against the

table. However, in some situations the object is pushed in its

longitudinal direction into the table (Fig. 11, pose 3) causing

a buckling behaviour not captured by the simulation. This is

caused by a high coefficient of friction between the silicone

rubber and the wooden table, making objects stick. The

assumption of the end being free to move is therefore invalid

causing the simulation and the real world results to diverge.

While possible to include friction effects in the simulation,

experience has shown us that the friction between flexible

objects and the table is highly variable and as such difficult

to parameterize.

Conclusion and relation to other modules: We have demon-

strated a good fit between simulated and real deformations,

which gives indications that actions performing well in simu-

lation will also perform well in reality. Hence simulation can

be used to find promising actions. However, with limitations of

the deformation prediction in capturing effects such as friction

and also inaccuracies of the vision and material sensing system

(as outlined in section III-A and III-B), there is a need to

perform learning also in the real world. The computation of

promising actions in simulation as well as the further fine-

tuning of these actions in a real world scenario are described

in the next sub–section.

D. Learning in Simulation and Real World Execution

When addressing a learning problem, the exploration of

the search space is an essential aspect, as a high degree

of exploration increases the likelihood for finding optimal

solutions for the problem. However, doing experiments in
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Fig. 12: Illustration of the feature vector based on a 1 × 5-

dimensional grid.

the real robot setup is time-consuming and thereby costly.

Therefore in our approach, the learning process is bootstrapped

with simulated experiments based on the modeling described

in section III-C. Subsequently real experiments are used to

adjust the learned model.

In section III-D1, the parametrization of objects is defined

(common for both actions, Peg-in-Hole and Laying-Down).

The methodology for the learning of these two actions is

described in section III-D2 and III-D3.

1) Object Parametrization: The parameterized description

of objects is defined to allow for the generalisation of actions

across similar objects. As the deformation characteristics of an

object is essential for the selection of an optimal action, the

difference between the shape of the undeformed object So and

the shape Sd of the object when it is deformed based on the

impact of gravity while being fixated at a horizontal position

is estimated:

Ŝ(u, v) = So(u, v)− Sd(u, v), (18)

where (u, v) are coordinates on a grid of size I × J . The de-

formations are obtained at a set of discrete locations and form

a feature vector f . As only a two-dimensional deformation

is modeled (see section III-C), a 1 × 5-dimensional vector is

used2 (illustrated in Fig. 12):

f =
1

L

[

‖Ŝ (g0)‖, ..., ‖Ŝ(gi)‖, ...., ‖Ŝ(gI)‖
]

∈ R
I , (19)

where L is the length of the object. However, the feature vector

can easily be extended to cover more complex deformations,

e.g. by using a 3 × 5-dimensional grid to cover the twist of

the object.

The aim with the formulation of f is to facilitate the com-

parison of object characteristics, such that similar actions can

be applied to similarly behaving objects. As sharing properties

such as geometry, appearance or mass do not guarantee similar

characteristics, such properties are not used.

2) Peg-in-Hole Actions: The actual Peg-in-Hole action is

defined as a trajectory P (t) ∈ R
2 × SO(2) (see figure

Fig. 13b). The target configuration P1 is known as the gripper

will be directly in front of the hole with a horizontal orienta-

tion. The starting configuration P0 is based on the deflection

modeling, chosen such that the tip of the object is in front of

the hole and the surface tangent at the tip is close to horizontal

(see Fig. 13a). The trajectory (illustrated on Fig. 13b) defining

the interpolation between the starting and target configura-

tion is defined using a rational Bézier-curve [47] based on

three points, namely the start and end configurations and an

2We assume the stretch of the object in the longitudinal direction to be
negligible, thus allowing the deformation at a point to be described by a
single scalar value.

(a) (b)

Fig. 13: Illustration of (a) starting configuration P0 for the

Peg-in-Hole action. (b) shows a projection of the trajectory in

R
2 ×SO(2) based on P0, the target configuration P1 and the

control point ωP . The arrows indicate the orientation of the

gripper along the path.

additional control point, ωP = [ωx
P ωz

P ωα
P ] (the superscript

indicates the affected dimension, illustrated in Fig. 13a):

P (t) = P0 +B(t) ◦ (P1 − P0) for t ∈ [0; 1], (20)

with

B(t) =

∑n
i=0 bi,n(t)αiωi

∑n
i=0 bi,n(t)αi

, (21)

where bi,n(t) is the Bernstein polynomial with n = 2,

ωi ∈ {0,ωP ,1} refers to the i’th control point for the curve

and ◦ denotes the entrywise (Hadamard) product.

The weights αi ∈ {1, 2, 1} are fixed, which ensures that

the second control point, which is subject to learning, has an

increased impact.

The modeling of the potentially successful Peg-in-Hole

actions is inspired by Kernel Density Estimation (KDE) [6].

Every time a control point that leads to a successful action has

been obtained, it is added to a density d. However, contrary to

the situation in [5], where grasp affordances are learned for a

specific object, we cannot assume the objects to be identical

(see section III-D1). Therefore, a kernel, Kµ,σ(ωP , f), which

is a compound of two kernels is used: one reflecting the

Peg-in-Hole action as such, the other reflecting the object

parametrization specified in (19):

Kµ,σ(ωP , f) = N
PiH
µp,σp

(ωP ) N
Object
µf ,σf

(f) (22)

with µ = {µp, µf} and σ = {σp, σf} (23)

where N
PiH and N

Object are isotropic multivariate Gaussian

kernels located at the mean positions µp resp. µf and with a

bandwidth of σp resp. σf . Note that µp corresponds to the

3-dimensional control point of an evaluated action and µf

corresponds to the currently 5-dimensional feature-vector of

the object that was involved in that action.

The density dPiH is given by the weighted sum of the

kernels given m experiments:

dPiH(ωP , f) = η

m
∑

i=1

wiKµi,σ (ωP , f) , (24)
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where wi is a weight associated with each sample and η is a

constant ensuring that the density integrates to 1. In order to

condense the notation, Ki replaces Kµi,σ in the following.

The learning of the density has been initiated in simulation

(see section III-C for further details on the simulation) where

the clearance during the operation can be easily determined.

The thickness ti of the object and the minimal clearance ci
which has been observed during the operation are used to

define the individual weights:

wi =

{

ti+ ci
∑

m
j=1

Kj(ωP i,fi)
if ci > 0

0 else
(25)

where the denominator counteracts the otherwise accumulating

effect of nearby samples.

As a consequence, when an action for a new object with

feature vector fnew and thickness tnew is considered, the

expected clearance ĉ is given by:

ĉ =
1

η
dPiH(ωP , fnew)− tnew. (26)

However, in the real setup the clearance cannot be measured

— only the fact whether an action failed or not is accessible.

Therefore, two different use cases for the density based on

simulated experiments exist: 1) for a given object, the most

promising action can be estimated and executed and 2) specific

regions can be explored further with real experiments and lead

to a correction of the density.

The most promising action, i.e., the action with the largest

expected clearance, can be found by searching for a global

maximum of the density given the feature vector for the object

for which the action is to be selected (see [17], [48] for details).

Note that, since f is given by the object at hand, finding the

maximum of the density is only a 3D search problem.

When a specific control point is evaluated on the real

system, the density can be used to estimate whether the

clearance is expected to be above zero or not based on equation

(26). If the action leads to a collision although a nonzero

clearance was predicted or vice versa, it is an indication for the

density to be incorrect at this point. Such errors are reduced

by adjusting the individual weights accordingly:

∆wi = −τKi(ωP , f) k (27)

with k =











|ĉ| if c > 0 and ĉ < 0

|ĉ| if c < 0 and ĉ > 0

0 else

(28)

where τ is a learning rate and the evaluated action consisting of

the control point ωP , feature vector f and the true clearance

c is used to adjust the density if the expected clearance ĉ
is wrong. Such an update rule can be applied in a situation

where the system is running on a long term basis and a scheme

controlling the trade off between a high performance (always

selecting the control point that maximizes the density) and

exploration, enabling the system to improve. However, such

longterm aspects are outside our scope and essentially not

tractable with the setup at hand as it was not optimized with

respect to speed and the evaluation of an action currently

takes about one minute. Therefore, the setup was tested as

a whole with a single object, allowing for exploration for this

specific object. Subsequently a new optimal control point was

estimated for this object, see section IV-B.

Results: The simulations have been performed for different

objects with 8000 samples, spanning an equidistant grid with

a resolution of 0.1 in each dimension,for each object. A

visualization of the density based on the actions on a single

object (with a thickness of 7 mm) is shown on Fig. 14.

It becomes evident that the region of successful actions is

roughly convex, which justifies the search for a maximum.

Regions where no successful actions have been recorded are

clamped to zero. Note that, locally, the value of the summed

clearance and thickness might be lower than the real thickness

of the objects — this is caused by the smoothing effect

introduced by KDE. The bandwidth σP = 0.004 I3, with I3
being a 3 × 3 identity matrix, was kept isotropic and chosen

manually to ensure a sufficiently smoothed density. As only a

single object is considered in the test, the choice of σo is not

relevant.

Further, real-world Peg-in-Hole actions are performed with

one object matching a simulated one. In total 80 different

actions, exploring the region that also contains the maximum

(illustrated in Fig. 15a), have been performed and each action

has been repeated 10 times. The control points were selected

using a coarser 2-dimensional grid with an resolution of 0.2,

keeping ωα
P fixed. An exploration of all 3 dimensions was not

tractable.

As the outcomes in simulation and real-word experiments

do not correspond directly — in simulation the clearance

is determined, in real-world experiments only successes or

failures are distinguished — they do not facilitate a direct

comparision. However, obviously all actions with non-zero

clearance are expected to succeed. Therefore, the distributions

of simulated actions with non-zero clearance is expected to

be similar to the distribution of succeeding real-world actions

– which indeed is the case (see Fig. 15). The distribution

of the N real-world actions is modeled using (24) with

σP = 0.012 I3 just as the simulated actions. The weights

wi are defined slightly different:

wi =
oi

∑N
j=1 Kj (ωP i, fi)

for oi ∈ {0, 1}, i ∈ {1, . . . , N},

(29)

where oi = 1 indicates a success and oi = 0 indicates a failure.

3) Laying-Down Actions: Similarly to the Peg-in-Hole ac-

tion, the Laying-Down action is defined as a trajectory in

R
2 × SO(2). The aim of the operation is to place the object

at a pre-defined target while minimizing the internal forces

of the object (caused by deformations) as too high forces in

general might damage the object. In the following we will

derive an objective function which will be optimized to find

an optimal action by making use of two aspects: First, the

maximal energy applied to the object during the manipulation

process and second, the time required for the manipulation in

terms of the length of the travelled trajectory. In addition, the

stability of the simulator is incorporated in order to identify if
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(c) ωα
P

= 0.63

Fig. 14: Visualization of a density based on simulated experiments for one object.
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(a) Simulated Peg-in-Hole actions, ωα
P

= 0.20
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(b) Real-world Peg-in-Hole actions, ωα
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Fig. 15: A density based on simulated experiments for one object, (a) shows a slice of the density with the global maximum

highlighted by a white cross. (b) illustrates the average outcomes (success or failure) of corresponding real-world experiments.

Fig. 16: Illustration of the parameters h and α defining the

Laying-Down operation. The displacement ∆x of the tip,

caused by the deformation, is estimated based on the modeling.

specific parameter regions cannot be simulated with sufficient

accuracy.

The beginning of the trajectory is defined such that the tip of

the object touches the target, subsequently the gripper guides

the object to the target location, ideally without causing the tip

of the object to move. The trajectory is therefore characterised

by the height h and tilt α of the gripper relative to the table

as well as a horizontal displacement ∆x (see Fig. 16). Given

h and α the deformations of the object and the elastic energy

Ee in the object can be predicted as outlined in section III-C3.

To ease the notation, we consider the following function to be

available:

Px(h, α) → ∆x. (30)

Pretending that the table is frictionless, the predicted dis-

placement of the tip, ∆x, is transferred to the gripper in

order to prevent a displacement. As the true friction coeffi-

cient between the object and the target surface is unknown,

minimizing the movement of the object tip relative to the

target surface also minimizes the impact of the unknown

friction properties. Therefore the learning problem is only a

2-D problem, addressing the height h of the gripper and it’s

orientation α with respect to gravity. which is used to define

the trajectory in terms of a parametric function:

P (t) = {x(t), h(t), α(t)} (31)

= {L− Px (h(t), α(t)) , h(t), α(t)} for t ∈ [0; 1] (32)

where L is the length of the object,

[

h(t)

α(t)

]

=

[

h1

0

]

+B(t) ◦

[

h1 − h0

1

]

(33)

and B(t) is given by (21). The height of the gripper at the end

and at the beginning of the operation is defined by h1 and h0

respectively. The three control points used by B(t) are given

by:

ωi ∈

{[

0

α0

]

,ωL,

[

1

α1

]}

(34)
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where ωL is optimized with respect to a combined criteria

of minimizing both the maximal energy Ee during the action

and the length Φ of the trajectory, in terms of joint angles,

travelled by the robot:

g(Ee,Φ, c) =
1

Ee

S(c)

Φ
(35)

where c denotes the consistency of the simulated action

indicating if simulations did not converge and S(c) denotes a

sigmoid function defined below. Note that the simulator is used

for every step in the discretized trajectory. If the simulation

fails or doesn’t converge at a single step, an interpolation be-

tween the two adjecent steps can be done, however, if multiple

steps fail, an interpolation might be misleading. Therefore, the

sigmoid function S(c) = 1
1+exp(ac−b) where a, b are constants

is introduced to suppress regions in the search space where the

simulation of an action failed. Conditions, such as the object

being forced below the table, that challenge the simulation are

of little practical relevance. Example data for the 7 mm thin

object is provided in Fig. 17.
Similarly as for Peg-in-Hole actions, KDE is utilized to

derive a continuous estimate of the distribution dLD of Laying-

Down actions based on the n simulations:

dLD(ωL, f) = η

n
∑

i=1

wiKi(ωL, f), (36)

where the weights are defined as:

wi =
g(Ee

i ,Φi, ci)
∑n

j=1 Kj(ωLi, fi)
and Ee

i = max
t

(Pe (ht, αt)) . (37)

Results: When the Laying-Down operation is performed,

the deformed object is tracked (as outlined in section III-A)

and the elastic energy, caused by the deformation, is estimated

based on the object shape (see section III-C). For three

different control points, indicated in Fig. 17, approximately

50 actions have been performed on the real setup. The control

points were chosen such that three different behaviours were

observable: First a situation where the tip of the object is

lifted from the table (outcomes are illustrated in Fig. 18b).

Second, one with the object being pressed against the table

(see Fig. 18c) and finally the third being close-to optimal (see

Fig. 18a). The rightmost column contains the numbers of all

actions with energies that exceed the limits of the axis – these

are considered to be outliers.
It is noticeable that the usage of the control point that is

optimal according to the simulations does not lead to the

lowest energies in general. Instead, the control point that

causes the object to lift from the table leads to lower energies

with less variance. Those actions, where the object was pushed

against the table (Fig. 18c), lead to highest energies with a

large variance.
This variance is largely caused by the fact that the object

in situations with contact to the table is sensitive to even tiny

variations, e.g. caused by uncertainty in the grasp, letting the

tip of the object either stick to the table, causing the object

to buckle (also observed in Fig. 11), or just slide. The key

results for the experiments are summarized in table III. When

several Laying-Down actions with the same control point were

evaluated, the estimated energies vary significantly. Therefore,

the median of the energies Ẽe are used. As the trajectory of

the robot should be identical for several repetitions of the same

actions, the average of the trajectory length Φ was used.

ωL Ẽe
[

10−6J
]

Φ [rad]

a: ( 0.24,−60) 12.941 1.56
b: (−0.15, 20) 6.854 1.80
c: ( 0.80,−53) 18.734 1.59

TABLE III: Results of the Laying-Down actions using three

different control points, illustrated in Fig. 17, evaluated on the

real setup.

Conclusion and relation to other modules: Optimal trajec-

tories for Peg-in-Hole and Laying-Down actions were first

computed in simulation based one the modeling described

in section III-C, the material parameters estimated in section

III-B and an approximation of an appropriate objective func-

tion by a KDE approach.

After that, Peg-in-Hole actions were performed under ideal

conditions – the result indicate a good match between the

simulation and the real-world action. Further, three different

Laying-Down actions were performed in order to support a

qualitative comparison of simulated and real actions. The large

variance of the results indicate that not all aspects are modeled

by the simulation.

While in this section we have tested the sub–modules and

the execution of Peg-in-Hole and Laying-Down actions under

ideal conditions (in particular a controlled object grasping),

we will in the following section evaluate the overall system

and utilize the gathered real-world data perform a fine-tuning

of both actions.

IV. RESULTS OF THE OVERALL SYSTEM

In this section, we will first describe the robot platform

(section IV-A) and how the overall system performs when

doing Peg-in-Hole (section IV-B) and Laying-Down actions

(section IV-C).

A. Demonstrator

To facilitate realistic and reproducible tests with flexible

objects, casted silicone models have been used. The material

is a Dow Corning Silastic 3481 silicone rubber molded using

Silastic 81-R hardener. The mass density for this is given to

ρ = 1.200·10−6 kg/mm3. Reference values for Young’s mod-

ulus have been estimated by tensile tests using an industrial

robot and a PASCO PS-2189 force sensor. The material and

model shapes have been choosen in order be representative of

cut meat from food production.

The robot used to handle the objects is a Universal Robots

arm, UR5 — a lightweight industrial 6-DOF robot arm.

Further, a small standard conveyor belt is used to transport

the objects from an entry point, where the user inputs them,

to the camera, where a 3D model is obtained and finally to

the interaction stage, where the robot picks the object and
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Fig. 17: The left plots illustrate different properties for simulated Laying-Down actions for the 7 mm thin object with respect

to the 2D control point. Top left: maximal energy Ee during the action, bottom left: inconsistency of the simulation c and

center: the accumulated distance in terms of joint angles Φ that the robot arm traveled. Right: combined quality measure, based

on (35), where the maxima, corresponding to the optimal action, is highlighted by a white ×. The two black circles indicate

control points that have been evaluated in addition to the optimal on the real setup. The outcomes are illustrated on Fig. 18,

the labels indicates which histogram corresponds to the individual control points.
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(a) ωL = (0.24,−60)
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(b) ωL = (−0.15, 20)
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(c) ωL = (0.80,−53)

Fig. 18: For three different control points: The distribution of Laying-Down actions with respect to the maximal energy detected

during the execution of the individual action. The index of the subfigures matches the overlayed letters in Fig. 17.

processes it. The gripper is a special 1-DoF design using a

SMAC-actuator [49].

The mechanical part of the demonstrator for bundling all

the different components (see Fig. 1) is made in lightweight

materials such as framework in aluminum profiles, which

allows fast adaptations and even fast dismantling and assembly

moving the demonstrator to new facilities.

B. Results on Peg-in-Hole operations

In section III-D2 a good correspondence between simulated

and real world Peg-in-Hole actions has been shown for the

situation where the grasp applied to the object was ensured to

match the simulated grasp. However, the grasp is subject to

various error sources, such as the calibration of the set-up, the

synchronization of the modules and in general error introduced

by the vision system affecting the generated model. All errors

will affect any successive steps and can hardly be included

in the simulation. Therefore, the performance of the system

is expected to be lower when the object is not grasped in a

controlled, ideal fashion.

Using the 7 mm thin object, grasped when it reached the

end of the conveyor belt, approx. 100 actions using the control

point ω
max
P that is ideal according to the simulated actions

have been performed. Furthermore, approx. 250 actions, using

control points on a grid in the vicinity of the previous control

point, have been evaluated.

Subsequently all actions evaluated in real world experiments

have been utilized to determine a new optimal action with

control point ω̂max
P . This has been tested approx. 100 times

— table IV shows an summary of all outcomes. Possible
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Fig. 19: The density based on real-world Peg-in-Hole experi-

ments using a 5× 5 grid with the maxima highlighted.

outcomes are success or failure, where failures cover collision

or the path being unreachable for the robot. The latter is

typically caused by the path planner rejecting configurations

where collisions are expected. As an action that would lead

to a physical collision either can lead to true collision or to a

rejection by the path planning algorithm depending on e.g. tiny

inaccuracies in the calibration, the two outcomes have been

concatenated. In addition, the object might be sliding into the

hole, which can be considered a failure as the object touched

the brim of the whole, or a success as the object still has been

inserted. In both cases the second learning phases, utilizing

the real-world experiments, increased the performance, such

that the optimal action succeeds in 92.9% resp. 99.1% of the

attempts. Especially when sliding is considered to be a failure,

the improvement compared to the results based on simulation

only is significant.

success
collision or
unreachable

success rate
(excl. sliding)control point no contact sliding

ωP
max 84 16 7 93.5% (78.5%)

ωP
avg

159 41 131 60.5% (52.7%)3

ω̂P
max 104 7 1 99.1% (92.9%)

TABLE IV: Summary of the outcomes of Peg-in-Hole opera-

tions on the real setup using the 7 mm thin object.

C. Results on Laying-Down Operations

In section III-D3 and III-C3, it has been shown qualitatively

that simulated and real Laying-Down actions correlate well.

In the following, it will be investigated if the optimal action,

determined using simulation, corresponds to the one that is

optimal in real world experiments.

Using the 7 mm thin object, grasped when it reached the

end of the conveyor belt, approx. 50 actions using each control
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Fig. 20: Density based on real-world Laying-Down experi-

ments using 19 different control points, indicated by black

circles. The new maxima, corresponding to the optimal action,

is highlighted by a white ×.

point in the vicinity of the one that is optimal according to

the simulations have been performed. During the execution

of an action the actual shape of the object was tracked and

used to estimate the energy as described in section III-C3.

Furthermore, the trajectory of the robot arm was recorded.

Thereby each evaluated action leads to a triplet consisting of

a control point, the largest energy estimated during the action

and the accumulated joint distance traveled by the robot arm.

As the estimated deformation energy relies on the mesh-

models of the object in a given situation, outliers are expected

to occur which might lead to wrong estimates of the energy.

To reduce the impact of outliers, the median of all outcomes is

estimated for each control point and used as the representative

outcome. Based on these, the distribution of the quality with

respect to the control point is estimated and a new maximum

is determined (see Fig. 20).

The results were used to derive an updated estimate of

the optimal control point which subsequently were evaluated

— the distribution of the outcomes is illustrated in Fig. 21.

Compared with the results for the previous estimate of the

optimal control point, see Fig. 18a, in general lower energies

were observed. However, when compared with the control

point that leads to little contact between object and table, see

Fig. 18b, often lower energies have been observed, but the

median energies are comparable as the variance of the results

for the optimal control point is significantly higher.

The control point that is estimated to be the optimal one

leads to actions where the tip of the object is touching the

table, such that the object is supported by both the table

and the gripper. Apparently, the situations where the object

touches the table are sensitive to even small deviations between

the simulated model and the real world. Although the results

indicate an improvement when the real-world data is utilized,

they also indicate that additional sensors, for instance a force-

torque sensor detecting when the contact between the target

surface and the object occurs, probably would be beneficial.
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Fig. 21: Distribution of the maximal deformation energy

observed during real-world Laying-Down actions when the

optimal control point is used.

V. CONCLUSION

The overall task of the outlined system was to address the

handling of flexible objects in robot workcells. The different

submodules required for such a system were described, im-

plemented and evaluated both individually and as a whole.

The proposed system achieves real-time sensing of flexible

objects by direct, model-based tracking using analysis by

synthesis of depth and colour images. Combining model-

based tracking and deformation modeling, the elastic moduli

and pose of grasped objects is determined. Having estimated

the model parameters of grasped objects, the deformation

is determined based on its current configuration using two

different methods providing trade-offs between accuracy and

computational effort. Learning has been employed to identify

optimal manipulation actions in a simulated environment.

Subsequently, the differences between the simulated and the

real system are compensated by a secondary learning phase.

The proposed system combines the four modules and

demonstrates their application to real-world scenarios. We

have demonstrated our approach on conveyor belt grasping

with subsequent Peg-in-Hole and Laying-Down manipulation

actions. By that, we have provided a system in which vision,

modeling, simulation and learning are combined to arrive at

a flexible and adaptable system. We showed that the system

is able to deal with the requirements of manipulation in not

fully controllable contexts. This is in particular required for

the manipulation of flexible objects.
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