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A B S T R A C T  

This  paper  describes a mel-cepstral  analysis  method 
and  its  adaptive  algorithm.  In  the  proposed  method, we 
apply  the  criterion  used  in  the  unbiased  estimation of log 
spectrum  to  the  spectral model  represented  by  the mel- 
cepstral coefficients. To solve the  non-linear  minimization 
problem  involved  in the  method, we give an  iterative algo- 
rithm whose  convergence is guaranteed.  Furthermore, we 
derive an  adaptive  algorithm for the  mel-cepstral  analysis 
by introducing  an  instantaneous  estimate for gradient of 
the  criterion.  The  adaptive  mel-cepstral  analysis  system 
is implemented  with  an  IIR  adaptive  filter which has  an 
exponential  transfer  function,  and whose stability is guar- 
anteed. We  also  present  examples of speech  analysis and 
results of an isolated  word  recognition  experiment. 

1. I N T R O D U C T I O N  

The  spectrum  represented by the  mel-cepstral coeffi- 
cients  have  frequency  resolution  similar to  that of the hu- 
man  ear which has  high  resolution at  low frequencies[l]. 
As a result,  mel-cepstral coefficients are useful  for  speech 
synthesis and recognition. For obtaining  mel-cepstral co- 
efficients, several  methods  have  been  proposed. For  exam- 
ple, the  mel-cepstral coefficients are  obtained  from  the  LPC 
coefficients by  using the  technique of spectral  resampling. 
No strict  method,  however, is proposed  in  which the spec- 
tral model  is  represented by mel-cepstral coefficients and a 
spectral  criterion is minimized. 

In this  paper, we propose a mel-cepstral  analysis  method 
and  its  adaptive  algorithm.  In  the  mel-cepstral  analysis 
method,  the  model  spectrum is represented by the  M-th 
order  mel-cepstral coefficients and  the  criterion  used in the 
unbiased  estimation of log  spectrum[2] is minimized  with 
respect to  the  mel-cepstral coefficients. The minimization 
problem  is  solved  efficiently  by an  iterative  technique us- 
ing the  FFT, recursion  formulas, and a fast  algorithm  that 
requires O ( M Z )  arithmetic  operations.  We  can show that 
the  convergence is quadratic  and  typically a few iterations 
are sufficient to  obtain  the  solution. 

Furthermore, we present  an  adaptive  algorithm for the 
mel-cepstral  analysis.  To  derive  the  adaptive  algorithm, 
we introduce  an  instantaneous  estimate for the  gradient of 
the  criterion in a similar  manner of the LMS algorithm[3]. 
The  adaptive analysis  system is implemented  with  an  IIR 
adaptive  filter which has  the  structure of the MLSA filter 
[4] and  whose  stability is guaranteed.  The  adaptive  analysis 
system  requires O ( M )  operations  per  sample  to  implement 
the  M-th  order  mel-cepstral  analysis. We  show  examples 
of analysis  for  synthetic  and  speech  signal. To evaluate  the 
proposed  methods, an isolated  word  recognition  experiment 
was  carried out. 

2. S P E C T R A L   E S T I M A T I O N   B A S E D   O N  
M E L - C E P S T R A L   R E P R E S E N T A T I O N  

2.1 S p e c t r a l   M o d e l  and Cr i te r ion  

order  mel-cepstral  coefficients ?(m) as follows: 
We represent  the  model  spectrum H ( e J w )  by the  M-th 

M 

~ ( z )  = exp ~ ( m )  z'-" (1) 

where 
m=O 

The  phase  characteristic of the  all-pass  transfer  function 
i-' = e--3' is given by 

G = tan-' 
(I - a2)s inw 

(1 + a ~ ) c o s w  - 2 0 '  
For example,  for a sampling  frequency of lOkHz, LJ is a 
good  approximation to  the me1 scale  based on subjective 
pitch  evaluations when a = 0.35[4]. 

To obtain  an  unbiased  estimate, we  use the following 
criterion[2]  and  minimize  it  with  respect  to {?(m)}$o. . r r  

{exp R ( w )  - R ( w )  - 1) dw (4) 

where 
R(w) = logIN(w)  -log 1 H ( P )  I* (5) 

and I N ( w )  is the modified periodogram of a weakly station- 
ary  process z(n) with  a  time window of length N .  To  take 
the gain  factor A' outside  from H ( r ) ,  we rewrite (1) as 

M 

~ ( z )  = exp b(m) +",(z)  = I C .  ~ ( r )  (6) 
m=O 

where 
Ii' = exp b(0) (7) 

(8) 
m = l  

and 

E.(nz) = 

Since H ( r )  is a  minimum  phase  system, we can show that 
the  minimization of E with  respect to {Z(m)}E=o is  equiv- 
alent to  that of 
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with  respect  to 
b = [b( l ) ,b(2) , . .  . , b(M)IT. (12) 

The  gain  factor 11' that minimizes E is obtained  by  setting 
d E / d I i  = 0: 

where emin is the minimized value of E .  

2.2 Solution for the  Minimization  Problem 
Since E is convex with  respect  to b [5], the minimiza- 

tion  problem of (11) can  be solved by  the  Newton-Raphson 
method. For the  i-th  result b('), solving a set of linear 
equations 

K = G  (13) 

we have  the values 
Ab(') = [Ab(')(l), Ab(')(2), . . . , Adi) (M)IT (15) 

where H is the Hessian matrix H = @€/ab abT. Then  the 
next  result is obtained as follows: 

The  gradient V E  is given  by 

where 

b('+1) = b(') + Ab('). (16) 

Ve = -2F = -2[?(1), ?(2), . . . , (17) 

and  the Hessian matrix H is given  by 

where 
H = 2 { h ( i ? ~ ' ) } i , j = 1  

M 
(19) 

(20) 
Since the  matrix H is a symmetric  Toeplitz plus  Hankel 

matrix, (14) can  be solved  using a fast recursive algorithm 
[6] which requires O ( M 2 )  arithmetic  operations. Coeffi- 
cients h ( i , j )  and F(m) can  be  calculated efficiently using 
the  FFT  and recursion formulas[5].  We  can  obtain  an ini- 
tial guess b(O) from  the  FFT  cepstrum using a recursion 
formula[5]. The convergence is quadratic  because  the Hes- 
sian  matrix is positive  definite.  We  have found that  typi- 
cally a few iterations  are sufficient to  obtain  the  solution. 

3. ADAPTIVE  MEL-CEPSTRAL  ANALYSIS 
ALGORITHM 

3.1 Derivation  of  Adaptive  Algorithm 
Replacing H in (14) with  the  unit  matrix, we can  derive 

the  method of steepest  descent  from  the  Newton-Fbphson 
method.  That  is,  from  the  i-th  result b(') the  next  result 
b('+') is given  by 

where p is the  adaptation  step size. 

large, we can  interpret (11) as the  mean  square of e(n): 
Assuming  that  the  time window length N is sufficiently 

E = E [e2(n)] (22) 
where e(n) is the  output of the inverse  filter l / D ( t )  driven 
by ~ ( n ) .  According to  the  assumption,  the  gradient given 
in (17) becomes 

+ + + 
f 

Fig. 2. Block diagram of the  adaptive  mel-cepstral 
analysis. 

and  em(n) is the  output of the  filter a m ( z )  (see Fig. 1). 
To derive an  adaptive  algorithm, we introduce  an in- 

stantaneous  estimate  in  a  similar  manner of the LMS 
algorithm[3] 

In this  paper,  to  suppress  fluctuation of b, we estimate Ve 
using an exponential window as follows: 

71 

O€("f = -2  (1 - 7) Tn-' e(i) e t )  
:=-m 

- T ~ E ( ' + - ' )  - 2(1 - r ) e ( n ) e t ) ,  0 5 T < 1.(26) 
With  this  estimate of the  gradient, we can specify an  adap- 
tive  algorithm based on the  method of steepest descent: 
the coefficients vector b(") a t  time n is updated  as 

- 

b("+') = b(") - p ( n )  Te('+). (27) 
When  the  gain of the signal z ( n )  is time-varying, p is 

O < a < l  (28) 
normalized as follows: 

a 
p ( n )  = - 

E ( ' * )  = (1 - A )  X"-' e2(i) 

M ~ ( n )  ' 
where d n )  is an  estimate of E at  time  n 

n 

- A d n - ' )  + (1 - X ) e 2 ( n ) ,  0 5 X < 1. (29) 
Using (13), we can  get  an  estimate of I< at  time n from e(") .  

The block diagram of the  adaptive  mel-cepstral  analysis is 
depicted in Fig. 2. In the  next  section, we will discuss 
a  realization  method of the  exponential  transfer  function 

The  mel-cepstral coefficients { E ( r n ) } ~ = = ,  can be obtained 
from I< and b using ( 7 )  and (9). Note  that  the above 
algorithm is equivalent to  the  adaptive  cepstral analysis 
algorithm[7] when cr = 0. 

I = - -  

- 

1/D(z) .  

3.2 Realization of Exponential  Transfer  Function 
Although  the  transfer  function l / D ( r )  is not  a  rational 

function,  the MLSA filter[4] can  approximate l /D(z) in 
Fig. 2 with sufficient accuracy.  The complex exponential 
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Input 

I & output  ...-+ 
(a) Basic  filter F ( z )  

LO Outplut 

I I  I I J 
I 

(b) R L ( - F ( z ) )  N ~ / D ( z )  L = 4 

(c)  Two-stage  cascade  structure 
&(-F1(z)).  &(-Fz(Z) )  2 1/D(z)  

Fig.  3. Implementation  of l /D(z) .  

TABLE I Coefficients of R4(w) 

function  exp w is  approximated by a rational  function 
L 

1 + AL,I  w I 

exp w 2: R L ( w )  = L 
I=1  

' (30) 

1 + A L , ,  (-w)' 

Thus l /D(z) is approximated  as follows: 

where F ( z )  is  defined  by 

k 1  

R L ( - F ( ~ ) )  N exp(-F(z)) = 1 / D ( z )  (31) 

M 

The filter structure of F ( z )  is shown  in  Fig. 3(a). Fig- 
ure  3(b) shows the block diagram of the MLSA filter 
& ( - F ( z ) )  for the  case of L = 4. 

When we use the coefficients A4,1 shown  in  Table I, 
& ( - F ( z ) )  is stable  and becomes a  minimum  phase  sys- 
tem  under  the  condition 1 F(eJ"') 1 5 6.2. (33) 
Furthermore, we can  show that  the  approximation  er- 
ror I logl /D(ejW)  - logR4(-F(ejW))  I does  not  exceed 
0.24dB[8]  under the condition 

I F(e jw)  I 5 4.5. (34) 

m=l 

-2d I I I 1 I - 
1 2 3 4 5   1 2 3 4  

F r e q u e n c y  ( k H z )  F r e q u e n c y  ( k H z )  
I 

( a )  L P C  a n a l y s i s  ( b )  M e l - c e p s t r a l   a n a l y s i s  

Fig.  4. Spectral  estimates  for  synthetic  signal(M = 12). 

When F ( z )  is expressed as 
F ( z )  = Fl(2) + F Z ( Z )  (35) 

the  exponential  transfer  function is approximated in a  cas- 
cade  form 

I/D(z) = exp(-F(z)) = exp(-FI(z))  .exp(-Fz(z)) 
- R L ( - F I ( ~ ) )  . R L ( - F ~ ( ~ ) )  (36) 

may I F1(ejw) I ,may I F2(eJW) 1 < max I F(e jw)  1 ,  (37) 

it is expected that  RL(-F1(ejw))  RL(-F2(eJW))  approxi- 
mates  l/D(ej")  more  accurately  than RL(-F(e'")) .  

as shown in  Fig. 3(c). If 

W w W 

In the following experiments, we let 
Fl(2) = b(l)Ql(Z)  (38) 

M 

F ? ( r )  = 1 b ( m )  @ , , , ( z ) .  (39) 
m=? 

Since we empirically  found that 
mi tv IF1(eJY) I ,mas IF? (e jw) I  <4.5 (40) 

for  speech  sounds, RL (-Fl(z))  . RL(  -F~(z)) approximates 
the  exponential  transfer  function l / D ( z )  with sufficient  ac- 
curacy  and becomes a stable  system. 

To implement  the  M-th  order  adaptive  mel-cepstral 
analysis, the analysis  system  requires O ( M )  operations  per 
sample.  Thus  it  can  be  implemented  with  one  currently 
available DSP. 

W W 

4. E X P E R I M E N T A L  RESULTS 
In the following experiments, o was  set to 0.35  and M 

was  set to 12 except that  it was  set to 15 in 4.3. In the 
adaptive  algorithm, u ,  X, and T were  set to  0.12, 0.98, and 
0.92, respectively. 

4.1 Analysis of Synthe t ic   S igna l  
Figure  4 shows the  spectral  estimates for synthetic sig- 

nal  compared  with  the  LPC  analysis.  The  signal was  gen- 
erated by driving an ARMA filter by a  pulse  train  with  unit 
variance.  It is seen that  mel-cepstral  analysis  can  estimate 
resonances  and  anti-resonances which the  LPC analysis  can 
not  estimate  accurately. 

Figure 5(a) shows the convergence  characteristics of the 
adaptive  mel-cepstral  analysis for the  same  synthetic sig- 
nal. The  spectral  estimates  obtained  from  the  mel-cepstral 
coefficients at  the 400th  and  the  800th  iterations  are given 
in Figs. 5(b)  and  (c), respectively.  From  Fig. 5 ,  it is seen 
that  the  adaptive  mel-cepstral  analysis  has  fast  and  stable 
convergence characteristics. 

4.2 Analysis of Natu ra l   Speech  
Figure G shows the result of a natural speech  analysis. 

The signal  shown  in  Fig. G(a) is a  natural  Japanese speech 
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0 200 400 600 800 

N u m b e r  of   i terat ions 
( a )  - 40 

m - t rue  

I 
-2d 1 2 3 4 5  

F r e q u e n c y  ( k H z )  
( b )  400 i t e ra t ions  

I4 t r u e  
e s t i m a t e  

1 2 3 4 5  
F r e q u e n c y  ( k H z )  

( c )  800 i te ra t inos  

Fig.  5.  Convergence  characteristics of the  adaptive 
mel-cepstral  analysis  algorithm. 

/naNbudewa/  sampled  at 10kHz. Figure  6(b) shows the 
mel-cepstral coefficient ? ( I )  versus  iteration  number. Log 
magnitude  spectra shown in Figs. G(c) and  (d)  are  obtained 
from  the  mel-cepstral coefficients {2(rn)}z=o at intervals 
of 5ms.  From  Fig. 6, it is seen that  the  proposed  analysis 
methods  have high resolution a t  low frequencies in  spite 
of a small  order of analysis(M = 12),  and  the  adaptive 
algorithm  has sufficiently fast convergence characteristics 
for speech  analysis. 

4.3 Appl i ca t ion   t o   Speech   Recogn i t ion  
To  evaluate  the  performance of the  mel-cepstral  anal- 

ysis method(MC)  and  the  adaptive  mel-cepstral  analysis 
method(AMC),  an  isolated  word  recognition  esperiment 
was carried  out. We selected a vocabulary of highly  con- 
fusing 20 Japanese  city  names  uttered  twice by five male 
speakers. The recognition was  accomplished  using the 
DTW(Dynamic  Time  Warping)  and  the  Euclidean mel- 
cepstral  distance  calculated  from  the  mel-cepstral coeffi- 
cients a t  intervals of 10ms. For comparison, we used the 
mel-cepstral  coefficients(M = 15)  calculated  from  the  LPC 
coefficients(M = 12) using  the  recursion  formula(LPC). 
Table I1 shows the  results for the  recognition  rates. We 
achieved  higher recognition  rates using MC  and  AMC  than 
that using LPC. 

5. C O N C L U S I O N  
In  this  paper, we have  presented  the  mel-cepstral  anal- 

ysis method  and  its  adaptive  algorithm.  The  mel-cepstral 
analysis is efficient for  the  estimation of spectra which have 
resonances  and  anti-resonances  at low frequencies. The 
adaptive  mel-cepstral  analysis  system is implemented  with 
an IIR adaptive filter  which has  an  exponential  transfer 
function  and whose stability is guaranteed.  It is shown that 
the  adaptive  algorithm  requires O ( M )  operations  per sam- 
ple  to  obtain  the  M-th  order  mel-cepstral coefficients and 
has  fast convergence properties.  The effectiveness of the 
proposed  methods was  also  shown  by the  some  experimen- 
tal  results.  Potential  application of the  adaptive  analysis 
to speech coding[9] is currently  investigated. 
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Fig. G. An example of analysis for natural  speech. 
TABLE I1  Recognition rates for several  analysis 

methods. 
Analysis intraspeaker  interspeaker  total 

90.0 % 91.2 % 
91.8 % 93.2 % 

AMC 98 % 91.0 % 92.4 % 
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