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An Adaptive Algorithm for Differentially Coherent
Detection in the Presence of Intersymbol Interference

Milica Stojanovic, Member, IEEE

Abstract—An adaptive equalization method is proposed for
use with differentially coherent detection of M-ary differential
phase-shift keying (DPSK) signals in the presence of unknown
carrier frequency offset. A decision-feedback or a linear equalizer
is employed, followed by the differentially coherent detector. The
equalizer coefficients are adjusted to minimize the post-detection
mean squared error. The error, which is a quadratic function of
the equalizer vector, is used to design an adaptive algorithm of sto-
chastic gradient type. The approach differs from those proposed
previously, which linearize the post-detection error to enable the
use of least mean squares (LMS) or recursive least squares (RLS)
adaptive equalizers. The proposed quadratic-error (Q) algorithm
has complexity comparable to that of LMS, and equal convergence
speed. Simulation results demonstrate performance improvement
over methods based on linearized-error (L) algorithm. The main
advantages of the technique proposed are its simplicity of imple-
mentation and robustness to carrier frequency offset, which is
maintained for varying modulation level.

Index Terms—Adaptive equalization, decision-feedback equal-
ization, differentially coherent detection, noncoherent detection,
phase tracking, stochastic gradient.

I. INTRODUCTION

D IFFERENTIALLY coherent detection offers the simplest
way of achieving carrier synchronization with M-ary

phase-shift keying (PSK), and, thus, represents an attractive
solution for systems in which explicit phase tracking is not
an option. However, differentially coherent detection is based
on the premise that there is no intersymbol interference (ISI)
in the received signal. When a frequency selective multipath
channel introduces ISI, differentially coherent detection must
be combined with equalization. The question then arises as to
how the two techniques should be combined, i.e., whether to
equalize first and then perform differentially coherent detection,
or to compensate for the unknown, time-varying phase first,
and then equalize. Various solutions to this problem have been
proposed in the literature, which includes early work by Sehier
and Kaleh [1], more recent results by Masoomzadeh–Fard and
Pasupathy [2], Colavolpe and Raheli [3], and extensive work
by Schober et al. [4]–[6]. Below, we briefly summarize some
of the existing solutions.

The method proposed in [1] uses linear equalization (LE)
followed by differentially coherent detection. The equalizer op-
timization criterion is minimization of the mean squared error
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(MMSE) obtained after differential detection. However, the
post-detection error is a quadratic, rather than a linear function
of the equalizer vector, and this fact prevents application of the
least mean squares (LMSs) or recursive least squares (RLS)
algorithm in the usual manner. To overcome this difficulty,
a simplifying assumption is made: equalizer coefficients are
taken to be independent from one symbol interval (iteration)
to another. Under this assumption, the instantaneous error is
linearized, allowing for the application of standard LMS. Effec-
tively, the equalizer is applied to the input signal premultiplied
by the conjugate of a previously estimated data symbol, and
then adjusted ignoring the fact that there is dependence between
its input and output signals. Nonetheless, this algorithm, called
the modified LMS, offered acceptable performance in a variety
of conditions, and has consequently been used in many later
developments, e.g., [2] and [4].

To accommodate severe ISI, in [2], the authors proposed to
perform differentially coherent demodulation first, followed by
decision-feedback equalization (DFE). However, because the
input signal contains ISI, differentially coherent demodulation
introduces nonlinear distortion, thus making this approach sub-
optimal, as demonstrated by the fact that it offered improvement
over LE only on severely distorted channels. In addition, the
nonlinear equalizer must operate at twice the sampling rate of
its linear counterpart (fractional spacing instead of ).

Optimal noncoherent detection for channels with ISI is based
on maximum-likelihood sequence estimation (MLSE) in the
presence of unknown phase. To reduce the inherent complexity
of MLSE, techniques based on reduced-state Viterbi algorithm
were proposed in [3] for time-invariant ISI channels. Adaptive
schemes were addressed in [4] for linear, and in [5] for non-
linear equalization. These nonlinear schemes are optimal in
the sense that they are not applied to a nonlinearly predistorted
signal as in [2]; instead, MLSE or DFE are applied to the input
signal containing undistorted (linear) ISI as in [3]. To do so, a
reference symbol is generated from multiple past observations
(recursively or nonrecursively) and used to correct the phase
of the incoming signal prior to adaptive equalization. Because
these methods essentially generate a carrier phase reference,
they can approach the performance of coherent detection,
which occurs in the limit as the number of previous symbol
estimates used to generate the reference tends to infinity. The
linear equalizer of [4] uses a modified LMS/RLS similarly as
[1] and [2]. Adaptation of the MLSE/DFE [5] is guided by the
error at the equalizer output (predetection error) and is, thus,
decoupled from differentially coherent detection that follows.
Consequently, there is a tradeoff between tolerable frequency
offset and ISI compensation capability. The M-ary differential
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phase-shift keying (DPSK) principles of [4] and [5] were ex-
tended to the case of M-ary differential amplitude/phase-shift
keying (DAPSK) in [6].

The method proposed in this paper seeks to improve upon
the existing methods by: 1) using a simple receiver structure
consisting of a DFE (or LE) followed by the differentially co-
herent detector and 2) by applying an adaptive MMSE algo-
rithm that makes no simplifying assumptions to linearize the
post-detection error. Rather than assuming independence be-
tween two consecutive values of the equalizer vector, the op-
posite is assumed: namely, that the equalizer vector does not
change much from one symbol interval to another. Because the
task of tracking fast changes in the carrier phase is left to the
differentially coherent detector, such an assumption seems intu-
itively more satisfying. Thus, the equalizer is optimized within
the framework of differentially coherent detection, i.e., jointly
with it. The resulting algorithm is of stochastic gradient type,
and has complexity comparable to that of the modified LMS
[1]. When used with the DFE, algorithm performance can be
enhanced by preventing the feedback coefficients from rotation.
This is necessary only in the presence of a large frequency offset.
A method for generating the needed phase reference from the
past data symbol estimates is proposed for this situation. This
method targets directly the residual phase of the past estimates,
and in this manner differs from the recursive phase reference
method of [5], which is based on planar filtering of a reference
phasor. When only a linear equalizer is used, phase reference is
not needed in the receiver proposed.

The present work is motivated by the problem of bandwidth-
efficient modulation/detection in underwater acoustic wireless
channels, where extensive ISI accompanies rapid phase varia-
tions [7], but the solution is applicable to any ISI channel with
unknown carrier phase. The main advantages of the algorithm
proposed are its simplicity, robustness to carrier phase offset,
and performance improvement of the adaptive algorithm based
on quadratic error over its linearized-error counterpart.

The receiver structure and the adaptive algorithm are pre-
sented in Section II. In Section III, performance of the proposed
method is assessed through simulation. Conclusions are sum-
marized in Section IV.

II. RECEIVER STRUCTURE AND THE ALGORITHM

The baseband-equivalent received signal is given by

(1)

where are the transmitted M-ary DPSK data symbols, is
the symbol interval, is the overall
system response (including transmit filtering, channel, and re-
ceive filtering), is the unknown carrier phase, and

is the noise that results from filtering the equiv-
alent baseband input additive white Gaussian noise (AWGN)

whose independent in-phase and quadrature components
each have power spectral density . The data symbols
are obtained by differentially encoding the input M-ary PSK
symbols , i.e.,

.

We assume that the channel is not known, and, hence, in-
stead of a complete matched filter, the receiver uses only a low-
pass filter. The transmit and receive filters can both be chosen
as square-root raised cosine filters. The received signal is sam-
pled at the Nyquist or higher rate, i.e., every , and the
samples are fed into a fractionally spaced equalizer. The vector
of signal samples, stored at time in the feedforward filter
with the coefficient vector is denoted by .1 It is assumed
that proper time-alignment has been achieved so that this signal
contains significant contributions from the data symbol .
The vector of previously detected data symbols, stored at time

in the feedback filter , is denoted by
, where stands for transpose. These symbols

are either the true data symbols known during training, or the de-
cisions generated by differentially re-encoding the output data
stream , i.e., . The equalizer output at
time is the estimate

(2)

where is the composite equalizer vector, and
is the accordingly defined composite signal vector. The factor

is needed only in the presence of a significant
frequency offset (roughly speaking when 10 ). If
only a linear equalizer is used , there is no need for this
factor. The estimate contains residual phase variation in
addition to the desired contribution of the data symbol , and
the task of phase correction is left to the differentially coherent
detector, which yields the estimate of the data symbol

(3)

This estimate is used to make the symbol decision from the
M-ary PSK alphabet.

In the presence of a frequency offset, the factor is in-
troduced to aid the feedback filter by preventing its coefficients

from rotating. Namely, the feedback term
must be aligned in phase with the feedforward term
to achieve effective post-cursor ISI cancellation. An adaptive
equalizer is capable of tracking slow phase variations, but not
a significant frequency offset (e.g., [7]). When such an offset is
present, the term contains residual phase variation asso-
ciated with the input signal , which may be too fast for the
feedback filter to track alone. Hence, rather than trying to ab-
sorb the residual phase variation into the feedback coefficients
(which would cause them to rotate), the correction is included
explicitly.

The simplest way to generate is directly from the
residual phase of the estimates . Namely, once the de-
cision on the data symbol becomes available, it can be
used to remove the information content of , leaving the
residual phase offset

(4)

1All the vectors are defined as column vectors, and the prime denotes conju-
gate transpose.
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Fig. 1. Block diagram of the receiver. The MMSE equalizer coefficients a and b are adjusted adaptively using the post-detection error e(n) = ~b(n) � b̂(n).
Phase correction in the feedback may or may not be necessary; the simplest way to find �(n) is by amplitude limiting (4).

The receiver structure that incorporates these functions is shown
in Fig. 1.

A. Improved Feedback Phase Tracking

An improved estimate of residual phase can be obtained
by filtering the phase of the term given in (4). More pre-
cisely, since it is only the estimate of frequency offset that is
needed, we focus on filtering the phase difference

. An exponential weighting filter is given by

(5)

where and the factor ensures an unbiased
estimate. The desired phase is

(6)

with . Note that for , the above expres-
sions reduce to (4).

A computationally simpler alternative to explicit phase ex-
traction is to estimate the instantaneous frequency offset as

(7)
and use this estimate instead of in (5). An even sim-
pler frequency estimate results if the amplitude of the data esti-
mate is approximated as being close to 1. Then,

, which may be justified for high signal-to-noise
ratio (SNR).

We emphasize that feedback phase tracking is necessary only
in the presence of significant frequency offset. The filtering
method proposed above enables fast tracking necessary in such
a situation, by operating directly on the phase of the signal

. Simulation results indicate that additional filtering is
particularly beneficial for channels with severe ISI.

B. Equalizer Adaptation

The error at the output of the differentially coherent detector
(post-detection error) can be expressed as

(8)

where . This error is to be used to deter-
mine the equalizer vector according to the MMSE criterion.

When the symbol decisions are correct and additional phase cor-
rection is not performed, is independent of . When the
phase correction factor is used, it is treated as independent from
equalization. Differentiating the MSE with re-
spect to the equalizer vector gives the error gradient

(9)

Because the error (8) is a quadratic, rather than a linear function
of the equalizer vector, there is no apparent closed form solution
for the vector which sets the gradient to zero. Nonetheless,
the solution can be obtained numerically, using the stochastic
gradient approach. The resulting algorithm is given by

(10)

where is the step size, and during training. The
algorithm can be initialized by setting the reference feedforward
coefficient to 1, while all the other equalizer coefficients are set
to 0. We call this algorithm the quadratic-error (Q) algorithm to
signify the fact that the instantaneous MSE gradient takes into
account the quadratic error dependence on the equalizer vector.

There are several ways in which the Q algorithm can be im-
plemented. Expressions (10) define one implementation. In this
implementation, computational efficiency can be achieved by
exploiting the shifting properties of to calculate re-
cursively. Another implementation is the following:

(11)

The two algorithms are identical when reaches steady-
state. Both algorithms are based on the assumption that
does not change much from one iteration to another.

It is interesting at this point to draw a parallel with the
modified LMS [1], which linearizes the error by assuming
that the equalizer vectors and are independent.
Differentiating the MSE with respect to only, and using
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the stochastic gradient algorithm, effectively results in applying
ordinary LMS to the input signal premultiplied by .
Although the modified LMS was used for LE only [1]–[4], it
can be extended to the DFE. This algorithm, which we call
the linearized-error (L) algorithm, is given by the same set
of equations (11) from which the second term of the gradient
vector, , has been removed. Thus, the
complexity of the Q algorithm is only slightly greater than that
of the L algorithm.

The convergence and stability analysis of the Q algorithm
remain difficult. These issues were addressed to some extent
through simulation, which indicates that the common rules of
LMS step size selection apply to the Q algorithm as well.

When the equalizer’s task is to compensate for slowly varying
ISI, while leaving the tracking of faster phase variation to the
differentially coherent detector, the assumption that the equal-
izer coefficients do not change much from one symbol interval
to another is intuitively more satisfying than that of their in-
dependence. Hence, one expects better performance from the
Q algorithm than the L algorithm. Simulation results confirm
this expectation.

III. PERFORMANCE RESULTS

Two multipath channels are considered, both modeled by the
impulse response . The first channel,
called channel A, is defined by . The second
channel, B, is defined by . The channel coefficients are
normalized such that , and the transmit/re-
ceive filters are chosen as square-root raised cosine filters
with roll-off factor 1. The average received energy per bit is

, where is the number of
bits per symbol ( is the modulation level) and is the en-
ergy of the pulse . For simulation, the discrete-time filter
coefficients were generated over a span of eight symbol
intervals, and normalized such that . The vari-
ance of the discrete-time input AWGN is obtained as

. A fractionally spaced equalizer is used with five
taps in linear configuration, LE(5), or three feedforward and
one feedback tap in decision-feedback configuration, DFE(3,1).
Extending the number of taps beyond these values results in
little improvement. The carrier phase is modeled as

, and several values of the normalized frequency
offset were considered in simulation. The values of
on the order of 10 and 10 can result from the Doppler shift
in land mobile systems. The value 10 is very high, and may
be considered as an upper limit on practical . Exceptions are
found in systems such as low Earth orbiting (LEO) satellite sys-
tems, where a much greater results from the high velocity
of satellites, making differentially coherent detection infeasible.

The Q algorithm is implemented using version (10). There
is little degradation in performance of version (11). The
L algorithm is implemented using (11) without the second
gradient term. As a benchmark for performance comparison, a
coherent receiver is used which consists of the same-size LMS
equalizer, and a jointly optimized phase estimator implemented
as a second-order, decision-directed phase-locked loop (PLL)

Fig. 2. Learning curves of various algorithms operating on channel A, with
4DPSK, using linear and decision-feedback equalizer.

[7]. The step size is chosen equal for all the receivers as
, where is the equalizer

size [8]. The initial values of the equalizer coefficients are set to
0, except with version (10) of the Q algorithm, when one of the
feedforward coefficients is set to a small nonzero value, or 1,
to ensure startup. With these initial conditions, a convergence
rate of 100% was observed in simulation, although there is
no analytical proof for the global convergence of either the
L algorithm [4] or the Q algorithm.

Fig. 2 illustrates the learning curves of the Q algorithm.
Channel A is used, with 4DPSK, and results are shown for both
LE and DFE. Averaging is performed over 1000 simulation
runs, with additional smoothing over 20 symbol intervals for
easier viewing. Interestingly, we observe that the Q algorithm
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converges as fast as the ordinary LMS used by the coherent
receiver. (No phase tracking is employed with the coherent
receiver when ; in all other situations, the PLL
proportional and integral tracking constants are set to 0.05
and 0.005, respectively.) In addition, convergence rate of the
Q algorithm is not affected by the frequency offset (only the
steady-state MSE is affected). Results clearly demonstrate that
the Q algorithm reaches a lower steady-state MSE than the
L algorithm, and uniformly so across the range of frequency
offsets investigated. This is the benefit of optimal design that
does not rely on the independence assump-
tion. The steady-state MSE reached by the Q algorithm at

is about 3 dB above that of the coherent receiver.
This is the inherent penalty of differentially coherent detection.
At 10 , there is an additional loss of about 1 dB,
approximately equal for the LE and the DFE configurations.
The DFE is implemented here with the simplest form of phase
correction (4), i.e., without additional filtering . The
L algorithm exhibits higher sensitivity to frequency offset in
the LE than in the DFE configuration. In the LE configuration,
its steady-state MSE at is comparable to that of the
Q algorithm at 10 .

Probability of error results for channel A and LE are summa-
rized in Fig. 3. Shown are the results for 4DPSK and 8DPSK,
each for several values of the normalized frequency offset.
Performance is evaluated in the decision-directed mode. The
reference curve for coherent detection corresponds to perfectly
known frequency offset. At , there is little difference
in performance of the Q and the L algorithms. Simulation
results for 10 are practically indistinguishable from
those obtained with . However, as increases, the
benefits of the Q algorithm become apparent. With 4DPSK,
performance of the Q algorithm at 10 differs by less
than a decibel from that at , while performance of
the L algorithm suffers a loss of about 2 dB. Results are also
shown for , a case which tests performance limits.

With 8DPSK, there is approximately 4 dB loss in power
efficiency as compared with 4PSK at , which is on
the order of that incurred over an ideal (no ISI) channel. With
an increase in the constellation size, it can be expected that
an adaptive algorithm will demonstrate increased sensitivity
to the frequency offset. Comparing the 8DPSK performance
to the 4DPSK performance demonstrates robustness of the
Q algorithm to the increase in modulation level. Namely, as

spans the range from 0 to 10 , the Q algorithm suffers
about 2 dB loss within the range of shown, while the
performance of the L algorithm saturates.

Fig. 4 shows the performance of DFE on channel A. These
results demonstrate the possibility to combine the simple DFE
with differentially coherent detection and obtain the expected
performance improvement over LE. The DFE improves the per-
formance on this channel by about 2 dB. The DFE, be it with the
Q or the L algorithm, is aided by the phase tracking method (4).
This simplest way of phase tracking is sufficient for the channel
at hand. The Q algorithm slightly outperforms the L algorithm,
and both show robustness to frequency offset up to 10 ,

Fig. 3. Probability of bit error as a function ofE =N for channel A and linear
equalization.

as well as to the increase in modulation level. At
(not shown), the Q algorithm exhibits 5 dB of additional loss
with 4DPSK, while the L algorithm fails.

Fig. 5 shows the performance results obtained for channel B.
Unlike channel A, this channel is not amenable to LE as it has
a spectral null. Phase tracking in the feedback section now ben-
efits from additional filtering, which was implemented in the
form (5) with . Explicit phase extraction was employed
for the results shown, although the method (7) is equally appli-
cable, as the underlying approximation holds for 10 .
It is interesting to note that additional phase filtering is benefi-
cial for channel B, which is explained by the fact that unlike with
channel A, performance relies heavily on feedback equalization.
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Fig. 4. Probability of bit error as a function of E =N for channel A and
decision-feedback equalization.

The DFE operating under the Q algorithm provides robust per-
formance for a wide range of frequency offsets on this channel
as well. For the SNR range shown, there is less than a decibel
degradation between and 10 with 4DPSK
(compared with 2 dB for the L algorithm) and about 2 dB degra-
dation with 8DPSK (compared with 6 dB for the L algorithm).
Thus, the Q algorithm maintains robustness to frequency offset
with varying modulation level in the presence of severe ISI. This
fact, together with its implementation simplicity, are the main
features of the receiver proposed.

The Q algorithm does not approach performance of coherent
detection as do the algorithms of [4] and [5] at small frequency
offset. However, the algorithms [4], [5] exhibit a tradeoff be-

Fig. 5. Probability of bit error as a function of E =N for channel B and
decision-feedback equalization.

tween performance improvement and robustness to frequency
offset. In contrast, the Q algorithm outperforms the L algorithm
consistently over a wide range of frequency offsets. Its prac-
tical importance is for applications where fine-tuning of phase
tracking parameters, required for coherent detection [7], is not
an option.

IV. CONCLUSION

Differentially coherent detection in the presence of ISI can be
accomplished using a DFE (or LE) followed by the differentially
coherent detector. To prevent its taps from rotation, the feedback
filter of a DFE may be aided by a carrier reference obtained di-
rectly from the equalizer output. Filtering the residual phase of
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this signal ensures fast tracking, necessary when significant fre-
quency offset 10 accompanies severe ISI. In the LE
configuration, the carrier reference is not needed. The equalizer
coefficients are adjusted to minimize the post-detection MSE.
An adaptive algorithm of stochastic gradient type can be de-
signed despite the fact that the error is a quadratic function of
the equalizer vector and, hence, there is no apparent closed form
MMSE solution. The resulting Q algorithm outperforms its lin-
earized-error counterpart (L algorithm) over a wide range of fre-
quency offsets. This benefit comes from the fact that the equal-
izer is optimized within the framework of differentially coherent
detection, i.e., without the assumption of equalizer vector inde-
pendence from one symbol interval to another. The complexity
of the Q algorithm is comparable to that of the L algorithm. Sim-
ulation results demonstrate convergence speed equal to that of
the LMS algorithm, with convergence time not affected by the
frequency offset. Probability of error results, obtained for the
test channels with and without spectral nulls, demonstrate ro-
bust performance, with small penalty for the range of frequency
offsets between 0 and 10 , as well as low sensitivity to
the increase in modulation level from 4 to 8. While the discus-
sion was presented primarily in terms of the DFE, a practical
application may adopt the LE configuration for complexity rea-
sons. Notably, the Q algorithm is suited to this situation, offering
performance improvement over the L algorithm, as well as sim-
plicity of implementation. Future work should capitalize on the
benefits offered by the Q algorithm by extending it to diversity
reception as well as to detection of DAPSK signals.
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